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ABSTRACT 

In the context of information technology nowadays, there are many data were 

emerged when people are using computers, we called it computer user behavior. All of 

this data are scrambled over inside the computer such as user behavior log files. The 

problem with this is, when we want to know the user behaviors on computer and doing 

analysis for specific proposes, we normally needed the data only such as program name and 

opening time, there are too many to look for and they are all scrambled in log files. 

Therefore, there are techniques that are proposed that will provide a way to automatically 

mine the data and obtain only meaningful data from the huge data over the internet. The 

area discussed in this research is Knowledge Discovery in Databases (KDD) and the 

technique used is Minimum-Minimum Roughness (MMR). The dataset used will be the 

dataset of computer user log files. By using this MMR technique, I intended to cluster the 

user log files dataset which each cluster will contain the data most related to each other.
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CHAPTER 1


INTRODUCTION 

This chapter would first talk about the overview of data mining research. There 

are six parts contained in. The background is the first; then the problem statement. 

Followed the motivation, next the scopes; the objectives of this research topic would 

be the last part the thesis organization which briefly describes. 

1.1 Background 

The concept of KDD is Knowledge Discovery from Databases. That is a kind of 

program can extract of implicit, previously unknown, and potentially useful 

information from data. KDD actually provide some kinds of automated methods to 

make the useful information is mined in databases. 

Then refer to Data Mining, Data Mining is a step in the KDD process. It 

consists both of applying data analysis and discovery algorithm. Also it will produce 

a calculation method of patterns around the data. And the Data mining methods two 

of them are Classification and clustering. 

A very promising area for attaining this objective is the use of data mining 

Based on the Romero & Ventura (2006) said that most of the researchers have begun 

to investigate various data mining methods to help lecturers to improve the learning 

systems in the last few years. As we know, the data mining also known as a 

knowledge discovery in databases KDD) is that used by to explore the unique type 

of data that is unique from the educational context with automatic illustrate and 

Attractive patterns from big data collections. Data mining is a multidisciplinary area 

in which several computer paradigms converge and some of the most useful data 

mining tasks and methods are statist, visualization, clustering, classification and



association rule mining. Data mining can record any student activities such as taking 

tests and performing various tasks that stores all the information's in the database. 

1.2 Problem Statement and Motivation 

Computer nowadays becomes comment in people's life and it can be used 

doing various kinds of tasks. User behaviours log file is a type of text file that 

recorded details using report from computer user. From opening computer to 

shutting it down, log file would record every event of computer did. So the log file 

is usually in a big size as recording huge log information. Now what if I want to 

find or filter a specify software that user commonly used? 

It is very difficult to manage to the huge and big quantities of data manually. We 

need tools to help us to handle and extract useful information when there are a great 

number of data log, so the best suggestion is the use of data mining for attaining this 

objective. To filter and cluster those dataset, I will use data mining roughness theory 

to assist in the clustering of log file classified base on certain criteria. 

Data mining tools are normally designed more for power and flexibility than 

for simplicity. My analysis of user log files processed based on filtering program 

name and opening time, finding implication information such as how frequently 

people open any software and for how long, as well as the types and sequences of 

activities that users conduct on these softwares. 

By using data mining for database courses can provide the better decision 

making information. In summary, my analysis demonstrates the power of using 

Min-Min rough set theory in clustering computer user behaviours. 

1.3 Objectives 

The objective of this research is to make improvement of data analysis skills and prediction 

an evaluating results base the data mining results for understanding how users behave when they 

open computer and launch software or application for better understanding user behaviour 

Patterns. The objectives of this study are:



a. To divide the users and software into some classes base on the rough set rules 

and theories. 

b. To develop a software to implement computer user clustering with the 

programming language Visual Basic. 

c. To validate the method on a real computer user behavior log data set. 

1.4 Scopes 

There are following scopes of this study are: 

a. For dataset using, there is a random collective data which I download from internet 

include 1000 computer users and their behavior log file during four weeks : 2012-05-07 

to 2012-08-13. 

b. The clustering uses rough set and Min-Min roughness clustering technique. 

c. The minimum roughness and splitting point program will be, decided based on 

the result of user clustering from behaviour log file. 

