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ABSTRACT 

 
 
 
 
 This research was carried out to develop a gas density control model using 

Aspen Plus with Internal Model Control (IMC) method application for data 

generation purpose and to analyze on the process estimation using Partial Least 

Squares (PLS) regression. In making this process, the Air Flow Pressure 

Temperature (AFPT) pilot plant is use as the case study. The AFPT pilot plant is a 

process control training system (PCTS) that uses only air to simulate gas, vapor or 

steam. This AFPT pilot plant is a scale-down Real Industrial Process Plant built on 

5ft X 10ft steel platform, complete with its own dedicated control panel. The AFPT 

pilot plant can be use to control the gas density by manipulating the pressure, flow, 

and temperature of the plant. This AFPT pilot plant then will be simulating using 

Aspen Plus to develop a gas density control model. The model will be run in steady-

state and dynamic mode. In dynamic mode, the controller for all the parameters to 

control the gas density is putted. This entire controller then will be tune using the 

Internal Model Control (IMC) method in order to get its best performance. After the 

simulation is done, the gas density data generated from the simulation will be 

compared with the actual (experiment) data for validation of the data. The data 

shows that the error between the two data is less than 5%, meaning that the data 

generated from the simulation is valid. Then, this data will be use to develop a 

process estimator model using Partial Least Squares (PLS) method. After the 

estimation model is done, the mean squares error (MSE) between the estimated data 

and actual data is 0.001584743. This shows that the Partial Least Squares can be use 

as the estimator model for gas density control purpose and the estimation model 

developed is reliable.  
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ABSTRAK 

 
 
 
 
 Kajian ini dijalankan adalah untuk membangunkan alat kawalan ketumpatan 

udara menggunakan Aspen Plus dengan applikasi Internal Model Control (IMC) bagi 

tujuan pengumpulan data dan untuk menganalisis proses penganggaran 

menggunakan cara Partial Least Squares (PLS). Dalam kajian ini mesin Air Flow 

Pressure Temperature (AFPT) digunakan sebagai kajian kes. Mesin AFPT adalah 

alat latihan proses kawalan bagi simulasi udara, steam atau wap air. Mesin AFPT ini 

adalah diambil daripada applikasi berdasarkan industri yang sebenar dilengkapi 

dengan kesemua alat kawalan yang terkini. Mesin AFPT ini kemudian akan 

disimulasikan menggunakan applikasi Aspen Plus bagi tujuan untuk membangunkan 

alat kawalan ketumpatan udara. Simulasi ini dilakukan dalam dua keadaan, iaitu 

dalam keadaan statik dan dinamik. Dalam simulasi dinamik, alat kawalan diletakkan 

di setiap alat di dalam simulasi AFPT bagi tujuan memanipulasikan proses. Setiap 

alat kawalan ini akan dikemaskini menggunakan Internal Model Control (IMC). Ini 

bertujuan bagi mendapatkan prestasi kawalan yang lebih baik daripada alat kawalan 

terbabit. Selepas simulasi ini dijalankan, data yang terhasil akan dibandingkan 

dengan data daripada eksperimen. Hasil daripada perbandingan kedua-dua data ini, 

mendapati, perbezaan data simulasi dengan eksperimen adalah kesemuanya kurang 

daripada 5%. Dengan itu, ini telah menjelaskan akan kesahihan data simulasi tersebut. 

Data-data daripada simulasi ini seterusnya digunakan dalam membina atau 

membangunkan model penganggaran menggunakan cara Partial Least Squares (PLS). 

Selepas pembangunan model penganggaran ini dilakukan, perbezaan data daripada 

proses penganggaran dan data simulasi adalah 0.001584743. Perbezaan yang sangat 

kecil ini menunjukkan bahawa data daripada model penganggaran menggunakan cara 

PLS ini boleh dipercayai dan pembangunan model penganggaran  telah berjaya 

dibangunkan bagi tujuan pengawalan ketumpatan udara.  
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CHAPTER I 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Introduction 

 
 
 Stringent product specification, stiff competition among manufacturers and 

increasingly strict regulation from local authority in the face of full capacity 

operation with zero accidents and emission have forced many existing plants to 

revamp their existing control system. More advanced control schemes have been 

implemented. Despite these successful implementations, many issues remained as 

hindrances to efficient process control. For example, the success in the 

implementation of any optimization scheme requires adequate performance of all 

control loops. This is however, sometimes hampered by two issues. The first is 

related to inadequacy of conventional controller used since chemical process 

dynamics are typically non-linear whilst the controllers are based on linear theory. 

The second issue is associated with process measurement, the accuracy of which is a 

prerequisite to successful process control. 

 

 Since measurement devices are not one of the main factors in achieving 

effective process control, selection of appropriate sensors and their location should 

be properly consider. However, not all variables in a process plant are readily to be 

measured on-line. Product quality variables such as chemical concentration and their 

composition are rarely available on-line, and are usually obtained by laboratory 

sample analysis. This is usually performed at long intervals and is therefore not 

practical to be used for process control. Over the years, various on-line measurement 

devices have been developed. However, many of these on-line devices are still 
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suffering from problems due to the availability, reliability, complexity and large 

delays. For some quality variables, existing analytical tools used are simply 

unavailable for on-line applications. Hence, the development of inferential estimation 

and control has been advocated as one of the alternative solution to deal with 

measurement difficulties. 

 
 
 
 
1.1.1 Background Of The Study 

 
 
 Gas density represents one of the gas properties which need to be set 

precisely in a few processes such as combustion (i.e. furnace and motor engine), 

polymerizations process as well as chemical industries. Research on the effect of gas 

density in chemical processes has been conducted in the recent decades, for examples, 

gas density effect on mass transfer in bubble and slurry bubble column and the effect 

of gas density in frequency response of gas-filled pressure transducers. Therefore gas 

density requires to be controlled. 

  

 In feed back control, controlled variable compared to set point and then 

calculated in the controller. Output of controller then adjusts the manipulated 

variable in order the controlled variable is equal to setting point. Control strategy can 

be conducted either indirect or direct. Direct control is chosen if measurement 

controlled variable is available, and vice versa. For example, control gas density can 

be conducted by controlling pressure or temperature, because based on PVT gas 

correlation, gas density is a function of pressure,P and tempertature,T. However, 

indirect strategy usually gives unfavorable performance.  

 

 Another strategy which is commonly used by inferential model instead of 

unavailable sensor of controlled variable.  This model is developed from available 

measurements i.e. temperature, rate flow and pressure. The model can be developed 

first principal, semi-empirical or empirical model.  

 

 In this study gas density model will be developed base on Internal Model 

Control (IMC) method. IMC is one of the techniques that are used to determine a 
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controller setting. The objective of IMC method is to provide a good initial controller 

setting that can subsequently be fine tuned on-line. The model is then implemented 

to PID controller of gas density with equipment based on AFTP control system (Air 

Flow Temperature and Pressure control system). 

  
 
 
 
1.2 Identification Of Problem 

 
 

In recent years, changing industrial needs and advances in computer 

technology had gives some impact in education, research, and practice of process 

control. From industrial perspective, improved in productivity, efficiency, and 

product quality goals generated a demand for more effective operational strategies to 

be applied in the production line, while the developments in digital computers and 

communications have revolutionized the practice of process control and allowed 

more advanced tools to be implemented. As a consequences, a vast broadening of the 

domain of what is technologically and economically achievable in the application of 

computers to control industrial process. This domain now includes process 

information and data gathering, control, and online optimization, and even 

production scheduling and maintenance planning function.  

 

 In chemical industries, process control gives many contributions in 

assuring a smooth process. In industries, many of the process involve liquid, solid 

and gas. All the parameter involved should always be in the rightful manner. A slight 

miscalculation might bring to accident, loss in productivity, increase the operating 

cost or loss of operational time. This is where process control gives a contribution 

role in preventing that all the risk mention before might not happen.  

 

There are many factors that can give an effect in a chemical process. One of 

the factors is the gas density. Gas density has its own effect in some chemical 

process, for example the gas density effect on mass transfer in bubble and slurry 

bubble column. Base on its importance in chemical process, research on gas density 

measurement is performed to measure and control the gas density in some chemical 

process. To control the gas density in a chemical process means to control the effect 
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of it in the process itself. Gas density is strongly influenced by temperature and 

pressure; therefore there are ideas that maybe by controlling this two variables, the 

gas density in a process can be controlled too. 

 

 In order to control a variable in a pilot plant, a controller is needed. By 

introducing a controller such as cascade control or PID in a pilot plant, the gas 

density that is required in some process can be measured and control accurately. But, 

the controller design that was proposed to be use in any chemical process needs to be 

proven its effectiveness first. With the advance of computer technology in industry, a 

simulation model can help in testing the effectiveness of the proposed controller 

design. Therefore, in this research, a pilot plant equipment will be simulated using 

software to test the effectiveness of a controller design then, the gas density resulted 

from this controller will be estimated using Partial Least Squares (PLS) Method. 

 
 
 
 
1.3  Objectives: 

 
 
 In this research, there are two (2) main objectives. The two objectives of this 

research are: 

i. To develop a gas density control model using ASPEN PLUS with Internal 

Model Control (IMC) method application for data generation purpose 

ii. To analyze on the process estimation using Partial Least Squares (PLS) 

method. 

 
 
 
 
1.4  Scope Of The Study: 

 
 
To achieve the objectives of the research, this scope of study are to be apply: 

i. Develop an AFPT simulation model using ASPEN PLUS with the 

introduction of a controller set using Internal Model Control (IMC). 

ii. Generate data from the ASPEN PLUS simulation. 
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iii. Validating the data from ASPEN PLUS model by comparing it with the data 

from the actual model (experiment) 

iv. Analyze dynamic response of AFPT simulation model. 

v. Analyze the process estimation using Partial Least Squares (PLS) method. 

