DEVELOPMENT OF REAL-TIME ULTRASONIC SENSORING SYSTEM TO MEASURE DISTANCE USING LABVIEW

NORSUKMAWATI BINTI ISHAK

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

JUNE 2012
ABSTRACT

This project involves the implementing of ultrasonic sensor for industrial related applications in real-time. Ultrasonic sensor works on the area from 40 KHz to 400 KHz. To detect the distance of the object, ultrasonic sensor measures the time from the transmission of sonic wave to reception of the sonic wave. In process industry, it present the ideal solution to level detection of non-contact level sensing of highly viscous liquids in process industry. It also used to measurement of flow, crack detection and tank level measurement. The sensor system should have DAQ capabilities using NI DAQ card USB-6009. By using the DAQ card, the data will be transfer from sensor to computer. Input and output data will be transfer through digital signals or analog signals or channels. DAQ card operate by utilizing both DAQ hardware and software. By using the LabVIEW programming language, the interface for the sensor system will be developed and LabVIEW also used to communicate with DAQ hardware. In LabVIEW, we build a block diagram contains to control the front panel objects. The developed sensor should capable of measurement in real-time. The system also capable for data storage and data retrieval for further analysis.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION OF THESIS’S STATUS</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>DECLARATION OF SUPERVISOR TITLE</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background 1
1.2 Project Objective 2
1.3 Project Scopes 2
1.4 Problem Statement 2
1.5 Thesis Arrangement 3

2 LITERATURE REVIEWS

2.1 Introduction 4
2.2 Overview of ultrasonic sensors 4
2.2.1 Ultrasonic sensor principle 6
2.2.2 Ultrasonic sensor applications 14
2.2.3 LV-MaxSonar-EZ1 19
2.3 NI LabVIEW 21
2.3.1 The Overview of the LabVIEW 21
2.4 NI DAQ 23
2.4.1 NI USB-6009 25

3 METHODOLOGY

3.0 Flow Chart 27
3.1 Hardware development 28
3.2 Software development 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Results and Discussions</td>
<td>34</td>
</tr>
<tr>
<td>4.1 Results and discussions</td>
<td>34</td>
</tr>
<tr>
<td>4.2 Problems of project</td>
<td>43</td>
</tr>
<tr>
<td>5 Conclusion and Future Recommendations</td>
<td>44</td>
</tr>
<tr>
<td>5.1 Conclusion</td>
<td>44</td>
</tr>
<tr>
<td>5.2 Future Recommendations</td>
<td>44</td>
</tr>
</tbody>
</table>

REFERENCES 45
APPENDICES A-B 47
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Two port network representation of piezoelectric transmitter and receiver.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Equivalent circuit of a transmitter.</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Ideal equivalent circuit of transmitter.</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Equivalent circuit of a transmitter with m, B and 1/K reflected in the primary side.</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Magnitude plot of transmitter.</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Phase plot of transmitter.</td>
<td>9</td>
</tr>
<tr>
<td>2.7</td>
<td>Transmission of ultrasonic signal in between two mediums.</td>
<td>10</td>
</tr>
<tr>
<td>2.8</td>
<td>Measuring Scheme.</td>
<td>12</td>
</tr>
<tr>
<td>2.9</td>
<td>Reflected means of ultrasonic signal.</td>
<td>13</td>
</tr>
<tr>
<td>2.10</td>
<td>Mounted Ultrasonic Sensors.</td>
<td>17</td>
</tr>
<tr>
<td>2.11</td>
<td>Echo-ranging level sensing.</td>
<td>18</td>
</tr>
<tr>
<td>2.12</td>
<td>LV-MaxSonar-EZ1.</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>LV-MaxSonar pin out</td>
<td>20</td>
</tr>
<tr>
<td>2.14</td>
<td>LabVIEW.</td>
<td>21</td>
</tr>
<tr>
<td>2.15</td>
<td>LabVIEW front panel.</td>
<td>22</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>LabVIEW block diagram.</td>
<td>23</td>
</tr>
<tr>
<td>2.17</td>
<td>Configuration of data acquisition.</td>
<td>24</td>
</tr>
<tr>
<td>2.18</td>
<td>NI USB-6009</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Configuration of project circuit.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Connection between LV-MaxSonar-EZ and NI USB-6009.</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>LabVIEW front panel of the system.</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>LabVIEW block diagram.</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Graph of voltage and distance measurement.</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Graph of average voltage versus distance.</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Graph of voltage versus distance for different materials.</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>Result measurement for box.</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Result measurement for aluminium</td>
<td>42</td>
</tr>
<tr>
<td>4.6</td>
<td>Result measurement for plastic</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF TABLES.

