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Abstract 

In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow 
on a solid sphere with convective boundary conditions, in which the heat is supplied through a bounding 
surface of finite thickness and finite heat capacity, is considered. The basic equations of the boundary 
layer are transformed into a non-dimensional form and reduced to nonlinear systems of partial differential 
equations and solved numerically using an implicit finite difference scheme known as the Keller-box 
method. Numerical solutions are obtained for the wall temperature, the heat transfer coefficient, local 
Nusselt number and the local skin friction coefficient, as well as the velocity and temperature profiles. 
The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, 
magnetic parameter M, radiation parameter NR, the conjugate parameter γ, and the coordinate running 
along the surface of the sphere, x are analyzed and discussed. 

Keywords: Convective boundary conditions, free convection, magnetohydrodynamic, radiation effects, 
solid sphere 
 
 
Introduction 

The effect of radiation on boundary layer flow and heat transfer problems can be quite significant at 
high operating temperatures such as gas turbines, nuclear power plant, and thermal energy store (Bataller 
[1]). Since processes in engineering areas occur at high temperature, the study of the effect of radiation 
becomes very important for the design of equipment. Molla et al. [2] studied the natural convection 
laminar flow from an isothermal sphere immersed in a viscous incompressible optically dense fluid in the 
presence of radiation effects. The laminar boundary layer flow over a moving plate in a moving fluid with 
convective surface boundary conditions and in the presence of thermal radiation has been considered by 
Ishak et al. [3]. Salleh et al. [4] presented the effect of radiation free convection boundary layer flow over 
a permeable horizontal flat plate embedded in a porous medium with mixed thermal boundary conditions. 

The application of magnetohydrodynamics plays an important role in agriculture, engineering and 
petroleum industries. Ganesan and Palani [5], Alam et al. [6] and Molla et al. [7] studied the viscous 
dissipation and magnetohydrodynamic effect on a natural convection flow past an inclined plate and over 
a sphere in the presence of heat generation, respectively. 
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The analysis of flow and heat transfer characteristics for laminar free, mixed and forced convection 
about a sphere has been studied by Chen and Mucoglu [8]. Nazar et al. [9,10] considered the free 
convection boundary layer flows on a sphere in a viscous and micropolar fluid with 2 boundary 
conditions namely, constant heat flux (CHF) and constant wall temperature (CWT), respectively. The 
natural convection heat and mass transfer from a sphere in a micropolar fluid with constant wall 
temperature and concentration was presented by Cheng [11]. Lastly, Salleh et al. [12,13] considered the 
free convection boundary layer flow on a sphere with Newtonian heating in viscous and micropolar 
fluids, respectively. 

Another class of boundary conditions which has been given attention recently is convective 
boundary conditions (CBC), in which the heat is supplied through a bounding surface of finite thickness 
and finite capacity and the interface temperature is not known a priori but depends on the intrinsic 
properties of the systems, (see Merkin [14]). Aziz [15] studied the similarity solution for the forced 
convection boundary layer flow over a flat plate by applying convective boundary conditions. It is shown 
in his paper that similarity solutions are possible if the convective heat transfer of the plate is proportional 
to x-1/2, where x is the coordinate measured along the plate. Makinde and Aziz [16] discussed the problem 
of magnetohydrodynamic mixed convection from a vertical flat plate embedded in a porous medium with 
a convective boundary condition. Further, the similarity solutions for flow and heat transfer over a static 
permeable plate and the radiation effects on the thermal boundary layer flow over a moving plate with 
convective boundary conditions have been studied by Ishak [17]. Merkin and Pop [18] studied the forced 
convection flow of a uniform stream over a flat surface and Yao et al. [19] presented the heat transfer of a 
viscous fluid flow over a stretching/shrinking sheet with a convective boundary condition. Recently, the 
numerical solution for stagnation point flow over a stretching surface with convective boundary 
conditions and solved numerically by using the shooting method has been studied by Mohamed et al. 
[20]. 

Motivated by the above mentioned studies, therefore, the aim of the present paper is to study the 
effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with 
convective boundary conditions. The governing dimensional boundary layer equations are first 
transformed into a system of non-dimensional equations via the non-dimensional variables, and then into 
non-similar equations before they are solved numerically by the Keller-box method, as described in the 
book Cebeci and Bradshaw [21]. 
 