 
 
 
 

1.5  Significances Of Study 

 
 
For decades, research on effect of gas density towards chemical process has 

been performed. Gas density has its own effect on some chemical process, such as 

gas density effect on mass transfer in bubble and slurry bubble column and effect of 

gas density in frequency response of gas-filled pressure transducers. Because of the 

importance of the gas density towards some chemical process, research has been 

done in order to control the gas density. But, gas density is hard to be controlled, 

therefore, it is important to develop a model that is equipped with the density control 

strategy. With a good control system strategy, robustness or fault in a process can be 

eliminated, and a more effective process can be achieved.  Also, a good control 

system can assured in maintaining some level of desired performance. Moreover, a 

control strategy aims to keep the operating condition variations at a minimum, and 

allow the operating target to stay as close as possible to the true (optimal) maximum 

profit. The control system is expected to minimize the variations around the 

operating target (performance objective) while, in turn, shrinking the tolerable 

operating limits. The more advanced the control system is, the better the chances are 

that the plant will operate even closer to the optimum target. This gain, quantified by 

the move toward a more profitable regime, helps establishing the financial benefits of 

the control system.  



 
 
 
 
 

CHAPTER II 

 
 
 
 

LITERATURE REVIEW 

 
 
 
 
2.1  Gas Density 

 
 
 Gas density represents one of the gas properties which need to be set 

precisely in a few processes such as combustion, polymerizations, as well as 

chemical industries. Also, density is heavily affected by temperature and pressure in 

many cases. By knowing the temperature, pressure, and composition, an accurate 

density can be calculated by using the proper Equation of State (EOS).  

  

 However, the accuracy of such an equation of state (EOS) in turn depends on 

the accuracy of the experimental data use to establish it. Therefore, because of this 

factor, to develop a references quality EOS, reliable thermodynamic property 

measurements of the fluids must be available. Gas density has its own effect in 

chemical processes. For example, the effect of gas density on mass transfer in bubble 

and slurry bubble column, and gas density effect on frequency response of gas-filled 

pressure transducers For this reason, many research has been done in order to control 

the gas density whether by developing a measurement device to measure the density 

accurately or by developing a controller to control the gas density in a desired value.    
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2.2  Control Law 

 
 
 A control signal c(t) is calculated, given the value of the error e(t) through a 

predefined equation: 

  c(t) = C [e(t)]                                                                                (2.1) 

 

 The function C[.] constitutes the control law. By specifying C[.] , we are, in 

effect, establishing the manner which the error information is utilized by the 

controller. The most common functional form is the three mode proportional-

integral-derivative (PID) control law.  

 
 
 
 
2.2.1  Proportional Mode 

 
 
 This mode produces a control signal that is proportional to the error. 

   

c(t) = kce(t) + cb                                                                                             (2.2) 

 

 kc represents the proportional gain of the controller, and defines how sensitive 

the controller is to errors present in the system. cb is bias signal that corresponds to 

the value of control signal when error is zero. The bias signal can also be interpreted 

as the steady-state value of the control signal. Thus, defining the deviation variable 

c(t) = c(t) - cb, and recognizing that by definition e(t) = e(t), Eq (2.2) results in the 

following transfer function: 

 

                                                         (2.3) 
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2.2.2  Integral Mode 

 
 
 The control signal for this mode is produced by integral equation: 

 

                                                           (2.4) 

 The new parameter τI is introduced as the integral time constant or the reset 

time. With this mode, the controller responds effectively to errors that build up over 

time. This is a very important feature because even if the error is small, as long as it 

persists, a large control signal may be calculated, thus helping to eliminate the error 

quickly. The transfer function of a controller with integral mode only is: 

 

                                                           (2.5) 

 
 
 
 
2.2.3  Derivative Mode  

 
 
 In this mode, the control signal responds to the rate of change of the error 

signal. 

 

                                                             (2.6) 

 A new parameter τD is introduced as the derivative time constant. The role of 

this mode is to judge the change in the error. For instance, if the error is still present 

but not increasing as fast, the controller may use this information ti decrease the 

control signal, thus possibly avoiding overly aggressive control actions. In other 

words, the derivatives mode introduces an anticipatory control action as it 

extrapolates the future status of the error. The transfer function if a controller in 

derivative mode is as follows: 
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                                                               (2.7) 

 
 
 
 
2.2.4  Three Mode Controller (PID) 

 
 
 The PID control law yields a three term expression where the behavior of the 

controller can be affected by judicious choice of three parameters. The transfer 

function of the PID control law can be expressed as follows: 

 

                                       (2.8) 

 Common forms of the PID controller such as the Proportional Controller (P-

controller) and the proportional-integral controller (PI controller) can be easily 

obtained by setting   τI = ∞, and τD = 0, respectively. The PI controller is sometimes 

referred to as the proportional-plus-reset-time-controller. 

 
 
 
 
2.2.5 Limitation Of The PID Control 

 
 
 PID controllers, when used alone, can give poor performance when the PID 

loop gains must be reduced so that the control system does not overshoot, oscillate or 

"hunt" about the control setpoint value. The control system performance can be 

improved by combining the feedback (or closed-loop) control of a PID controller 

with feed-forward (or open-loop) control. Knowledge about the system (such as the 

desired acceleration and inertia) can be "fed forward" and combined with the PID 

output to improve the overall system performance. The feed-forward value alone can 

often provide the major portion of the controller output. The PID controller can then 

be used primarily to respond to whatever difference or "error" remains between the 

setpoint (SP) and the actual value of the process variable (PV). Since the feed-

forward output is not affected by the process feedback, it can never cause the control 

system to oscillate, thus improving the system response and stability. For example, in 
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most motion control systems, in order to accelerate a mechanical load under control, 

more force or torque is required from the prime mover, motor, or actuator. If a 

velocity loop PID controller is being used to control the speed of the load and 

command the force or torque being applied by the prime mover, then it is beneficial 

to take the instantaneous acceleration desired for the load, scale that value 

appropriately and add it to the output of the PID velocity loop controller. This means 

that whenever the load is being accelerated or decelerated, a proportional amount of 

force is commanded from the prime mover regardless of the feedback value. The PID 

loop in this situation uses the feedback information to effect any increase or decrease 

of the combined output in order to reduce the remaining difference between the 

process setpoint and the feedback value. Working together, the combined open-loop 

feed-forward controller and closed-loop PID controller can provide a more 

responsive, stable and reliable control system. 

 Another problem faced with PID controllers is that they are linear. Thus, 

performance of PID controllers in non-linear systems (such as HVAC systems) is 

variable. Often PID controllers are enhanced through methods such as PID gain 

scheduling or fuzzy logic. Further practical application issues can arise from 

instrumentation connected to the controller. A high enough sampling rate, 

measurement precision, and measurement accuracy are required to achieve adequate 

control performance. 

 A problem with the Derivative term is that small amounts of measurement or 

process noise can cause large amounts of change in the output. It is often helpful to 

filter the measurements with a low-pass filter in order to remove higher-frequency 

noise components. However, low-pass filtering and derivative control can cancel 

each other out, so reducing noise by instrumentation means is a much better choice. 

Alternatively, the differential band can be turned off in many systems with little loss 

of control. This is equivalent to using the PID controller as a PI controller. 
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2.3  Model Base Design Method 

 
 
 If a reasonably accurate, dynamic model of the process is available, it is 

advantageous to base the controller design on the process model. A wide variety of 

model base design strategies are available for designing PID controller (Åström and 

Hägglund, 1995; Tan et al., 1999). This concept leads to the paradigm of model base 

control that advocates the use of the process model explicitly in the formulation of 

the control law. This naturally allows the designer to take advantage of any 

information provided by the model, thus creating a more intelligent control system.  

 
 
 
 
2.3.1  Internal Model Control (IMC) 

 
 
 Most practical system are inherently non-linear to some extent in their 

behavior and for their cost effective, smooth, and safe operation, optimized control 

system based on the non-linear models are required. New artificial intelligence based 

techniques such as fuzzy logic, neural networks and probabilistic reasoning, are 

becoming more and more popular. Among these techniques, neural networks have an 

edge over the others, mainly because of their ability to process large amount of 

available data, subsequent to the development of some interpretable models for 

solving engineering problems. The problem becomes more computationally worse 

and uncontrollable when inverse of the system does not exist. The problem resolved 

when Neural Network based techniques such as Internal Model Control (IMC) is 

applied to the real system. 

 

 Internal Model Control is more comprehensive model-based design method 

that was developed by Morari and coworkers (Garcia and Morari, 1982; Rivera et al., 

1986). The IMC approach is based on an assumed process model and relates the 

controller settings to model parameters in a straightforward manner. Owing to the 

equivalence of the two configurations, there is a direct link between the classical 

control structure and the IMC structure. This link can be illustrated by defining the 
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controller gc(s) in the classical control structure and the controller c(s) in the IMC 

structure as follows: 

 

                                                               (2.9) 

 

 

The close-loop transfer functions with the IMC configuration can be derived as: 

 

                            (2.10) 

 
 
 
 
2.3.2  IMC Design Procedure 

 
 
 The design procedure in IMC designing is first establishes if the model has 

any time delays or Right half-plane(RHP) zeros and decomposes the model in such a 

way as to create a minimum-phase part, ğM(s), and a nonminimum-phase part, ğA(s): 

 

                                                                (2.11) 

 

 The nonminimum-phase part is also known as the all pass element since, by 

choice, the amplitude ratio (AR) of its Bode plots remain at 1 for all frequencies. 

Naturally, the minimum-phase element represents the invertable part of the transfer 

function as far as the limitations to inverting a process model is concerned. The 

decomposition in Equation (2.11) yields an optimal closed-loop response based on 

the Integral Square Error (ISE) criterion with respect to an input interest of interest. 

In other words, if we assume the model is a perfect representation o the process, g(s) 

= ğ(s), the close-loop error is minimized if the nominal IMC controller is chosen as 

 

                                                                         (2.12) 
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 Therefore, this is the closest that we can get to the ideal performance of the 

perfect control. Although perfect control cannot be achieved, it is of great theoretical 

and practical interest to determine how closely this ideal can be approached. Thus, 

this is just an idealization of our performance expectation and not practically possible.  

 
 
 
 
2.3.3  PID Tuning Using IMC Rules 

 
 
 The equivalence between the classical controller and the IMC controller is 

showed by the equation stated below: 

 

                                                                           (2.13) 

 

 This equation points to a rather intuitive fact, asserting that the complexity of 

the classical controller is determined by the complexity of the model. This is a 

valuable observation that underscores the point out designing controllers whose 

complexity commensurate with the process that they are being implemented on. This 

equivalence can be exploited to derive the parameters of PID controllers for a 

number of specific models.  