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Characteristic Impedance of few materials.</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Signal descriptions of NI USB-6009</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Voltage output of ultrasonic sensor Versus distance.</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Voltage output of ultrasonic sensor Versus distance for different materials.</td>
<td>40</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION.

1.1 Background

This project involves the implementing of ultrasonic sensor for industrial related applications in real-time. Ultrasonic sensor works on the area from 40 KHz to 400 KHz. To determine the distance to an object, the time interval from sending and receiving echo will be calculated.

To develop interface for the sensor system, LabVIEW software will be used. Graphical User Interface (GUI) will be created to provide a user friendly system and the analysis can be performed faster and easier.

To determine the distance, the sensor will be connected to computer by using NI DAQ card. The LabVIEW program record and measure voltage from the sensor. A graph will be executed after acquiring the analog voltage from the sensor, and the voltage signal will display in time domain. By using a certain formula, we can convert this voltages to distance. The results are saved at one file.
1.2 **Objective**

i. To design working prototype of ultrasonic sensor system.
ii. To display result in real-time by using LabVIEW.
iii. To learn the flow of data/or data conversion/data DAQ system.
iv. To understand the operation of the circuit and applications of this system.
v. To implement working ultrasonic system for industrial based application.

1.3 **Scope Project**

i. Implement the real-time concept in distance monitoring system.
ii. Concentrate on measuring the distance using ultrasonic sensor
iii. Develop interface for the sensor system using LabVIEW.
iv. Saving file.

1.4 **Problem Statement**

In process industries, liquids is require to be pump, store in tanks, then pump to another tank and many times will be process by chemical or mixing treatment in the tanks. The basic problems are the level of fluid in a tank must always be monitored and controlled and the liquid flow between the tanks requires regulation at certain desired rate.

For future, this project, may contribute to overcome this problems. The level of fluid can be measured by using ultrasonic principle and can always be monitored in real-time by using LabVIEW programming language.
1.5 Thesis Arrangement

This thesis has 6 chapters which are Introduction, Literature Review, Hardware Design, Software Design, Result and Discussion, and Conclusion and Further Development of the project.

Chapter 1 will be discussed about the introduction of project. The contains includes basic idea of the project, the objective and overview of the project.

Chapter 2 will be discussed about the literature review. The contains includes the components that is use in this project. This chapter also contains the related methodologies from variety of sources for the development of this project.

Chapter 3 will be discussed about the design and methodology of the project. The contains includes General concept of the project like the components that have been used and also will be discussed about the simulation of the circuit. The concept idea of simulation will be discussed.

Chapter 4 will be discussed about the result and discussion. The limitation barrier in completing this project also will be discussed.

Lastly, chapter 5 will be discussed about the conclusion and further development of this project.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

For completing this project, some literature reviews from several resources have been done as the guidance to complete this project. Some applications that similar to this project also will be discussed.

2.2 Overview of Ultrasonic Sensors

Ultrasonic sensor works on the area from 40 KHz to 400 KHz. To determine the distance, sensors calculate the time interval between sending the signal and receiving the echo. [1] The term ultrasonic refers to mechanical or acoustical waves of frequency more than 20 kHz. Systems typically use a transducer which generates sound waves in the ultrasonic range, above 18,000 hertz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed. [1] An electro acoustic transducer is a device that converts electrical energy to acoustical energy or vice versa.
The ultrasonic distance sensor can be operated in two different modes. The first mode, referred to as continuous (or analog) mode, involves the sensor continuously sending out sound waves at a rate determined by the manufacturer. The second mode, called clock (or digital) mode, involves the sensor sending out signals at a rate determined by the user. [3] This rate can be several signals per second with the use of a timing device, or it can be triggered intermittently by an even such as the press of a button.

With respect to sensing and measurements, high frequency avoids interference from many audible, low frequency noises due to wind, machinery, pumps and vibration of large bodies. High frequency allows resolution of “the small” in both the temporal and spatial senses. The major benefit of ultrasonic distance sensor is their ability to measure difficult target; solids, liquids, powders and even transparent and highly reflective materials that would cause problems for optical sensor. In addition, analog output ultrasonic sensors offer comparatively long ranges, in many cases > 3 m. They can also be very small - some tubular models are only 12 mm in diameter, and 15 mm x 20 mm x 49 mm square-bodied versions are available for limited - space applications. [3] When used for sensing functions, the ultrasonic method has unique advantages over conventional sensors such as infrared or reverse sensor. [4] By using ultrasonic method, the discrete distances to moving objects can be detected and measured. The measurement of ultrasonic sensor also less affected by target materials and surfaces, and not affected by color. Solidstate units have virtually unlimited, maintenance free life. Ultrasonic sensors also have ability to detect small objects over long operating distances and have resistance to external disturbances such as vibration, infrared radiation, ambient noise, and EMI radiation.