Mathematical analysis 

Consider a heated sphere of radius a, which is immersed in a viscous and incompressible fluid of 
ambient temperature, T∞ . We assume that the equations and surface of the sphere is subjected to a 
convective boundary condition (CBC), as shown in Figure 1. 
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Figure 1 Physical model and coordinate system. 
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Under the Boussinesq and boundary layer approximations, the basic equations are; 
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subject to the boundary conditions see (Salleh et al. [12] and Aziz [15]); 
 

0,u v= = ( )Tk h T Tf fy
∂

− = −
∂

 at 0y =  

0,u → T T∞→ as y →∞ ,                (4) 
 
where ( ) sin( / )r x a x a= . u  and v  are the velocity components along the x  and y  directions, 
respectively. T is the local temperature. rq is the radiative heat flux. g  is the gravity acceleration. β  is 
the thermal expansion coefficient. ν  is the kinematic viscosity. ρ  is the fluid density. σ  is the electric 
conductivity. pc

 
the specific heat. α  is the thermal diffusivity. fT  is the temperature of the hot fluid. 

pk cαρ=  is the thermal conductivity and fh
 
is the heat transfer coefficient for the convective boundary 

conditions. 
We introduce now the following non-dimensional variables (Salleh et al. [12] and Aziz [15]); 
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where 
3

2( )f
aGr g T Tβ
ν∞= −

 
is the Grashof number for convective boundary conditions. 

Using the Rosseland approximation for radiation (Bataller, [22]) the radiative heat flux is simplified 
as; 

 
* 4

*

4
3r

Tq
yk

σ ∂
= −

∂
                 (6) 

 
where *σ  and *k  are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. 
 

We assume that the temperature differences within the flow through a porous medium such that the 
term 4T  may be expressed as a linear function of temperature. Hence, expanding 4T  in a Taylor series 
about T∞  and neglecting higher-order terms, we get; 
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4 3 44 3T T T T∞ ∞≅ −                  (7) 
 
Substituting variables (5) - (7) into (1) - (3) then become;
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radiation parameter. The boundary conditions (4) become; 
 

0,u v= = (1 )
y
θ γ θ∂
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at 0y =  

0,u → 0θ →  as y →∞                          (11) 
 
where 1/4 /fah Gr kγ −=

 
is the conjugate parameter for the convective boundary conditions. To solve Eqs. 

(8) to (10), subject to the boundary conditions (11), we assume the following variables; 
 

( ) ( , ), ( , ),xr x f x y x yψ θ θ= =                      (12) 
 
where ψ  is the stream function defined as; 
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which satisfies the continuity Eq. (8). Thus, (9) and (10) become; 
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0, 0f
y

θ∂
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It can be seen that at the lower stagnation point of the sphere, 0,x ≈  Eqs. (14) and (15) reduce to the 

following ordinary differential equations; 
 

22 0f ff f Mfθ′′′ ′′ ′ ′+ − + − =              (17) 
 
1 41 2 0
Pr 3 RN fθ θ  ′′ ′+ + = 

 
                   (18) 

 
and the boundary conditions (16) become; 
 

(0) (0) 0,f f ′= = (0) (1 (0))θ γ θ′ = − −  
0,f ′ → 0θ → as y →∞               (19) 

 
where primes denote the differentiation with respect to .y  

The physical quantities of interest in this problem are the local skin friction coefficient fC  and the 
local Nusselt number Nu  and they can be written as;  
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Using the non-dimensional variables (5) and Rosseland approximation for radiation (6) with the 

boundary condition (11) into Eqs. (20) and (21), we get;  
 

2

2 ( ,0)f
fC x x

y
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=
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41 (1 ( ,0))
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           (22) 

 
Results and discussion 

The nonlinear system of partial differential Eqs. (14) and (15) subject to the boundary conditions 
(16) were solved numerically using an efficient, implicit finite-difference method known as the Keller-
box method (KBM) for convective boundary conditions as described in the book by Cebeci and Bradshaw 
[21]. The solution is obtained by the following 4 steps: 

 
1)  Reduce Eqs. (14) and (15) to a first-order system. 
2)  Write the difference equations using central differences. 
3)  Linearize the resulting algebraic equations by Newton’s method, and write them in a matrix-

vector form. 
4)  Solve the linear system by the block tridiagonal elimination technique. 
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The step size 0.01 to 0.04y∆ =  is sufficient to provide accurate numerical results and the edge of 
the boundary layer y∞  had to be adjusted for different values of parameters to maintain accuracy. The 
parameters which are considered in the numerical results, namely the magnetic parameter M, the radiation 
parameter RN , the Prandtl number Pr, the conjugate parameter γ  and the coordinate running along the 
surface of the sphere, x. To validate the nonlinear system of ordinary differential Eqs. (17) and (18) with 
the boundary conditions (19) are solved numerically using the Runge-Kutta-Fehlberg method (RKF) for 
certain values of parameters. 