 
 
 
 
2.4  Process Simulation 

 
 
 Simulation plays an increasingly important role in the process of designing 

various production facilities. It can be applied in many different fields ranging from 

strategic market prediction and business process simulation at the highest 

management level of the control hierarchy, to the production sell and process control 

loop simulation at the lowest control level. Generally, simulation helps in predicting 

future behavior of the observed system and can be used a tester for system that are 

being designed. Process simulation also allows engineer to predict the behavior of 

the process by using basic engineering relationships such as mass and energy balance, 
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and phase and chemical equilibrium. Given reliable thermodynamic data, realistic 

operating conditions, and variety of equipment models, an engineer can simulate 

actual plant behavior. Process simulation also enables engineer to run many cases, 

conduct “what if” analyses, and perform sensitivity studies and optimization runs. 

With a simulation process, engineer can design a better plants and increase 

profitability in existing plants. Process simulation is useful throughout the entire 

lifecycle of a process, from research and development through process design and 

production.  

 
 
 
 
2.4.1 Aspen Plus 

 
 
 Aspen Plus system is one of the standard software for flowsheet simulation in 

the processing industries. It is supported by strong databases, complete sets of 

modules, and flexible simulation tools. The system provides many built-in modules 

for simulating various processes. Aspen Plus makes it easy to build and run a process 

simulation model by providing a comprehensive system of online prompts, hypertext 

help, and expert system guidance at every step.  

 
 
 
 
2.5  Process Estimation 

 
 
 The purpose of process estimation is to arrive at an estimator, and preferably 

an implementable one that could actually be used. An estimator takes the measured 

data as input and produces an estimate of the parameters. Engineers are usually 

concerned with eventual implementation, and so the material presented is geared 

towards discrete time systems. However, continuous time systems are also discussed 

in order to get the actual completeness, and because there is still the possibility for 

the implementations of continuous time filters. For many engineers, state estimation 

is interesting for at least two reasons: 
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i. Often an engineer needs to estimate system states in order to implement a 

state feedback controller. For example, the electrical engineer needs to 

estimate the winding currents of a motor in order to control its position. The 

aerospace engineer needs to estimate the attitude of a satellite in order to 

control its velocity. The economist needs to estimate economic growth in 

order to control unemployment. The medical doctor needs to estimate blood 

sugar levels in order to control heart and respiration rates. 

ii. Often an engineer needs to estimate the system states because those states are 

interesting in their own right. For example, if an engineer wants to measure 

the health of an engineering system, it may be necessary to estimate the 

internal condition of the system using a state estimation algorithm. An 

engineer might want to estimate satellite position in order to more 

intelligently schedule future satellite activities. An economist might want to 

estimate economic growth in order to make a political point. A medical 

doctor might want to estimate blood sugar levels in order to evaluate the 

health of a patient. 

It is also preferable to derive an estimator that exhibits optimality. An optimal 

estimator would indicate that all available information in the measured data has been 

extracted, for if there was unused information in the data then the estimator would 

not be optimal 

 
 
 
 
2.5.1  Partial Least Square (PLS) 

 
 
 Chemical processes are monitored at frequent time intervals producing data 

sets consisting of many variables. Estimation method like Principal Component 

Analysis(PCA) and Partial Least Squares (PLS) have been shown to be one of the 

efficient approach in monitoring such a complex process. Process drift are not always 

observed directly by looking at one variable at a time. Often these drifts take place 

simultaneously in many variables and even though the variation may be very small it 

still can give a significant influence on product quality. If the process drifting 

towards out-of-control state can be detected early, also corrective measures can be 
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Table 2.1: Algorithm of PLS model by Geladi and Kowalski (1986). 
 

made early enough to avoid serious out-of-control states, like bulking in an activated 

sludge process, and thus the efficiency of the process is maintained.  

 

 Partial Least Squares regression is one of the multivariate analysis methods. 

According to Wold (Wold, 1985), it is a linear system identification method that 

projects the input-output data down into latent space, extract a number of principal 

factors with an orthogonal structure, while capturing most of the variance in the 

original data. Reffering to this definition, it is also named as Projection to Latent 

Squares. PLS is built using the Non-linear Iterative Partial Least Squares (NIPALS) 

algorithm introduced by Wold. Details description of the PLS algorithm can be found 

in Geladi and Kowalski (1986). 

 

 

Step Summary of Steps  

0 Mean center and scale X and Y  

1 Set the output scores u equal to Y  

2 Compute input weights w by 

regressing X uu
Xu

w
T

T
T

×
×

=  

3 Normalize w to unit length w = w/║w║ 

 

4 Calculate the input scores t 

ww
wX

t
T ×
×

=  

5 Compute output loadings q  

tt
Yt

q
T

T
T

×
×

=  

6 Normalize q to unit length q = q/║q║ 

7 Calculate new output scores u 

qq
qY

u
T ×
×

=  

8 Check convergence on u 

If yes, go to step 9, else go to step 2 
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2.5.2  Structure Of PLS Model 

 
 
 The selection input variables play a pivotal role in ensuring high accuracy of 

the model estimation. One important criterion is to have variables that give direct 

impact on the intended product quality. The inputs must also be available at high 

frequency. So, the first stage in the development of the estimation system is to 

generate data necessary from the dynamic simulation of the Air Flow Pressure 

Temperature (AFPT) pilot plant.  

 

 In PLS one is concerned with two blocks of data, X and Y. The objective in 

PLS modeling is to model X in such a way that information in Y can be predicted as 

well as possible. PLS maximize the covariance between matrices X and Y. It can be 

described with the following equations: 

 

  X = TP’ + E,                                                                                    (2.14) 

  Y = UQ’ + F,                                                                                   (2.15)                                                                                                                            

 

 The matrix X is decomposed into a score matrix T and a loading matrix P as 

described in equation (2.14) above. Similarly, matrix Y is decomposed into a score 

matrix U and a loading matrix Q as in equation (2.15). In a n inner relation score 

9 Calculate the input loadings p by 

regressing X on t tt
Xt

p
T

T
T

×
×

=  

10 Compute inner model regression 

coefficient b tt
ut

b
T

T

×
×

=  

11 Calculate input residual matrix TptXE ×-= and TqtbYF ´×-=  

12 If additional PLS dimensions are 

necessary, replace X and Y by E and 

F, respectively and repeat steps 1 to 

12 

 



 18 

vector t into a corresponding score vector u. The first latent variable is extracted 

from the matrices X and Y and explains as much as possible of the variance of the 

matrix Y. In a similar manner second latent variable is extracted from the variance of 

the residual matrices which has not been described by the first latent variable, and so 

forth. The idea behind calculating the latent variables iteratively can be seen as a way 

of extracting informative features one by one. When optimal number of latent 

variable has been determined, what remains is considered to be contributed by noise.  

 

 In PLS, one can also calculate similar kind of regression coefficient as one 

does in Multiple Linear Regression (MLR). These MLR-type regression coefficients 

relate matrices X directly into Y.  

  Y = XB + H                                                                                    (2.16) 

   B = W(P’W)-1 (diag (d) Q’)’                                                           (2.17) 

 

Symbol H represents the residuals. Size of matrix B for MLR-type regression 

coefficients equals to number of X-variables times the number of Y-variables. In 

equation (2.17), diag (d) stands for the matrix with cross term equal to zero and 

diagonal elements equal to element of vector d. This mean that vector q is multiplied 

by the corresponding regression coefficient d for every latent variable.  

 

 MLR-type regression coefficients, B and loading weights W can be used to 

study the model. In PLS, loading weights are orthogonal while the loadings are not. 

Orthogonally of the loading weights is a very important feature of PLS. Thus a 

highly redundant set of variables can be represented by a much smaller set of latent 

variables. Weight are use because the decomposition in PLS is rotated in order to 

maximize covariance between X and Y. By studying loading weights one can see 

how important the variables in each of latent variable. Large positive or negative 

weight value indicates that the corresponding X-variable is highly correlated with 

values in score matrix U and hence with matrix Y.  

 

 Correlation between two or more variables can be verified by looking at the 

loading weights. Often there mat be a set of variable groupings. Similarly, one can 

look for the object groupings. Objects are projected into the plane (hyper plane) 

defined by the latent variable scores T (or U). Score value gives a new coordinate 
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along the latent variable axis. Object with resembling features are close to one 

another.  

 

 The notation of the inner relation is written in Equation (2.18). 

 

  Inner relation:  U= TB                                                                     (2.18) 

 

The procedure of determining the scores and loadings vector is carried out 

sequentially from the first factor to the fth factor.  Scores and loading vectors for 

each factor is calculated from the previous residual matrices as shown in Equation 

(2.19) and (2.20), where initially E0 = X and F0 = Y.  

 

 For X,    Ef = Ef-1 – Tf Pf
T                                                      (2.19) 

 

 For Y,    Ff= Ff-1 – Uf Qf
T                                                      (2.20) 

 

Calculation of the inner and outer relations is performed until the last factor, f 

or when residual matrices are below certain threshold.  The algorithm of the PLS 

model is attached in Table 2.1, while Figure 2.1 illustrated the PLS model 

schematically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic of the PLS model (Adebiyi and Corripio, 2003) 
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2.5.3 Model Development 

 
 

In this section, development of the inferential estimator based on PLS model 

is described.  The procedure of the PLS model development is as follows: 

 

i. Measurable secondary measurements were selected as input variables of 

the model 

ii. Several sets of data were prepared for training and validation  

iii. Data sets were pre-processed using appropriate method 

iv. The model was trained using sets of data generated. 

v. Performance of the model was investigated. When the performance was 

not satisfactory, the dimension used in the model was adjusted until the 

lowest MSE was achieved. 

vi. The final model was finally formulated using adjusted dimension and 

applied for off-line estimation 

 

The procedure shown above can be illustrated in Figure 2.2 
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Figure 2.2 Procedure of formulating PLS-based estimator 

 
 
 

 
2.5.4 Data Pre-processing   

 
 

In order to ensure the model consistency, data pre-processing was 

implemented in this estimator model.  The implementation of data pre-processing 

also prevents the latent variable from being biased towards variables with larger 

magnitude.  In this work, data pre-processing step can be divided into two parts, i.e., 

mean-centering and scaling of variables.  The data was tailored in mean-centered 

form prior to scaling.  Generally, there are three ways to treat the variables (Geladi 

and Kowalski, 1986): 

 

i. No scaling is needed when all variables in a block are measured in the 

same units 

ii. Variance scaling is utilized as the variables are measured in different units 
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Data Generation 

Data Pre-processing 

PLS-based Estimator 

Model Training 

Performance Evaluation 

Adjust Number of 
Dimension 



 22 

iii. Assigning smaller weights to variables with less importance as well as 

influence on the model 

 

For convenience and simplification, variance scaling was selected among the 

above method. Mean and variance scaling can be carried out using the following 

equation: 

 

xm xxx s/)(
-

-=                                                                                          (2.21) 

 

Where 

 x   represents the original data; 

  mx  represents the mean-scaled data; 

  
_

x  represents the mean value; 

  xs represents the standard deviation. 