1.5 Thesis Organization 

The following chapter will be organized as: Chapter II is literature reviews 

which describe the Data mining and Educational Data mining. Chapter III is about 

the methodnology which describes the theory of rough set and modeling process and 

min-min roughness data clustering, making an example of calculation. Describing 

the dataset, Chapter IV describes the expected results from an application following 

by discussion. Finally, Chapter V is the conclusion of this paper.



CHAPTER 2


LITERATURE REVIEW 

This chapter will talk about the topic base on some existing literature related with the 

topic. This chapter contain three sections. The first discuss Knowledge Discovery in 

Databases. The second describes the concept of-Data Mining. The third describes 

Educational Data Mining. 

2.1.1	 Definitions of KDD 

Kiosgen, W., &Zytkow, J. (2002) defined that knowledge discovery in databases 

(KDD) is the automatic pulling out of implied and attractive patterns from large 

data collections. 

However, F. HrudayaKu.Tripathyct.al  (2007) mentioned the Knowledge 

Discovery from Databases (KDD) is regularly a multiphase process involving 

various steps, similar to data preparation, preprocessing, search for hypothesis 

generation, model of formation, knowledge appraisal, demonstration, alteration and 

administration. Carter ct al. proposed that knowledge discovery from databases 

(KDD) is the non-trivial extraction of implicit, previously unknown, and potentially 

useful information from data. As a branch of machine learning, KDD encompasses a 

number of automated methods whereby useful information is mined from data stored 

in databases. When a KDD method is implemented as a practical tool for knowledge 

discovery in databases, an important requirement is that it be as efficient as possible 

so that it can handle the large input data sets typically encountered in commercial



environments. This paper I want to present the results of comparing implementations 

of three similar KDD algorithms to determine their suitability for application to large 

scale commercial databases. 

The technology of build modern database are quickly rising volume and 

summarize the information they contain increasingly. Knowledge Discvery in 

Databases (KDD) and data mining are one of the new study areas that try to slove 

the real world problems. 

The objective of doing KDD is to build the pattern of data and show the results 

which are understandable to humans. The discovered model need to be valid, novel 

and useful on database result. Using KDD the application would exciting more 

discovery and higher level information from the datasets in databases even in 

different territories. 

2.1.2. KDD Processes 

The definition of KDD process is using the data compare other items, 

processing, applying data mining methods to enumerate patterns from it. The whole 

KDD process contain evaluating and determine the interpretations which patterns 

can be regard as new knowledge. 

The process or KDD consists of following steps: 

a. Developing an understanding dataset domain and objectives of the client. 

b. Selecting a dataset be minged: selecting a dataset which would be processed 

and shown the results. 

C. Data decrease and projection: depending the goal of task, rinsing the useful 

features to represent the data. To find the invariant representations of the data, 

the dimensionality decrease or alteration to reduce efficient number would be 

reflecting.



d. Matching the objective patterns to data mining method such as categorization, 

decoration or clustering. Choosing the data mining algorithms and techniques 

for searching the data patterns. 

e. Investigative analysis and model and hypothesis selection: choosing the data 

mining algorithms and selecting methods for searching the data patterns. It 

includes deciding which models and parameters would be appropriate and 

matching in the data mining technique with the overall KDD process. 

f. Data mining: look for patterns form a set of such representations, including 

categorization rules clustering. The user would aid the data mining method by 

performing the preceding steps correctly. 

g. Measurement on the knowledge found: using direct knowledge and combine 

knowledge into other system for further action, or just making report to the 

parties concerned. This process involves inspection and resolve conflictions will 

occur with the knowledge that is extracted before and trusted. 

2.2.1. Definitions of DM 

Srivastava, Cooley, Deshpande, & Tan, (2000) proposed that data mining is a 

step in the overall process of KDD that consists of preprocessing, data mining and 

post processing. Data mining has already been successfully applied in e-commerce. 

However, KDD is the whole process of discovering information from dataset, and 

KDD is one steps of data mining. In KDD process data mining is the most important 

part. Data mining uses the particular algorithms to looking for th hidden relation 

amount the pattern from huge dataset stored in database. 