The technology is limited by the shapes of surfaces and the density or consistency of the material. For example foam on the surface of a fluid in a tank could distort a reading. Turbulence, vapors, and changes in the concentration of the process material also affect the ultrasonic sensor’s response. [1] Ultrasonic sensors have limitations due to their wide beam-width, sensitivity to specular surfaces [6],
and the inability to discern objects within 0.5 m [7]. Because of the typical specular nature of the ultrasonic waves reflection, only reflecting objects that are almost normal to the sensor acoustic axis may be accurately detected [8].

2.2.1 Ultrasonic Sensor Principle

The ultrasonic measurement system consists of an ultrasonic transmitter, the transmission medium, and an ultrasonic receiver. The commonly used ultrasonic sensors are the piezoelectric sensing elements.

![Two port network representation of piezoelectric transmitter and receiver.](image)

As we know piezoelectric effect is reversible, the ultrasonic transmitter uses the inverse piezoelectric effect i.e. if a voltage is applied to the transmitter the crystal will undergo a corresponding deformation. The vibration of the crystal is transmitted through the media from one end to the other. The particle displacement sets up an accompanying pressure which is picked up by the receiver. The receiver use the direct piezoelectric effect and converts the force into the corresponding voltage.
For the transmitter:

\[x = dV \]

For receiver:

\[q = dF \]

The performance characteristic \(d \) for both cases are same. Moreover,

\[F = Kx = KdV \]

Where \(K \) = stiffness of the crystal.

Figure 2.2: Equivalent circuit of a transmitter. [21]

\(Z_G \) = Output impedance of the signal growth.

\(m \) = Mass of the crystal.

\(B \) = Damping coefficient.

\(K \) = Spring constant.

\(Z^M_{IN} \) = Input impedance of the medium.

\(\dot{x} \) = Velocity.

Ideally,

\[Z_G = 0 \; ; \; Z^M_{IN} = 0 \]
Figure 2.3: Ideal equivalent circuit of transmitter.[21]

Figure 2.4: Equivalent circuit of transmitter with m, B and 1/K reflected in the primary side.[21]

Where \(L_1 = m/(dk)^2 \); \(R_1 = B/(dk)^2 \); \(C_1 = d^3 k \).

Overall impedance = \(H(s) \) or \(1 \)

Therefore,

\[
H(j\omega) = \frac{\omega R_1 C_1 - j(1 - \omega^2 L_1 C_1)}{\omega[(C + C_1) - \omega^2 L_1 C_1] + j\omega^2 C_1 R_1}
\]
Thus, we have two natural frequencies:

\[\omega_n \text{ (series natural frequency)} = \frac{1}{\sqrt{L_1 C_1}} \]

\[\omega_p \text{ (parallel resonant frequency)} = \sqrt{\frac{C+C_1}{L_1 \cdot C_1}} \]

At \(\omega = \omega_n \) magnitude is minimum whereas it is maximum at \(\omega = \omega_p \)

Assuming \(R_1 = 0 \)
At $\omega = \omega_n$ and $\omega = \omega_p$ the system is resistive. When $R_1 \neq 0$ the above diagram shifts towards the right hand side. This circuit behaves as an inductor between ω_n and ω_p.

Transmission of ultrasound:

If $P = $ pressure or stress

\[x = u = \text{velocity} \]

Characteristic impedance:

\[Z = \frac{P}{u} \]

Power intensity:

\[W = P \times u \]

Average power intensity:

\[W = \frac{1}{\lambda} \int_0^\lambda W(z) \, dz \]

![Diagram](image)

Figure 2.7: Transmission of ultrasonic signal in between two medium. [21]

$Z_1 = \text{Characteristic Impedance of medium 1}$

$Z_2 = \text{Characteristic Impedance of medium 2}$

WI = Incident power intensity

WR = Reflected power intensity

WT = Transmitted power intensity
WI is lesser than the power intensity generated by the crystal due to losses on medium 1.

\[\alpha_R = \text{Reflection Coefficient} = \frac{WR}{WI} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2} \]

\[\alpha_T = \text{Transmission Coefficient} = \frac{WT}{WI} = \frac{4Z_1Z_2}{(Z_2 + Z_1)^2} \]

Thus, \(\alpha_R + \alpha_T = 1 \)

If \((Z_2 - Z_1) \) is large then more of the incident power intensity is reflected back.