 
 
 
 

2.5.5 Model Training and Validation 

 
 

In general, the most important and easiest way to evaluate the performance of 

a model is to measure the estimation accuracy.  The estimation accuracy can be 

defined as the different between the actual and estimated values.  Some of the 

approaches of measuring the accuracy is sum square error (SSE), root mean square 

error (RMSE) and mean absolute percentage error (MAPE).  But the most frequently 

used is the mean square error of prediction (MSE) (Zhang and Lennox, 2004).  The 

calculation of MSE is shown in Equation (2.22). 
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N
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)                                                                              (2.22) 
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Where 

  x     is the measurement of the product composition; 

  x̂     is its estimation value; 

  N    is the number of measurement. 

 

In addition, explained prediction variance (EPV) as shown in Equation (2.23) 

which describes the statistical properties of the estimation model was also computed.  

EPV of X indicates how much of the X block is used in the estimation model and 

EPV of Y indicates how far the Y block has been estimated. 
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Where 

  x     is the measurement of the product composition; 

  x     is the mean value of measurement; 

  x̂     is its estimation value; 

  N    is the number of measurement. 

 



 
 
 
 
 

CHAPTER III 

 
 
 
 

METHODOLOGY 

 
 
 
 
3.1   Introduction 

 
 
 This chapter will focus on the achievement of the conceptual study, 

simulation work, analyzing, and completion of the project. The detailed research 

procedure will be discussed throughout this chapter. There are several main stages in 

achieving the estimation of gas density IMC controller. 

 
 
 
 
3.2 Research Stages 

 
 

The objectives of this research are to develop an IMC gas density controller 

and estimated its data using Partial Least Squares (PLS) method. In achieving these 

objectives the methodologies were divided into several stages.  

 

Firstly, the Air Pressure Flow Temperature Pilot Plant (AFPT) is developed 

using the Aspen Plus software. All the equipment that is equipped in an AFPT pilot 

plant is putted in the flow sheet of the Aspen Plus. Then, all the controller needed in 

an AFPT pilot plant also is applied in the simulation. Test run the simulation whether 

it can be simulated or not.  

 

Secondly, all the parameter needed to run the experiment like temperature, 

flow, and pressure is measured using thermodynamic properties and material and 
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energy balances. After all the input that is needed is confirmed, the simulation is run 

in nominal state (without the application of the Internal Model Control (IMC) 

method). The simulation is run in its steady-state. Then, after all the data in steady-

state is generated and recorded, the entire controller in the AFPT simulation is 

implemented with the Internal Model Control (IMC) method. After the controller is 

set, the simulation is run again, this time with the application of the Internal Model 

Control (IMC). The simulation is run in two conditions, first in steady-state then in 

dynamic mode. All the data generated in both steady-state and dynamic mode is 

recorded.  

 

Thirdly, the data generated from the simulation is compared with the data 

from the actual AFPT pilot plant (experiment). The data is validated by the mean 

square error (MSE) between the two sets of data. If the error is too large, let say in 

more than 30%, then the data from the simulation is not valid. But, if the percentage 

error is small, then the data from the simulation is valid.  

 

After the validation of the data, the dynamic response from the simulation is 

analyzed using Partial Least Squares Method (PLS). Using the PLS method, it can 

estimate the gas density data from the IMC controller for control propose.  
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Figure 3.1:  Methodology flowchart  
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3.3 Overall Methodology 

 
 
 
 
3.3.1  Project Conception, Software Familiarization, and Literature Review. 

 
 

i. Preliminary discussions – general briefing by supervisor undergraduate 

      research project. This involved discussion on company background, process 

      description, structure, and general operating system. 

ii. Software familiarization – a general reading of the software to be studied 

with 

      appropriate method that are using for the system in the plant. 

iii. Detailed process description has been providing. 

 
 
 
 
3.3.2 Develop a Simulation AFPT Pilot Plant Model using ASPEN PLUS 

 
 

i. By using ASPEN PLUS software, the simulation of Air Flow Pressure 

Temperature (AFPT) pilot plant with the application of Internal Model 

Control (IMC) is developed.  

ii. All the control system that was needed in the AFPT pilot plant must be place 

in the simulation diagram.  

 
 
 
 
3.3.3 Run The Model Simulation in Steady-State and Dynamic Mode. Collect 

and Record The Data. 

 
 

i. After all the input is confirm, the simulation is run in steady-state and 

dynamic mode.  

ii. All the data generated from this simulation process is recorded. 
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3.3.4  Compare The Data Generated From The Model With The Data From 

Actual Model (experiment) For Validation of the Model. 

 
 

i. All the data that has been recorded is compared with the data recorded from 

the actual model (experiment) by calculating the percentage error between the 

two data. 

ii. Both sets of data are compared. If, the percentage error is larger than 5%, 

then data recorded from the simulation model is unreliable and the simulation 

model that was developed is not valid. If the data is not valid, then the 

simulation has to be done again. 

iii. If the data is valid (which is the percentage error is less than 5%), then the 

data is reliable and can be used for the next procedure. 

 
 
 
 
3.3.5  Analyze the Dynamic Response of the Model Simulation. 

 
 
 The data from the simulation will be used to analyze the dynamic response 

from the simulation model. 

 
 
 
 
3.3.6  Process Estimation using Partial Least Squares (PLS) Method. 

 
 
 Estimation of gas density IMC controller from the data generated from the 

process is made using the Partial Least Squares (PLS) method for control propose.   

 
 
 
 
3.3.7  Thesis Writing 

 
 
 All the results, findings, conclusions and recommendation from the research 

are documented in the thesis writing.  
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3.4 Research Tools 

 
 
 Several tools have been used throughout this research. There are two main 

tools that were used, and that was the ASPEN PLUS software and MATLAB 

software. 

 
 
 
 
3.4.1  ASPEN PLUS 

 
 
 Aspen Plus system is one of the standard software for flow sheet simulation 

in the processing industries produced by Aspentech. It is supported by strong 

databases, complete sets of modules, and flexible simulation tools. The system 

provides many built-in modules for simulating various processes. Aspen Plus makes 

it easy to build and run a process simulation model by providing a comprehensive 

system of online prompts, hypertext help, and expert system guidance at every step. 

In this research, Aspen Plus software was use to develop the simulation model for 

AFPT pilot plant. For steady-state simulation, ASPEN PLUS version 12.1 is used, 

while for dynamic state simulation, ASPEN PLUS DYNAMIC version 12.1 is 

applied. 

 
 
 
 
3.4.2  MATLAB 

 
 
 MATLAB is a mathematic analysis package produced by Mathworks. This 

program enables immediate access to high numerical computing and extended with 

interactive graphical capability. The entire estimation task was performed using 

MATLAB Version R2007A. In this research, MATLAB software is used for 

estimation process using Partial Least Squares (PLS) method.  

 



 
 
 
 
 

CHAPTER IV 

 
 
 
 

 SIMULATION MODEL DEVELOPMENT 

 
 
 
 
4.1  Gas Densitometer / Gas Density Measurement 

 
 
 Gas density measurement devices (densitometer) have been developed using 

some methods. Generally, densitometer is made based on tuning fork technology 

(resonance frequency) and calculated from temperature and pressure measurement 

with different strategies. A sensor technology for measuring and monitoring gas 

density based on tuning fork technology was developed by Zeizel et al (2000). It 

comprises a pair of tuning forks oscillating at their resonance frequency. One 

oscillator is exposed to the gas to be monitored, the other one is used for comparison 

and temperature compensation. Exposure to gas leads to a shift in the resonance 

frequency proportional to the gas density. 

  

 Thuries and Dupraz (1997) developed method and a system for determining 

the density of an insulating gas in an electrical apparatus based on temperature and 

pressure measurement. The method is conducted in the following steps; the 

temperature is computed by adding reference temperature (outside apparatus) and 

temperature rise of the apparatus, the gas pressure inside apparatus is measured, the 

density of gas then computed based on equation of state the gas, r = F(T,P).  

  

 Beehler and Medin (2003) invented method for determining air density. The 

method consists of three actions, first action is action determining and storing 

nominal air density (calculated based on ideal gas correlation) and nominal fan 

parameter. Second action is increasing fan input until the known pressure has been 
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reached. The present air density is then calculates from fan parameter and nominal 

density. Sprague (2005) proposed process density meter based on differential 

pressure and temperature through the pipeline.  

 
 
 
 
4.2  Gas Virial Equation of State 

 
 

In general, density is one of gas physical properties in which it is very much 

dependant on the pressure and temperature of the given process under consideration, 

as illustrated in the PVT correlation (in Poling, et.al, 2001; Smith, et.al, (2001): 

PV = Z 
M
m RT        (4.1) 

therefore, density r = 
V
m

= 
RT
MP1

Z
      (4.2) 

where Z = 1 for ideal gas and for real gas Z ¹ 1, and were expressed in many forms 

(see polling et al (2001)), an example, the Z is described by virial equation of state as 

in equation (4.3) below. 
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Where the coefficient B, C, … are the second, third, … virial coefficients.  

Based on equation (4.3) the simplest form of the virial equation is illustrated by 

equation (4.5) 
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Pitzer et al proposed a second correlation, which yields values for  BPc/RTc 

 10 BB
RTc
BPc w+=        (4.6) 

So, equation (4.5) become: 

 
Tr

B
Tr

BZ
PrPr

1 10 w++=         (4.7) 

where 
6.1

0 422.0
083.0

Tr
B -=  and 

2.4

1 172.0
139.0

Tr
B -=     (4.7a) 
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Pc
P

=Pr  and 
Tc
T

Tr =        (4.7b) 

 

Where Tc and Pc are critical temperature and pressure, respectively.  