Generally, a algorithm of data mining involves following parts that always 

combined: 

A. The Pattern: it may contain parameters or variable that are to be evaluate from 

dataset.



B. The Preference criterion: The criterion usually come form of goodness-of-fit 

function of the model to the data, maybe tempered by a generating a model with 

many degrees of freedom can be constrained by the given data. 

C. The Search Algorithm: the specification of an algorithm for finding the goal 

models and parameters, giving the data, models and preference criterion. 

A particular data mining algorithm is a components. The more familiar model 

functions in include the following an instantiation of the model existing data mining 

application 

a. Classification: classifies a data item into one of several predefined categorical 

classes. 

b. Regression: maps a data item to actual valued forecast variable. 

C.	 Clustering: maps a data item into one of several clusters, where clusters are 

natural grouping of data items based in similarity metrics or probability solidity 

models. 

d. Discovering association rules: describes association relationship among 

different attributes. 

e. Summarization: provides a compact description for a subset of data. 

2.3. User Behaviour Data Mining 

User behaviour analysis and data mining can be applied froni different types of 

territories such as user behaviours in internet; in wireless LAN network or in 

computer system. It is necessary to deal separately with the application of- data 

mining techniques in each type due to the fact that they have different data sources 

and objectives.



2.3.1. User Behavior in Internet (example as Online Social Networks) 

Online social networks (OSN5) have become great popular in humans life. 
According to Nielsen Online's latest research (2009) , social media have pulled 
ahead of email as the most popular online activity. More than two-thirds of the 
global online population visit and participate in social networks and blogs. In fact, 
social networking and blogging account for nearly 10% of all time spent on the 

Internet. 
These statistics suggest that OSNs have become a fundamental part of the 

global online experience. Through OSNs, users connect with each other, share and 
content, and disseminate information. Numerous sites provide social , links, for 
example, networks of professionals and contacts (e.g., Linkedln, Facebook, 
MySpace) and networks for sharing content (e.g., Flickr, YouTube). 

Motivation of studying how users behave when they connect to these sites: 

First, studies of user behaviors allow the performance of existing systems to be 
evaluated and lead to better site design (M. Burke, C. Marlow, and T. Lento. 2009) 
and advertisement placement policies( B. A. Williamson. 2007). 

Second, accurate models of user behavior in OSNs are crucial in social studies 
as well as in viral marketing. For instance, viral marketers might want to exploit 
models of user interaction to spread their content or promotions quickly and widely 
(J. Leskovec, L. A. Adamic, and B. A. Huberman. 2007). 

Third, understanding how the workload of social networks is re-shaping the 
Internet traffic is valuable in designing the next-generation Internet infrastructure 
and content distribution systems (B. Krishnamurthy. 2009). Despite the potential 
benefits, little is known about social network workloads. A few recent studies 
examined the patterns using data that can be gathered from OSN sites, for instance, 
writing messages to other users (B. Huberman, D, Romero, and F. Wu. 2009) or 
accessing third party applications (A. Nazir, S. Raza, and C.-N. Chuah. 2008). 

Method of study user behaviours on OSN workloads: 

A complementary approach to study OSN workloads is to use traces such as 
clickstream data that capture all activities of users (P. Chatterjee, D. L. Ho_man, and 
T. P. Novak. 2003). Since clickstream data include not only visible interactions, but 
also silent" user actions like browsing a page or viewing a photo, they can provide a 
more accurate and comprehensive view of the OSN workload. 

There is a kind analysis of OSN workloads based on a clickstream dataset 
collected from a social network aggregator. Social network aggregators are one-stop 
shopping sites for OSNs and provide users with a common interface for accessing



multiple social networks(R. King. 2007). 
By using the clickstream data, there should be conducted three sets of 

analyses: 

First, characterized the traffic and session patterns of OSN workloads and 
examined how frequently people connect to OSN sites and for how long. Based 
on the data, providing a best fit models of session inter-arrival times and 
session length distributions. 

Second, using the analysis strategy called the clickstream model, to characterize 
user activity in OSNs. The clickstream model captures dominant user activities 
and the transition rates between activities. 