Table 1 presents a comparison between the 2 methods (RKF and KBM) for the values of the wall 
temperature (0)θ  and the heat transfer coefficient (0),θ ′−  with various values of the magnetic parameter 
M when the Prandtl number Pr = 0.7, the radiation parameter 0RN =  and the conjugate parameter 

0.1.γ =  It is clear that the value of the maximum error between the 2 methods is very small, where Max 

error = 52 10−= × and Max error 62 10 ,−= ×  for the values of (0)θ  and (0),θ ′−  respectively. This 
indicates that the agreement between the RKF and KBM is very good. We can conclude that the 
comparison between this methods works efficiently for the present problem and we are also confident that 
the results presented here are accurate. 

 
 

Table 1 Comparison between RKF and KBM of solving Eqs. (17) and (18) for various values of M when 
Pr =0.7, 0RN =  and 0.1.γ =  
 

(0)θ  (0)θ ′−  
M RKF KBM Error  RKF KBM Error 
0 0.238060 0.238051 0.000009 0.076194 0.076195 0.000001 
5 0.333988 0.333977 0.000011 0.066601 0.066602 0.000001 
10 0.360093 0.360078 0.000015 0.063991 0.063992 0.000001 
15 0.372829 0.372816 0.000013 0.062717 0.062718 0.000001 
20 0.380449 0.380469 0.000020 0.061955 0.061953 0.000002 

 
 

Table 2 Values of the heat transfer coefficient ( ) ( ,0)y xθ− ∂ ∂  at the lower stagnation point of the sphere, 
0,x ≈  when Pr = 0.7, 7, without the effect of radiation and magnetohydrodynamic (i.e. M = 0, 0RN = ) 

and γ → ∞ . 
 

Pr = 0.7 
 

 
 

Pr = 7 

Huang and Chen [23] Nazar et al. [9] Present  Huang and Chen [23] Nazar et al. [9] Present 

0.4574 0.4576 0.457582  0.9581 0.9595 0.959498 

 
 
The numerical solutions for the KBM start at the lower stagnation point of the sphere, 0,x ≈  with 

initial profiles as given by Eqs. (17) and (18), and proceed around the sphere up to 90ox =  because the 
data unstable after this point. 

The values of the heat transfer coefficient ( ) ( ,0)y xθ− ∂ ∂  at the lower stagnation point of the sphere, 
0,x ≈  when Pr = 0.7, 7, without the effect of radiation and magnetohydrodynamic (i.e. M = 0, 0RN = ) 
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and γ → ∞  are shown in Table 2. In order to verify the accuracy of the present method, the present 
results are compared with those reported by Huang and Chen [23] and Nazar et al. [9]. It is found that the 
agreement between the previously published results with the present ones is excellent. 

Table 3 show the values of the wall temperature ( ,0),xθ  the heat transfer coefficient 

( ) ( ,0)y xθ− ∂ ∂  and the skin friction coefficient 2 2( )( ,0)f y x∂ ∂  at the lower stagnation point of the 
sphere, 0,x ≈  for various values of RN when Pr = 0.7, 0.1γ =  and M = 0, 5. It is observed that, when the 
magnetic parameter M is fixed, an increase in the radiation parameter RN  causes the values of ( ,0),xθ  

( ) ( ,0)y xθ− ∂ ∂  and 2 2( )( ,0)f y x∂ ∂  to increase. On other hand, when RN  is fixed and M increases, the 

value of (0, )yθ  increases but both values of 2 2( )( ,0)f y x∂ ∂  and ( ) ( ,0)y xθ− ∂ ∂  decrease. 
 
 
Table 3 Values of the wall temperature ( ,0),xθ  the heat transfer coefficient ( ) ( ,0)y xθ− ∂ ∂  and the skin 

friction coefficient 2 2( )( ,0)f y x∂ ∂  at the lower stagnation point of the sphere, 0,x ≈  for various values 
of RN  when Pr= 0.7, M = 0, 5 and 0.1.γ =  
 

NR 
M = 0 M = 5 

(0, )yθ  ( )yθ− ∂ ∂  2 2( )f y∂ ∂  (0, )yθ  ( )yθ− ∂ ∂  2 2( )f y∂ ∂  

0 0.238051 0.076195 0.260067 0.333977 0.066602 0.135855 
1 0.285971 0.166607 0.333039 0.368856 0.147266 0.152026 
2 0.311935 0.252290 0.371648 0.381992 0.226602 0.158119 
3 0.328807 0.335597 0.396153 0.388949 0.305525 0.161346 
4 0.340704 0.417554 0.413230 0.393268 0.384264 0.163349 
5 0.349603 0.498638 0.425880 0.396232 0.462889 0.164722 

 
 
Figures 2 and 3 illustrate the variation of the wall temperature ( ,0)xθ  at the lower stagnation point 

of the sphere, 0,x ≈  with the radiation parameter RN  and magnetic parameter M when Pr =0.7 and γ =  
0.05, 0.1, 0.2, respectively. It is found that increasing the value of M, RN  and the conjugate parameter γ  
caused an increase in the wall temperature ( ,0)xθ . 