Equation (4.7) can as described as: 
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a  
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Pc
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c
2.5172.0w-=  (4.8b) 

 
 
 
 
4.3 Air Flow Pressure Temperature (AFPT) Pilot Plant. 

 
 
 In this research, Air Flow Pressure Temperature (AFPT) pilot plant is used as 

a case study. Air Flow Pressure Temperature (AFPT) pilot plant is a process control 

training system (PCTS) that uses only air to simulate gas, vapor or steam. This AFPT 

pilot plant is a scale-down Real Industrial Process Plant built on 5ft X 10ft steel 

platform, complete with its own dedicated control panel.  The process equipment and 

process instrumentation are real Industrial Process type.  The plant is constructed in 

accordance to industrial process plant standard and practices, with fail-safe features.  

For example, the air heater cannot be turned ON unless there is enough air flow in 

the pipeline.  The process flowrates are at commercial production flowrates, using 

pipes and not tubings.  Air is readily available from a compressor. It provides the 

simple gas physical processes where the measurement and control of their important 

variables of flow, temperature and pressure can be studied. This pilot plant consists 

of an electric heater, a flow meter and 3 vessels.  
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4.3.1 AFPT Air Temperature Control 

 
 
 The inlet air is heated at the electric heater and the heated air flows into 

pipeline PLI (or   automatically into pipeline PLII if the air flow rate through PLI is 

too low). Heated air from the heater can flow into pipeline PLI (or pipeline PLII) via 

two flow paths:- 

 

1. Via the Flow control valve (FCV91), cooling vessel C90, vessel T91 and 

 vessel  T92A. 

2. Via a parallel pipeline (pipeline PLII) from the heater directly into pipeline 

 PLI,  by-passing flow control valve (FCV91), cooling vessel C90, vessel 

 T91 and vessel T92A. 

 

 There are three basic process control systems found in this plant for air 

temperature control: 

 

1. Single Loop PID Temperature Control: TE91/TT91 - TIC91 - TCY90/Heater 

2. Single Loop PID Temperature Control: TE92/TT92 - TIC92 - TCY90/Heater 

3. ON/OFF Temperature Control: TE92/TT92 - TIC910 – Power Supply to 

 Heater 

4. Temperature Auto-Selector Control:TE91/TT91 - TIC91 - TCY90/Heater 

               TE92/TT92 - TIC92 - TCY90/Heater 

 
 
 
 
4.3.2  AFPT Air Flow Control 

 
 
 The flowrates of the air in this pilot plant is control using the flow controller. 

All this controller is located at the many pipelines that the air might passes through. 

The error in flowrates is detected from the orifices that will detect the pressure 

differences in the pipeline, and then the controller will calculate the error in the 

flowrates and corrected it according to its setpoint. There is various flow controls in 

the AFPT pilot plant. 
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 At the process pipeline PL1 are: 

a. FT91 : multivariable air mass flow transmitter, with 

i. Integral orifice plate FE91 

ii. Differential Pressure transmitter DPT911 

iii. Absolute pressure transmitter PT911 

iv. RTD/Temperature Transmitter (TE911/TT911) 

 

b. FI911 : Variable Area Flowmeter (or Rotameter) 

  The calibration Temperature and Pressure is tagged at the 

Flowmeter. 

 

The PID mass flow control system consists of the following in feedback: 

 FIC91-FCY91/PP/FCV91 

Where:  

 FIC91 : Flow PID Controller 

 FCY91 : Current-to-Air Converter 

 PP : Pneumatic Positioner, with By-passs 

 FCV91 : Flow Control Valve, Air-to-Close (ATC) 

 
 
 
 
4.3.3  AFPT Air Pressure Control 

 
 
 There are 3 pressure vessels in this AFPT pilot plant, there are cooling vessel 

C90, vessel T91 and vessel T92A. This 3 vessels act as a pressure control final 

elements. The gauge pressures at vessels T91 and T92 or its discharge Pipeline are 

measured by their respective gauge pressure transmitters PT91 and PT92. Note that 

PT92 can be connected to either one of the following tapping points viz at T92 or at 

the discharge pipeline of T92. The vessel T92 and T92A are interconnected with a 

large interconnecting pipe so that their pressure and pressure response are usually the 

same. Hence T92 + T92A behave like a 1-Capacity process of double tank volume. 

 

 There are five basic process control loops found in this plant for Air Pressure 

Control system. 
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1. ON/OFF Air Pressure Control: PT92-PIC90-PSV90/PCV90 

2. PID Air Pressure Control, Single Loop: PT911-PIC911-FCY91/PP-FCV91 

3. PID Air Pressure Control, Single Loop, Single Capacity or Pipeline: PT92-

PIC92-PCY91/PP-PCV91 

4. PID Air Pressure Control, Single Loop, Multi-capacities: PT91-PIC91-

PCY91/PP-PCV91 

5. PID Air Pressure Control, Cascade: PT91-PIC91-PIC92-PCY91/PP-PCV91 

(PT92) 

 
 
 
 
4.4  AFPT Model Development 

 
 
 In this research one of the scopes of study is to simulate AFPT pilot plant 

model using Aspen Plus. To build a model of an AFPT pilot plant, it is important to 

simulate the AFPT pilot plant as precise as possible. All the control system, 

instrument, and equipment in the AFPT pilot plant has to be known. As mention 

before, an AFPT pilot plant consist of an electric heater, a flowmeter, vessels, 

temperature controller, flow controller, and pressure controller. This can be 

simplified as figure 4.1 below: 

 

 

 

Figure 4.1: Block diagram of an AFPT pilot plant 
 
 

Vent 

Flowmeter 
Heater 
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 Now that the structure of the AFPT pilot plant is known, the 

development of the AFPT pilot plant can be developed accordingly using Aspen Plus 

version 12.1. 

 
 
 
 
4.4.1  Aspen Plus AFPT Simulation (steady-state)  

 
 
 In this section, the simulation of the AFPT pilot plant in steady state is 

described. First of all, the only chemical component that is use in this simulation is 

air. Air that is flowed into the AFPT pilot plant comes from the compressor. Its 

pressure is 40 psia and the temperature is 25 0C. Air from the compressor then is 

brought into the electric heater, and then it flows through the flowmeter before it gets 

into the pressure vessels. In this research, the pressure vessel used is vessel T91. The 

temperature controller that will be referring to as reference is TIC91A, while for 

pressure controller is PT911, and for flow controller FT91. The air gas density for 

the process is calculated and indicated by the density indicator DT91.  

 

 The simulation is run in nominal state of condition. For the nominal 

condition the following condition is taken for air in the heater, flowmeter, and 

vessels: 

  

 Heater setpoint          : 100 0C 

 Flow setpoint       :  35 kg/hr 

 Pressure setpoint      :   46 psia 

 

 However, there was some modification which is needed in making this 

simulation from the real plant. From PVT correlation, with pressure 40 psia the air 

temperature is 154 0C, and then in the simulation a cooler is installed before heater. 

Another modification, liquid stream from bottom vessel is set up to zero by a 

controller to avoid negative mass flow rate (in real plant, there is no liquid product). 

 

 The process is then run in steady state where there will be no changes at 

any time. In this simulation, no controller will be put in the model because of its 
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steady state condition where there will be no changes in setpoint or any disturbances 

occur. The flow diagram for the steady-state simulation using Aspen Plus is 

illustrated in Appendix A1. 

 
 
 
 
4.4.2  Aspen Plus AFPT Simulation (dynamic mode) 

 
 
 After the simulation in steady-state mode is done, the simulation will be 

continued with the dynamic mode simulation. In dynamic mode, the steady-state 

simulation from Aspen Plus is converted to dynamic mode using Aspen Plus 

Dynamic. In Aspen Plus Dynamic, the controller for the equipment like electric 

heater, flowmeter, and pressure vessels is putted in its place. The position of the 

equipment in dynamic mode is the same as in the steady-state mode. The difference 

is just the presence of controller. The controller is needed because in dynamic mode, 

there will be disturbance that can occur, and the controller will react against this 

disturbance to achieve the process setpoint. The flow diagram for the dynamic mode 

simulation using Aspen Plus is illustrated in Appendix A2. 

 
 
4.4.2.1  Determination of Steady State Gain, Dead Time, and Time Constant 

 
 
 Before the simulation on the dynamic condition can be run, the steady 

state gain(Kp), dead time(tD), and time constant( Ct ) of the controller has to be 

determined. The steady state gain (Kp), dead time(tD), and time constant( Ct )for all 

the controller is determined first using the data from the steady state process. Using 

this data and doing some calculation, the steady state gain(Kp), dead time(tD), and 

time constant( Ct ) is calculated. This is done by using the equation in table 4.1: 
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Table 4.1: Equation for calculating the controller steady state gain(Kp), dead time(tD), 

and time constant( Ct ). 

Process Parameter Equations 
1. Steady State Gain, Kp  

 
 
 
 
 
 
 
 
 
 

3. Dead time, tD 
01 tttD -=  

 
4. Time constant, Ct  

( ) 1123

12
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 variable,measure  When the).t(t  time theisIt 

BBBB +-´=
-

 

 
 
 
4.4.2.2  Tuning Using the Internal Model Control (IMC) Method. 

 
 
 The Air Flow Pressure Temperature (AFPT) pilot plant uses the PID 

controller in their control system. Usually, a controller performance can be influence 

by their controller settings. With difference controller settings, difference controller 

performance is achieved. A controller setting can be adjusted to achieve the desired 

performance, a procedure referred to as controller tuning. For the simulation in 

dynamic mode, after all the steady state gain(Kp), dead time(tD), and time 

constant( Ct ) for all the controller is determined, the controller needs to be tuned in 

order to achieve its desired performance.  In this research, the Internal Model Control 

(IMC) controller is used as the tuning method.  