In summary, the clickstream data analyzed in the paper provides an accurate 
view of how users behave when they connect to OSN sites. Furthermore, the data 
analysis could suggest several interesting insights into how users interact with 
friends in OSNs. And. the findings of study result could have implications for 
efficient system design. 

2.3.2. User Behavior in Wireless LAN Network 

Wireless LAN installations based on IEEE 802.11 (IEEE. 802.1 lb/d3.0 Wireless 
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, 
2009) technology are emerging as an attractive solution for providing network 
connectivity in corporations and universities, and in public places like conference 
venues, airports, shopping malls, etc. - places where individuals spend a 
considerable amount of their time outside of home and work. In addition to the 
convenience of untethered networking, contemporary wireless LANs provide 
relatively high data connectivity at 11 Mb/s and are easy to deploy in public settings. 

Motivation of studying 

The high-level goals of this study are two-fold: 

First, specifically characterize user behavior and network performance in a 
public wireless LAN environment. Characterize user behavior in terms of 
connection session length, user distribution across APs, mobility, application mix, 
and bandwidth requirements and it is also necessary to characterize network 
performance in terms of overall and individual AP load, and packet errors and 
retransmissions. From these analyses wireless users in terms of a parameterized



model for use with analytic and simulation studies involving wireless LAN traffic 
can be characterize. 

Second, to better understand the issues in wireless network deployment, such 
as capacity planning, and potential network optimizations, or algorithms for load 
balancing across multiple APs in a wireless network. 

Method of study user behaviors on OSN workloads: 

In this study, it support to use a trace recorded method to present and analysis 
user behavior and network performance in a public-area wireless network. The trace 
consists of two parts. 

The first part is a record of performance monitoring data sampled from 
wireless access points (APs) serving the conference, 

The second consists of anonymized packet headers of all wireless traffic.



CHAPTER 3 

Methodology 

This chapter discusses about the model and method of data clustering based on 

Rough Set Theory. It include information system and rough set theory; Set 

approximations and indiscernibility relations; Min-min roughness technique with an 

example of the student evaluation dataset. Then as last shows the splitting model. 

3.1 Rough Set Theory 

Rough set theory has attracted many researchers all over the world who 

contributed essentially to its develop the applications. The objective of the rough set 

theory is induction of approximations of concepts. The idea consists of 

approximation of a subset by a pair of two precise concepts called the lower 

approximation and upper approximation.. Intuitively, the lower approximation of a



set consists of all elements that surely belong to the set, whereas the upper 

approximation of the set constitutes of all elements that possibly belong to the set. 

The difference of the upper approximation and the lower approximation is a 

boundary region. It consists of all elements that cannot be classified uniquely to the 

set or its complement, by employing available knowledge. Thus any rough set, in 

contrast to a crisp set, has a non-empty boundary region. 

3.1.1 Information System 

Data are often presented as a table, columns of which are labeled by attributes, 

rows by objects of interest and entries of the table are attribute values. By an 

information system, an information system is also called a knowledge representation 

systems or an attribute-valued system and can be intuitively expressed in terms of an 

information table (refer to Table 3.1). 

a 1 a2 ak aII 

f(u1 ,a1 ) f(u1,a2) f(ul,ak) AU] ,aA) 

U 2 f(u2,a1) f(u2,a2) f(u25ak) f(u2,aIAI) 

U 3 f(u3,a1) f(u3,a2) f(u3,ak) f(u3,a14) 

i (u lul , a 1 ) f(u11 , a2) f(U l U1 , ak) AU JUJ , L71AI

Table 3.1: An information system 



Example 3.1. 

There is a student final result list from Moodle dataset, as shown in Table 3.2. 

Student! Internet MSN Microsoft Photosh Adobe Game Grade 
Explorer Office op Reader 

coursewo (A2) (A6) 

rk (Al) (A3) (A4) (A5) 

Log filel 8 7 6 8 9 7 A 

(Ul) 

Log file2 9 7 7 8 8 8 A 

(U2) 

Logfile3 7 5 7 8 6 5 C 

(U3) 

Logfile4 9 6 5 6 5 7 B 

(U4) 

Log files 6 7 5 7 6 6 B 
(U5) 

Log file6 7 7 6 7 6 6 C 
(U6)

Table 3.2: A student evaluation system 

For easy writing and understanding. The mark regard as the students matric No 

and assessments should be cleared. The values for calculation in following will be 

gained from Table 3.2. 