Figures 4 and 5 show the temperature (0, )yθ  and velocity profiles ( )(0, ),f y y∂ ∂  when Pr = 7, M 
= 5, 0,1,3,5RN =  and 0.1,γ =  respectively. It is found that as RN  increases, the temperature and 
velocity profiles increase. It means that higher radiation occurs for higher values of temperature, which 
cause an increase in the velocity as well. 

The temperature (0, )yθ  and velocity profiles ( )(0, )f y y∂ ∂  when Pr = 0.7, 1,RN =  M = 5, 10, 15 
and 0.1,γ =  are presented in Figures 6 and 7, respectively. From these figures we can see that when the 
value of M increases, the temperature profiles increase, but the velocity profiles decrease along the y 
direction. 

Variation of the local Nusselt number Nu  and the local friction coefficient fC  with various values 
of x when Pr = 0.7, 1,RN =  M =5, 10, 15 and 0.1γ =  are plotted in Figures 8 and 9, respectively. It is 
found that as M increases, both values of the local Nusselt number and the local skin friction coefficient 
decrease from zero at the lower stagnation point along the x direction. 
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Figures 10 and 11 display the local Nusselt number Nu  and the local friction coefficient fC  with 
various values of x when Pr = 0.7, M = 5, 0,1,3,5RN =  and 0.1,γ =  respectively. It is found that as RN  
increases, both values of the local Nusselt number and the local skin friction coefficient increase. So the 
effect of the radiation parameter RN  on the local Nusselt number is more than of the effect of RN on the 
local skin friction coefficient. 
 
 

 
Figure 2 Variation of the wall temperature ( ,0)xθ , at the lower stagnation point of the sphere, 0,x ≈  

with RN  when Pr =0.7, M = 5 and γ =  0.05, 0.1, 0.2. 
 
 

 
Figure 3 Variation of the wall temperature ( ,0)xθ , at the lower stagnation point of the sphere, 0,x ≈  

with M when Pr =0.7, 3RN =  and γ =  0.05, 0.1, 0.2. 
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Figure 4 Temperature profiles (0, )yθ  when Pr = 7, M= 5, 0,1,3,5RN = and 0.1.γ =  

 
 

 
Figure 5 Velocity profiles ( )(0, ),f y y∂ ∂  when Pr = 7, M= 5, 0,1,3,5RN = and 0.1.γ =  
 
 

 
Figure 6 Temperature profiles (0, )yθ  when Pr = 7, 1,RN =  M = 5, 10, 15 and 0.1.γ =  
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Figure 7 Velocity profiles ( )(0, ),f y y∂ ∂  when Pr = 7, 1,RN =  M = 5, 10, 15 and 0.1.γ =  
 

 
Figure 8 Variation of the local Nusselt number Nu with x when Pr = 0.7, 1,RN =  M = 5, 10, 15 and 

0.1.γ =  
 

 
Figure 9 Variation of the local skin friction coefficient, fC  with x when Pr = 0.7, 1,RN =  M = 5, 10, 15 
and 0.1.γ =  
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Figure 10 Variation of the local Nusselt number Nu with x when Pr = 0.7, M= 5, 0,1,3,5RN = and 

0.1.γ =  
 

 
Figure 11 Variation of the skin friction coefficient, fC  with x when Pr = 0.7, M = 5, 0,1,3,5RN = and 

0.1.γ =  
 
 
Conclusions 

In this paper, we have numerically studied the effect of radiation on magnetohydrodynamic free 
convection boundary layer flow on a solid sphere with convective boundary conditions. It shows how the 
Prandtl number Pr, magnetic parameter M, thermal radiation parameter ,RN  conjugate parameter γ  and 
the coordinate running along the surface of the sphere, x affect the values of the temperature profiles 

(0, ),yθ  heat transfer coefficient ( ) (0, ),y yθ− ∂ ∂  the skin friction coefficient 2 2( )(0, ),f y y∂ ∂  the local 
Nusselt number Nu  and the local friction coefficient fC . The conclusions arise as follows; 

1) The agreement between RKF and KBM are very good for solving the nonlinear system of 
ordinary differential equations and partial differential equations, respectively.  

2) When γ and M are fixed, as RN  increases, the values of temperature, velocity profiles, skin 
friction coefficient and the heat transfer coefficient increases, while when γ  and RN  are fixed, as M 
increases, the value of the temperature profiles increases, and velocity profiles, skin friction coefficient 
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and heat transfer coefficient decrease. On other hand, an increasing value of M, RN  and the conjugate 
parameter γ  caused an increase in the wall temperature. 

3) When γ and RN  are fixed, as M increases, the both values of the local Nusselt number and the 
local skin friction coefficient decrease, and if γ  and M are fixed, as RN  increases, the local Nusselt 
number and the local skin friction coefficient increase. 
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