 

 By tuning the controller settings, the steady state gain(Kp), dead time(tD), 

and time constant( Ct ) determined before will changed into a new value. This is done 

by using the Internal Model Control (IMC) tuning relation as showed in table 4.2. 
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Table 4.2: Internal Model Control (IMC) tuning relation 

Controller Type Gain (Kc) Reset ( It ) Rate ( Dt ) 
PID 
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 After all the calculation has done, the new gain (Kc), reset ( It ), and rate 

( Dt ) is in table 4.3: 

 

 

Table 4.3: Gain, reset, rate for flow, temperature, and pressure controller 

Controller Gain, Kc Reset, It  
(seconds) 

Rate, Dt  
(seconds) 

Flow 0.90 11 0.1 
Temperature 0.53 10 0.1 

Pressure 1.70 30 0.1 

 
 
 
 
4.5  Load Disturbance and Setpoint Change. 

 
 
 In the steady-state simulation, the simulation is done in nominal 

condition where the temperature is set at1000C, the flow is 35 kg/hr, and the pressure 

is 46 psia. Now, to test the performance of the gas density controller which has been 

tuned using Internal Model Control (IMC) method in the dynamic mode, this 

temperature, flow, and pressure needs to be changed. The change in this parameter is 

called load disturbance and setpoint change. This load disturbance and setpoint 

change is need to be done in order to test the controller weather it can act towards the 

disturbance to achieve the actual setpoint or not. It is to test the effectiveness of the 

controller itself. The change of the parameter will not be too drastically like 50% or 

100% change. The parameter will be increase and decrease to 5% from its nominal 
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condition. When these parameters are changed, the simulation in the dynamic mode 

can be run. The change in temperature, pressure, and flow from its nominal condition 

for this research is as follows: 

 

Table 4.4: Process Variables for the research 

Pressure (psia) Temperature(o C) Flow (kg/hr) 

46 90 15 

46 90 25 

46 90 35 

46 90 45 

46 100 15 

46 100 25 

46 100 35 

46 100 45 

46 110 15 

46 110 25 

46 110 35 

46 110 45 

40 90 35 

42 90 35 

46 90 35 

48 90 35 

50 90 35 

40 100 35 

42 100 35 

46 100 35 

48 100 35 

50 100 35 

40 110 35 

42 110 35 

46 110 35 

48 110 35 

50 110 35 
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4.6  Analyze the Dynamic Response 

 
 
 After the simulation had been done, the dynamic response of the process 

by the controller has to be done. This is to assured and checked whether the 

controller can react towards the disturbance that had occurred. This is also to see the 

performance of the controller that had been tuned by the Internal Model Control 

(IMC). A good controller is a controller that can react towards the disturbance in a 

short interval time.  The dynamic response need to be analyzed first is whether the 

controller can react towards the disturbance and lead the process variables to its 

setpoint. If a controller cannot bring the controller to achieve its setpoint, then 

controller is considered as failed to achieve its objective. A controller is introduced 

in a process to control the process as it should be. Therefore, the controller must be 

effective and reliable in assuring that the process in its rightful condition. Another 

dynamic response need to be analyzed is the time interval for the controller to react 

towards disturbance rejection and set point tracking. If the time taken by the 

controller is long, then it shows that the controller performance was not at its best. 

This is because of the long time it needed in the process. In industrial practices, time 

consuming is critical. The less time the controller need to react towards the 

disturbance the better the controller is. Figure 4.2-4.7 below show all the dynamic 

response produced by the IMC controller from the simulation of the Air Flow 

Pressure Temperature (AFPT) pilot plant.  
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  Figure 4.2 : Dynamic response when setpoint change to 42 psia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.3: Dynamic response when setpoint change to 48 psia 
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  Figure  4.4: Dynamic response when load change to 25 kg/hr 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 4.5: Dynamic response when load change to 45 kg/hr 
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  Figure 4.6: Dynamic response when load change to 900C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 4.7: Dynamic response when load change to 1100C 
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the entire graph showed, the controller can react towards the disturbances and 

setpoint changes. The controller can react toward the disturbance by guiding the 

process variable toward its setpoints and also react in a very short period of time. 

This proved that the controller that had been tuned using the Internal Model Control 

(IMC) before can be use in order to control the process variable in the process. The 

small time interval taken by the controller to react towards the disturbances to 

achieve its setpoint showed the good performances of the controller itself. The 

controller just consumes a small amount of time to reacts towards disturbances 

rejection. This had proved that the Internal Model Control method can be used to 

tune the controller in order get a better performances from the controller. From all 

the response recorded here, it showed that the controller that was developed can 

reacts towards the disturbance and therefore can be use for control purpose in this 

study.  

 
 
 
 
4.7  Simulation Data Validation 

 
 
 All the data as in table 4.4 will be used in the simulation and in actual 

plant for data generation purpose. The data generated here is the air gas density. 

After all the data has been generated, all the data generated from the simulation will 

be compared with the actual plant data to ensure the simulation reliability, exactness, 

and relevant. This is done by calculating the error between the two data. In this 

research, if the error is less than 5%, then the data is reliable and meaning that the 

simulation model is valid for data generation purpose and its process is almost 

precise as in the actual plant. The results for the validation between the simulation 

data and actual plant data are described in table 4.5. 
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Table 4.5: Validation data for simulation and actual plant 

Density (exp) Density (model) % error 

2.748574 2.647 3.7 

3.826432 3.63521 4.99 

3.41472 3.37034 1.3 

3.450879 3.36996 2.34 

2.658324 2.63986 0.69 

3.716044 3.53735 4.81 

3.307714 3.2797 0.85 

3.422952 3.27937 4.19 

2.600651 2.50786 3.57 

3.517666 3.44464 2.08 

3.318231 3.25636 1.86 

3.212396 3.13099 2.53 

2.692866 2.64414 1.81 

2.754454 2.64659 3.92 

3.147939 3.10632 1.32 

3.206146 3.17233 1.05 

3.254064 3.23834 0.48 

2.598246 2.57303 0.97 

2.722264 2.63729 3.12 

3.068713 3.02277 1.5 

3.142794 3.08701 1.77 

3.186596 3.21547 0.91 

2.534475 2.50566 1.14 

2.735779 2.63081 3.84 

2.966926 2.88107 2.89 

3.135446 3.00618 4.12 

3.142647 3.13128 0.36 

Mean percentage error (%) 2.30 
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 As was shown in table 4.5, the percentage error for all the data between 

simulation and actual plant is less than 5%. This proved that the simulation model 

that was developed can generate a data that was almost the same and accurate as data 

generated in the actual plant with the same parameters used. Therefore, this can be 

concluding that the data generated from the simulation is valid, and the simulation 

model developed is reliable, precise, and relevant as in the actual plant and can be 

used for data generation proposes. 

 



 
 
 
 
 

 CHAPTER V 

 
 
 
 

DEVELOPMENT OF PROCESS ESTIMATOR USING PARTIAL LEAST 

SQUARE REGRESSION 

 
 
 

 
5.1  Introduction 

 
 
 The lack of method in determining the gas air density has been a significant 

obstacle in obtaining good control and optimization solutions. Available on-line 

techniques densitometer such as the one based on tuning fork technology (resonance 

frequency), and determining the density of an insulating gas in an electrical apparatus 

are unfortunately both expensive and have been shown to be unreliable when applied 

to large scale systems. This is one of the reasons for the lack of density 

measurements or instruments in the plant. Processes are operated by fixing 

measurable variables at some known optimum conditions while inferring that the 

desired outcome on the product qualities follow suit.  This is verified by off-line 

laboratory analyses of selected variables. Adjustments are made when needed.  

Despite its widespread use, such practices suffer from many weaknesses.  Delay in 

analyses, varying input conditions and the nonlinear nature of the process often lead 

to something unintended and frequent manual adjustments by plant personnel may be 

needed, hence putting the plant to high human dependence. 

 

Another way of dealing with this issue is to make use of inferential model to 

estimate the desired properties based on easy to measure variables.  In this case, 

process variables such as temperature, flowrates and pressure are used to infer the 

non-measurable or difficult to measure primary process outputs such as gas density. 

Some forms of models are used to represent the relationships between these 
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secondary variables with the primary variables of interest. A convenient way is to 

formulate input-output configuration such that when given the inputs, i.e., in this 

case the secondary measurements, the corresponding expected output can be 

reproduced.  The estimated values are then fed into the controller for control 

purposes.  For practical implementation, the estimator should provide reliable 

prediction of the unmeasured. 

 

 A particularly promising approach is the application of multivariate statistical 

process control techniques such as Principal Component Analysis (PCA) and Partial 

Least Squares (PLS). In this research, Partial Least Squares (PLS) analysis will be 

use as the process estimator to estimate the gas density IMC controller. 

 
 
 
 
5.2  Partial Least Squares Regression (PLS) 

 
 
 Partial least squares regression is one of the multivariate analysis methods.  It 

is a linear system identification method that projects the input-output data down into 

a latent space, extracts a number of principal factors with an orthogonal structure, 

while capturing most of the variance in the original data (Wold, 1985).  Referring to 

this definition, it is also named as Projection to Latent Structures.  PLS model is built 

using the Non-linear Iterative Partial Least Squares (NIPALS) algorithm introduced 

by Wold (1985).  Details description of the PLS structure can be found in Geladi and 

Kowalski(1986). 

 

 The structure of PLS model has been elaborated in Chapter 2. The procedure 

of developing PLS-based inferential model takes the following stages which are: 

 

i. Generate quality input-output for PLS model training. 

ii. Pre-process the data by scaling the data around zero average and unit 

variance. Split the data into training and validation set. 

iii. Train the model using “least-squares method” 

iv. Evaluate the performance of the model using validation data. If 

unsatisfactory, back to Step (iii) and repeat the procedure. 
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v. Save the optimum model parameters for implementation. 

 

 Data having sufficient excitation was used for model training and validation. 

Before the training and validation procedure, the data were scaled around zero 

average and unit variance. Following the scaling stage, the input and output data 

were ready to be used for model training and validation. The NIPALS algorithm of 

PLS and the validation steps shown in previous chapter, was coded in MATLAB 

programming language for the purpose of model development. The model was first 

trained using a training data in order to obtain associate score factors and followed 

by model validation. 