U = {U1, U2, U3, U4, U5, U61 

A = {A1, A2, A3, A4,A5,A6, Grade}, where C = {Al, A2, A3, A4, A5, A61, D = {Grade}, 
VA1 = {6,7,8,9}	 VA2 {6,7,8} 
VA3 = {5,6,7}	 VA4 = {6,7,8} 
VA5 = {5,6,8,9}	 VA6 = {5,6,7,8} 
VGrade {A, B, C } 

3.1.2 Set Approximations 

Definition 2.2. Let S = (u, A, V, f) be an information system, let B be any 

subset ofA and let X be any subset of U The B-lower approximation ofX denoted 

by B(x) and B-upper approximations ofX denoted by i(x), respectively, are 

defined by 

B(X)={xEU I [x]B g x} and 7i(X)={xEU I [x]Bflx#Ø}. 

a. The lower approximation of a set XCompared with B is the set of all objects, 
which can be for certain classified as Xusing B (are certainly Xin view of B). 

b. The upper approximation of a set X Compared with B is the set of all objects 
which can be possibly classified as X using B (are possibly X in view of B). 

The accuracy of approximation (accuracy of roughness) of any subset X c U 

Compared with B A, denoted a 9 (x) is measured by 

aB(X)= 

where IXI denotes the cardinality of X For empty set 0, it is defined that 

a8 (0) = 1 (Pawlak and Skowron, 2007). Obviously, 0 :!^ a8 (x) :!^ 1. IfXis a union



of some equivalence classes of U, then a (x) = 1. Thus, the set X is crisp (precise) 

Compared with B. And, if X is not a union of some equivalence classes of U, then 

a8 (x) < 1. Thus, the set X is rough Compared with B (Pawlak and Skowron, 2007). 

3.2 Min-Min Roughness 

There are a few techniques that had been proposed to deal with the clustering 

attribute selection. Mazlack et al. proposed two techniques to select clustering 

attribute, which is bi-clustering (BC) technique and total roughness (TR) technique. 

Then, Parmaret al. proposes a technique called min-min roughness (MMR) which 

improves the BC technique for data set with multi-valued attributes. Another 

techniques also had been proposed, which is called maximum dependency of 

attributes (MDA). 

3.2.1 Model for selecting a clustering attribute 

L

Parameter 1 ILParameter 2	 L Parameter n 

Figure 3.2: Selecting a clustering model.



3.2.2 Min-Min Roughness Technique 

The following Table shows step-by-step to calculate Min-Min Roughness. 

Step Min-Min Roughness 

1 Given data set 

2
Each attribute in data set considered as a candidate attribute to 

partition 

3 Determine equivalence classes of attribute-value pairs 

4 Determine lower .approximation of each equivalence classes in 

attribute	 a 1	 w.r.t. to attribute	 a,	 i # j 

5 Determine upper approximation of each equivalence classes in 

attribute	 ai	 w.r.t. to attribute	 a1	 i :;6 j 

Calculate roughness of each equivalence classes in attribute a. 
6

w.r.t. to attribute 	 a,	 i	 j 

7 Calculate mean roughness of attribute ai w.r.t. to attribute a1, 

i	 j 

8
Calculate minimum roughness a, w.r.t. to all attribute a 1 , i	 j 

If there are two greatest value of mean roughness, calculate 

minimum roughness relative to the second, third greater minimum 

roughness until the tie is broken 

10 Selecting a clustering attribute

Table 3.3: Step-by-step Min-Min Roughness 



3.2.3 Algorithm 

Below show the example algorithm to obtain the MMR from the students 

information dataset. 