 

 The number of dimension referred to how much iteration that is required for 

the residual matrices to reach certain threshold. It was determined using cross 

validation technique, where the training was stopped when the prediction error of the 

testing set reached a minimum and started to increase. It is noted the prediction error 

reached the early stopping criteria of cross-validation before the 20th dimension but 

it did not give the optimum performance. This was due to the problem of local 

minima. In order to avoid convergence at local minima, the iteration was allowed to 

continue until the optimum model was obtained where it gave the lowest MSE for 

the validation data. Hence, the optimum number of dimension was 20 and the 

relevant parameters were summarized in list of table below:  
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Table 5.1: Mean square error (MSE) for partial least squares at latent variable = 1 

lv z traning mse validation mse 

1 11 4.74E-02 4.74E-02 

1 12 4.89E-02 4.89E-02 

1 13 3.79E-02 3.79E-02 

1 14 3.68E-02 3.68E-02 

1 15 3.79E-02 3.79E-02 

1 16 3.71E-02 3.71E-02 

1 17 3.59E-02 3.59E-02 

1 18 2.56E-02 2.56E-02 

1 19 2.40E-02 2.40E-02 

1 20 1.21E-02 1.21E-02 

 

 

 

Table 5.2: Mean square error (MSE) for partial least squares at latent variable = 2 

lv z traning mse validation mse 

2 11 3.21E-02 3.21E-02 

2 12 3.42E-02 3.42E-02 

2 13 2.33E-02 2.33E-02 

2 14 2.37E-02 2.37E-02 

2 15 2.37E-02 2.37E-02 

2 16 2.10E-02 2.10E-02 

2 17 1.71E-02 1.71E-02 

2 18 9.00E-03 9.00E-03 

2 19 8.17E-03 8.17E-03 

2 20 2.60E-03 2.60E-03 
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Table 5.3: Mean square error (MSE) for partial least squares at latent variable = 3 

lv z traning mse validation mse 

3 11 2.46E-02 2.46E-02 

3 12 2.68E-02 2.68E-02 

3 13 1.64E-02 1.64E-02 

3 14 1.81E-02 1.81E-02 

3 15 1.83E-02 1.83E-02 

3 16 1.42E-02 1.42E-02 

3 17 1.26E-02 1.26E-02 

3 18 7.25E-03 7.25E-03 

3 19 6.74E-03 6.74E-03 

3 20 1.86E-03 1.86E-03 

 

 

 

Table 5.4: Mean square error (MSE) for partial least squares at latent variable = 4 

lv z traning mse validation mse 

4 11 2.06E-02 2.06E-02 

4 12 2.29E-02 2.29E-02 

4 13 1.33E-02 1.33E-02 

4 14 1.49E-02 1.49E-02 

4 15 1.55E-02 1.55E-02 

4 16 1.17E-02 1.17E-02 

4 17 1.13E-02 1.13E-02 

4 18 6.74E-03 6.74E-03 

4 19 6.44E-03 6.44E-03 

4 20 1.70E-03 1.70E-03 
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Table 5.5: Mean square error (MSE) for partial least squares at latent variable = 5 

lv z traning mse validation mse 

5 11 1.81E-02 1.81E-02 

5 12 2.02E-02 2.02E-02 

5 13 1.16E-02 1.16E-02 

5 14 1.32E-02 1.32E-02 

5 15 1.37E-02 1.37E-02 

5 16 1.10E-02 1.10E-02 

5 17 1.08E-02 1.08E-02 

5 18 6.58E-03 6.58E-03 

5 19 6.01E-03 6.01E-03 

5 20 1.66E-03 1.66E-03 

 

 

 

Table 5.6: Mean square error (MSE) for partial least squares at latent variable = 6 

lv z traning mse validation mse 

6 11 1.61E-02 1.61E-02 

6 12 1.87E-02 1.87E-02 

6 13 1.05E-02 1.05E-02 

6 14 1.23E-02 1.23E-02 

6 15 1.29E-02 1.29E-02 

6 16 1.04E-02 1.04E-02 

6 17 1.04E-02 1.04E-02 

6 18 6.40E-03 6.40E-03 

6 19 5.80E-03 5.80E-03 

6 20 1.61E-03 1.61E-03 
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Table 5.7: Mean square error (MSE) for partial least squares at latent variable  = 7 

lv z traning mse validation mse 

7 11 1.41E-02 1.41E-02 

7 12 1.72E-02 1.72E-02 

7 13 8.60E-03 8.60E-03 

7 14 1.14E-02 1.14E-02 

7 15 1.23E-02 1.23E-02 

7 16 9.92E-03 9.92E-03 

7 17 1.00E-02 1.00E-02 

7 18 6.22E-03 6.22E-03 

7 19 5.65E-03 5.65E-03 

7 20 1.58E-03 1.58E-03 

 

 

 

Table 5.8: Mean square error (MSE) for partial least squares at latent variable = 8 

lv z traning mse validation mse 

8 11 1.33E-02 1.33E-02 

8 12 1.64E-02 1.64E-02 

8 13 7.21E-03 7.21E-03 

8 14 1.10E-02 1.10E-02 

8 15 1.21E-02 1.21E-02 

8 16 9.74E-03 9.74E-03 

8 17 9.86E-03 9.86E-03 

8 18 6.13E-03 6.13E-03 

8 19 5.50E-03 5.50E-03 

8 20 1.61E-03 1.61E-03 
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Table 5.9: Mean square error (MSE) for partial least squares at latent variable = 9 

lv z traning mse validation mse 

9 11 1.27E-02 1.27E-02 

9 12 1.81E-02 1.81E-02 

9 13 6.21E-03 6.21E-03 

9 14 1.08E-02 1.08E-02 

9 15 1.19E-02 1.19E-02 

9 16 9.61E-03 9.61E-03 

9 17 9.71E-03 9.71E-03 

9 18 6.04E-03 6.04E-03 

9 19 6.12E-03 6.12E-03 

9 20 1.61E-03 1.61E-03 

 

 

 

Table 5.10: Mean square error (MSE) for partial least squares at latent variable = 10 

lv z traning mse validation mse 

10 11 1.24E-02 1.24E-02 

10 12 2.02E-02 2.02E-02 

10 13 5.96E-03 5.96E-03 

10 14 1.06E-02 1.06E-02 

10 15 1.17E-02 1.17E-02 

10 16 9.37E-03 9.37E-03 

10 17 9.54E-03 9.54E-03 

10 18 6.46E-03 6.46E-03 

10 19 6.08E-03 6.08E-03 

10 20 1.61E-03 1.61E-03 
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Table 5.11: Mean square error (MSE) for partial least squares at latent variable = 11 

lv z traning mse validation mse 

11 11 1.19E-02 1.19E-02 

11 12 2.10E-02 2.10E-02 

11 13 5.63E-03 5.63E-03 

11 14 1.05E-02 1.05E-02 

11 15 1.16E-02 1.16E-02 

11 16 9.26E-03 9.26E-03 

11 17 1.01E-02 1.01E-02 

11 18 6.44E-03 6.44E-03 

11 19 6.08E-03 6.08E-03 

11 20 1.61E-03 1.61E-03 

 

 

 

Table 5.12: Mean square error (MSE) for partial least squares at latent variable = 12 

lv z traning mse validation mse 

12 11 1.11E-02 1.11E-02 

12 12 2.01E-02 2.01E-02 

12 13 5.48E-03 5.48E-03 

12 14 1.02E-02 1.02E-02 

12 15 1.14E-02 1.14E-02 

12 16 1.01E-02 1.01E-02 

12 17 1.01E-02 1.01E-02 

12 18 6.44E-03 6.44E-03 

12 19 6.08E-03 6.08E-03 

12 20 1.61E-03 1.61E-03 
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Table 5.13: Mean square error (MSE) for partial least squares at latent variable = 13 

lv z traning mse validation mse 

13 11 1.05E-02 1.05E-02 

13 12 1.90E-02 1.90E-02 

13 13 5.33E-03 5.33E-03 

13 14 9.92E-03 9.92E-03 

13 15 1.33E-02 1.33E-02 

13 16 9.98E-03 9.98E-03 

13 17 1.01E-02 1.01E-02 

13 18 6.44E-03 6.44E-03 

13 19 6.08E-03 6.08E-03 

13 20 1.61E-03 1.61E-03 

 

 

 

Table 5.14: Mean square error (MSE) for partial least squares at latent variable = 14 

lv z traning mse validation mse 

14 11 9.61E-03 9.61E-03 

14 12 1.79E-02 1.79E-02 

14 13 5.08E-03 5.08E-03 

14 14 1.18E-02 1.18E-02 

14 15 1.29E-02 1.29E-02 

14 16 9.98E-03 9.98E-03 

14 17 1.01E-02 1.01E-02 

14 18 6.44E-03 6.44E-03 

14 19 6.08E-03 6.08E-03 

14 20 1.61E-03 1.61E-03 
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Table 5.15: Mean square error (MSE) for partial least squares at latent variable = 15 

lv z traning mse validation mse 

15 11 8.87E-03 8.87E-03 

15 12 1.66E-02 1.66E-02 

15 13 6.16E-03 6.16E-03 

15 14 1.12E-02 1.12E-02 

15 15 1.29E-02 1.29E-02 

15 16 9.98E-03 9.98E-03 

15 17 1.01E-02 1.01E-02 

15 18 6.44E-03 6.44E-03 

15 19 6.08E-03 6.08E-03 

15 20 1.61E-03 1.61E-03 

 

 

 

Table 5.16: Mean square error (MSE) for partial least squares at latent variable = 16 

lv z traning mse validation mse 

16 11 8.54E-03 8.54E-03 

16 12 2.13E-02 2.13E-02 

16 13 6.08E-03 6.08E-03 

16 14 1.13E-02 1.13E-02 

16 15 1.13E-02 1.13E-02 

16 16 9.98E-03 9.98E-03 

16 17 1.01E-02 1.01E-02 

16 18 6.44E-03 6.44E-03 

16 19 6.08E-03 6.08E-03 

16 20 1.61E-03 1.61E-03 
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Table 5.17: Mean square error (MSE) for partial least squares at latent variable = 17 

lv z traning mse validation mse 

17 11 8.92E-03 8.92E-03 

17 12 2.08E-02 2.08E-02 

17 13 6.08E-03 6.08E-03 

17 14 1.13E-02 1.13E-02 

17 15 1.29E-02 1.29E-02 

17 16 9.98E-03 9.98E-03 

17 17 1.01E-02 1.01E-02 

17 18 6.44E-03 6.44E-03 

17 19 6.08E-03 6.08E-03 

17 20 1.61E-03 1.61E-03 

 

 

 

Table 5.18: Mean square error (MSE) for partial least squares at latent variable = 18 

lv z traning mse validation mse 

18 11 8.92E-03 8.92E-03 

18 12 2.08E-02 2.08E-02 

18 13 6.08E-03 6.08E-03 

18 14 1.13E-02 1.13E-02 

18 15 1.29E-02 1.29E-02 

18 16 9.98E-03 9.98E-03 

18 17 1.01E-02 1.01E-02 

18 18 6.44E-03 6.44E-03 

18 19 6.08E-03 6.08E-03 

18 20 1.61E-03 1.61E-03 
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Table 5.19: Mean square (MSE) error for partial least squares at latent variable = 19 

lv z traning mse validation mse 

19 11 8.92E-03 8.92E-03 

19 12 2.08E-02 2.08E-02 

19 13 6.08E-03 6.08E-03 

19 14 1.13E-02 1.13E-02 

19 15 1.29E-02 1.29E-02 

19 16 9.98E-03 9.98E-03 

19 17 1.01E-02 1.01E-02 

19 18 6.44E-03 6.44E-03 

19 19 6.08E-03 6.08E-03 

19 20 1.61E-03 1.61E-03 

 

 

 

Table 5.20: Mean square error (MSE) for partial least squares at latent variable = 20 

lv z traning mse validation mse 

20 11 8.92E-03 8.92E-03 

20 12 2.08E-02 2.08E-02 

20 13 6.08E-03 6.08E-03 

20 14 1.13E-02 1.13E-02 

20 15 1.29E-02 1.29E-02 

20 16 9.98E-03 9.98E-03 

20 17 1.01E-02 1.01E-02 

20 18 6.44E-03 6.44E-03 

20 19 6.08E-03 6.08E-03 

20 20 1.61E-03 1.61E-03 
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 The calculated MSE for training and validation data was same for each other 

for each data respectively. Based on these results, the PLS-based estimation model 

was considered successfully constructed. The trend of the model predictions 

compared to the actual output is displayed below. Here, the graph indicates the actual 

output and the predicted output are represented by dotted line. It is noted that the 

estimated output reasonably matched the actual composition in both training and 

validation set. 

 
 
 The best data is taken when the mean square error (MSE) between the 

actual and predicted data is lowest as was listed in table 5.1-5.20. Figure 5.1 and 5.2 

showed the graph which has the lowest mean square errors (MSE) that was produces 

in Partial Least Squares (PLS) model estimation. After the Partial Least Squares 

(PLS) estimation is done, the lowest mean squares error (MSE) recorded is when 

latent variable, lv = 7 and dimensions, z = 20 where the mean square error (MSE) is 

0.001584743.  

 
 
 The small error between the estimated data and actual data showed that 

there is not so much different between the simulation data and the data generated 

from PLS estimation. Therefore, this proved that the simulation model is reliable for 

data generation and control purposed. This also proved that the PLS model 

developed is a reliable model for estimation. This is base from the data that showed 

that the PLS model can predict the gas density with the small mean square error 

(MSE) when compared to the simulation data. With this very small MSE, the 

objective to develop a process estimator using Partial Least Squares (PLS) is well 

constructed.    

 
 
 
 
 
 
 
 
 
 



 62 

1 2 3 4 5 6 7
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

ga
s 

de
ns

ity
 (

kg
/m

3)

data set

Estimation with PLS Model (Validation)

Actual density

Predicted density

1 2 3 4 5 6 7
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

ga
s 

de
ns

ity
 (

kg
/m

3)

data set

Estimation with PLS Model (Training)

Actual density

Predicted density

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: Estimation of PLS model with MSE = 0.001605057 
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Figure 5.2: Estimation of PLS model with MSE = 0.001584743 
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5.3  Concluding Remark 

 
 
 In this chapter, the inferential estimator for the gas density IMC controller 

was built using a PLS model. This estimator had been performing well in the 

nominal condition. The robustness and accuracy of the PLS estimator were also 

tested in by doing the load disturbances and setpoint changes as mentioned in chapter 

4. In all cases, reasonably accurate estimations were obtained. As a conclusion, the 

PLS proposed model is considered adequate to be used as process estimators for the 

estimation of gas density IMC controller. 

 
 



 
 
 
 
 

CHAPTER VI 

 
 
 
 

CONCLUSION AND RECOMMENDATION 

 
 
 
 
6.1  Conclusion 

 
 
 Based on the results provided in this research, the conclusion that can be 

drawn out are as follows: 

 

i. The AFPT pilot plant model simulation can be develop using Aspen Plus. 

ii. The data from the simulation is reliable for data generation purposed. 

iii. The controller can be tuned in order to get its better performances. 

iv. The Internal Model Control (IMC) method is reliable method to tune the gas 

density controller. 

v. Partial Least Squares (PLS) provide a reliable prediction as estimation. 

vi. The implementation of Partial Least Squares (PLS) as estimation method on 

gas density IMC controller was successfully developed for control purposed. 

 

 This research has provided a development of simulation model for gas 

density control purpose. The tuning of the controller can be achieved with a 

better controller tuning. Also, the development of inferential estimation model 

using Partial Least Squares (PLS) based model and its application toward the gas 

density control. 
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6.2   Recommendation 

 
 
 Numerous additional works can be done to further improve the reliability of 

the inferential model. Some of the recommendations are as follows: 

 

i. More tuning method used for tuning purpose in order to get a better 

understanding in the controller performances. 

ii. Better understanding on the development of inferential estimator using 

PLS in order to measure gas density. 

iii. Application to other system. The application of Internal Model Control 

(IMC) method is widen to other control system such as concentration or 

composition control system.  

iv. Further research is done to get the controller towards a perfect or ideal set 

point tracking and disturbance rejection controller. 
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APPENDIX A1 
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Figure A1: Simulation model for steady-state 
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Figure A2: Simulation model for dynamic state. 
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APPENDIX B1 
 
 
 
 

The MATLAB code for Partial Least Squares (Preparation of data) 
 

 
function [x,y,vx,vy,m,n,CODOX]=prepdata3 
 
load dCODOX  
 
%raw data 
[m,n]=size(CODOX); 
 
%mean-centering and variance-scaling data 
for j=1:n 
    for i=1:m 
        mdatat(i,j)=CODOX(i,j)-mean(CODOX(:,j)); 
        msdatat(i,j)=mdatat(i,j)/std(CODOX(:,j)); 
    end 
end 
 
                
% Prepare data for training         
for i=1:m 
    for j=1:n-1 
        x(i,j)=msdatat(i,j); 
        y(i,1)=msdatat(i,n); 
    end 
end 
 
% Prepare data for validation 
for i=1:m 
    for j=1:n-1 
        vx(i,j)=msdatat(i,j); 
        vy(i,1)=msdatat(i,n); 
    end 
end 
 
% save data1 
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APPENDIX B2 
 
 
 
 

The MATLAB code for Partial Least Squares (regression) 
 
 
function [z,theta,trmse,vlmse,nyp,nvyp]=plstr 
 
[x,y,vx,vy,m,n,output]=prepdata3; 
 
z=20;  
[xr,yr] = wrtreg(x,y,z); 
[vxreg,vyreg] = wrtreg(vx,vy,z); 
 
lv=7; 
xreg=xr; 
yreg=yr; 
u=yreg; 
 
ssqx=sum(sum(xreg.^2)'); 
ssqy=sum(sum(yreg.^2)'); 
 
[rx,cx]=size(xreg); 
w=zeros(cx,lv); 
 
for i=1:lv 
     
    w(:,i)=xreg'*u; 
    w(:,i)=w(:,i)/norm(w(:,i)); 
    t(:,i)=xreg*w(:,i); 
    tnew(:,i)=t(:,i)/norm(t(:,i)); 
    q(:,i)=yreg'*tnew(:,i); 
    q(:,i)=q(:,i)/norm(q(:,i)); 
    unew(:,i)=yreg*q(:,i); 
    p(:,i)=xreg'*t(:,i); 
    p(:,i)=p(:,i)/norm(p(:,i)); 
    b(:,i)=tnew(:,i)'*unew(:,i); 
    E=xreg-(t(:,i)*p(:,i)'); 
    F=yreg-(b(:,i)*tnew(:,i)); 
    ssq(i,1)=sum(sum(E.^2)')*100/ssqx; 
    ssq(i,2)=sum(sum(F.^2)')*100/ssqy; 
 
    xreg=E; 
    yreg=F; 
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    u=yreg; 
end 
 
ssqdif = zeros(lv,2); 
ssqdif(1,1) = 100 - ssq(1,1); 
ssqdif(1,2) = 100 - ssq(1,2); 
for i = 2:lv 
  for j = 1:2 
    ssqdif(i,j) = -ssq(i,j) + ssq(i-1,j); 
  end 
end 
disp('  ') 
disp('        Percent Variance Captured by PLS Model') 
disp('  ') 
disp('             ----X-Block------   ----Y-Block------') 
disp('      LV#    This LV    Total    This LV    Total ') 
disp([(1:lv)' ssqdif(:,1) cumsum(ssqdif(:,1)) ssqdif(:,2) cumsum(ssqdif(:,2))]) 
 
cw = t\yr; 
theta=w*cw; 
 
%training data 
yp=xr*theta; 
 
ny=(y*std(output(:,n)))+mean(output(:,n)); 
nyp=(yp*std(output(:,n)))+mean(output(:,n)); 
 
[c,d]=size(nyp); 
for i=1:c 
    for j=1:d 
        nyr(i,j)=ny(z+i,j)-nyp(i,j); 
    end 
end 
trmse=sumsqr(nyr)/c; 
 
for i=1:c 
    for j=1:d 
        newy(i,j)=ny(z+i,j); 
    end 
end 
 
%validate data 
vyp=vxreg*theta; 
 
nvy=(vy*std(output(:,n)))+mean(output(:,n)); 
nvyp=(vyp*std(output(:,n)))+mean(output(:,n)); 
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for i=1:c 
    for j=1:d 
        nvyr(i,j)=nvy(z+i,j)-nvyp(i,j); 
    end 
end 
 
vlmse=sumsqr(nvyr)/c; 
 
for i=1:c 
    for j=1:d 
        newvy(i,j)=nvy(z+i,j); 
    end 
end 
     
% save info 
%show value of error 
fprintf('trmse=%e, vlmse=%e\n', trmse,vlmse); 
 
figure(1)         
 
plot(1:((m)-z),newy,'b',1:((m)-z),nyp,':m');  
ylabel('gas density (kg/m3)'); xlabel('data set') 
title('Estimation with PLS Model (Training)') 
legend ('Actual density','Predicted density',1) 
 
figure(2)         
 
plot(1:((m)-z),newvy,'b',1:((m)-z),nvyp,':m');  
ylabel('gas density (kg/m3)'); xlabel('data set') 
title('Estimation with PLS Model (Validation)') 
legend ('Actual density','Predicted density',1) 