II finding the U/IND for each attribute 
X-- 1 

for i = 1 to nth attribute 

set att(i, 1) as set(4x) 

forj 1 to nth row 

for k = 1 to nth 

if att(i,j) doesn't belong to any set &j# k 

thenif att(i,j) = att(i, k) & att(i, k) belong to a set 

then set att(i,j) as same set as att(i, k) 

else set att(i,j) as set(i,x++) 

end if 

end if 

end for loop 

end for loop 

II finding the number of element in lower and upper approximation for each 
attribute 

for i = 1 to nth attribute 

forj = 1 to nth attribute 

for k = 1 to nth attributeSet 

if set(j, k) E set(i, k) & i #j 

then	 lowerApprox(a1,k) 

lowerApprox(a,,k) + no of element in 

set(/, k) 

else ifset(i,k) E &/ 

then	 upperApprox(a1,k) = 

upperApprox(a1,k) + no of element in 

set(j, k) 

end if 

end for loop 

end for loop 

end for loop



II calculating roughness for each attribute set 
for i 1 to nth attribute 

for k = 1 to nth attributeSet 

roughness(a1,k) = 

1 - (lowerApprox(a,,k) 	 upperApprox(a,,k)) 

end for loop 

end for loop 

II calculating mean roughness for each attribute 

x= 1 

for i = 1 to nth attribute 

for k = 1 to nth attributeSèt 

totalRoughness() = 

totalRoughness(a 1) + roughness(a1,k) 

totalAttritbute(a,) tota!Attritbute(a,) + x 

end for loop 

end for loop 

for I = 1 to nth attribute 

meanRoughness(a1) = totalRouglmess(a,) ± totalAttritbute(a1) 

end for loop 

II finding the min roughness from all attributes 
for i = 2 to nth attribute 

if meanRoughness(a,) <meanRoughness(aij) 

then minRougbness = meanRoughness(a1) 

end if 

end for loop 

II for case where the lowest minimum meanRoughness is more than 1 
count = 0 

for I 1 to nth attribute 

if minRoughness = rneanRoughness(a1) 

then count count + 1 

end if



end for loop 

if count> 1 

thenfor i = 2 to nth attribute 

if meanRoughness(a1) <meanRoughness(a11) 

& rneanRoughness(a1) # minRoughness 

then min-minRoughness 

rneanRoughnes(a1)' 

end if 

end for loop 

count = 0 

for i = 1 to nth attribute 

if min-minRoughness = meanRoughness(a1) 

then	 count = count + 1 

end if 

end for loop 

end if 

Calculate approximations and roughness 

First, we determine of indiscernibility relation of singleton attribute are: 

S (Al =6)={(U5)},S(A1=7)={U3,U6}S(A1=8)={U1}S(A1=9)={U2,U4} 

S(A2=5)={U3},S(A2=6)={U4},S(A2=7)={U1,U2,U5,U6} 

S(A3 = 5) = {U4, U51, S(A3 = 6) = {U6}, S(A3 = 7) = {U2, U31 

S(A4= 6)={U4}, S(A4 = 7)={U5,U6}, S(A4= 8)={U1,U2,U31 

S(A5 = 5) ={U4}, S(A5 = 6) = {U3, US, U61, S(A5 = 8) = {U2}, S(A5 = 9) ={U1} 

S(A6 = 5) = {U3}, S(A6 = 6) = {U5, U61, S(A6 = 7) = {U1, U41, S(A6 = 8) = {U2}

Then we find the upper and lower approximations. 



Attribute Al 

For attribute Al, shown that IV(Al)I=4). The approximations and roughness 

about A l Compared A which i 2,3,4,5,6, calculated as the following. 

1)	 Compared with A2 

lower app and upper app calculated: 

X(Al =6) =0 and X(A1 =6) = {U1-1U2--1U5-1U6} 

X(A1 =7) = {U3} and X(A1 = 7) = {U1-U2--1U3-U5-1U6} 

X(Al =8) =0 and X(Al =8) = {Ul-,U2-7U5-1U6} 

X(Al =9) = {U4} and X(Al =9) = {U4} 

Roughness 

RA2(SIA1 = 6)=l-O/4 =1 

RA2(SIA1=7)=1-1/5=0.8 

RA2(SIA1=8)=1-0/4=l 

RA2(S I Al =9) =1-1=0

Mean roughness 

RoughA2(Al) =(l+0.8+l+0)/4 =0.7 

2)	 Compared with a3 

lower app and upper app calculated: 
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