Table 2.1: Characteristic impedance of few materials. [21]

<table>
<thead>
<tr>
<th>Material</th>
<th>Characteristic Impedance ((Z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>(1.5 \times 10^7)</td>
</tr>
<tr>
<td>Barium Titanate</td>
<td>(2.5 \times 10^7)</td>
</tr>
<tr>
<td>Polymer (PVDF)</td>
<td>(0.4 \times 10^7)</td>
</tr>
<tr>
<td>Steel</td>
<td>(4.7 \times 10^7)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>(1.7 \times 10^7)</td>
</tr>
<tr>
<td>Bone</td>
<td>(0.8 \times 10^7)</td>
</tr>
<tr>
<td>Water</td>
<td>(0.15 \times 10^7)</td>
</tr>
<tr>
<td>Air</td>
<td>(430)</td>
</tr>
</tbody>
</table>

\[\alpha_R \text{ and } \alpha_T \text{ for different interfaces.} \]

<table>
<thead>
<tr>
<th>Interface</th>
<th>(\alpha_R)</th>
<th>(\alpha_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz / Steel</td>
<td>0.27</td>
<td>0.73</td>
</tr>
<tr>
<td>Quartz / Water</td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>Quartz / Air</td>
<td>1.00</td>
<td>(1.1 \times 10^{-4})</td>
</tr>
</tbody>
</table>

Thus we can say that air is a poor choice for the transmission of ultrasound waves as the difference of the characteristic impedance of air with others is very large.
By using pulse echo technique, the ultrasound can be measured. In this technique, a piezoelectric crystal acting as a transmitter/receiver is attached to medium 1. The characteristic impedance of medium 1 and 2 must be substantially different. First the crystal acts as a transmitter and it sends out a pulse (generated by the pulse generator) of width T_w.

![Measuring Scheme](image)

Figure 2.8 Measuring Scheme.[21]

Most of the pulse energy is reflected at the boundary of the medium 1 and 2. The crystal now acts as the receiver and receives a pulse. The time taken by a reflected pulse is

$$T_T = \frac{2I}{C}$$

Where $I =$ Distance of the interface of the two media from the crystal.

$C =$ Velocity of sound in medium 1.
The Repetition Rate T_R should be such that all the reflected pulses of interest have been observed before sending the 2nd pulse. The transmit time T_T should be large compared to the pulse width T_w to avoid interference between outgoing pulse and incoming or reflected pulse.

The advantages of ultrasonic sensor are it is easy to direct and focus a beam of ultrasound as diffraction of these waves are small due to their short wavelength and ultrasonic waves can easily pass through metals. This helps in mounting the measurement system outside the system and it will lead to the development of non-invasive sensor.

Figure 2.9: Reflected means of ultrasonic signal.[21]
2.2.2 Ultrasonic Sensor Applications.

The time of flight (ToF) measurement is the most accurate method among the measurements used. This ToF is the time elapsed between the emission and subsequent collection of a ultrasonic pulse train traveling at the speed of sound, which is approximately 340 m/s, after reflection from an object. The time of flight is given by:

\[t = \frac{2d}{v} \]

Where \(v \) is the velocity of sound in the medium above the surface. The velocity of sound in air is about 3000 m/s, so for a tank whose depth can vary from 1 to 10 m, the delay will vary from about 7 ms (full) to 70 ms (empty). There are two methods used to measure the delay. The simplest, assume so far and mostly commonly used in industry, is a narrow pulse. The receiver will see several pulses, one almost immediately through the air, the required surface reflection and spurious reflections from sides, the bottom and rogue objects above the surface. The measuring electronics normally provides adjustable filters and upper and lower limits to reject unwanted readings. Pulse driven systems lose accuracy when the time of flight is small. For a distance below a few millimeters a swept frequency is used where a peak in the response will be observed when the path difference is a multiple of the wavelength, i.e.

\[d = \frac{v}{2f} \]

Where \(v \) is the velocity of propagation and \(f \) the frequency at which the peak occurs. Note that this is ambiguous as peaks will also be observed at integer multiples of the wavelength.
The method discussed above can be used for the following cases with ease.

a) Level measurement. [21]

\[T = \frac{2I}{C} \]
\[I = \frac{TC}{2} \]

It is to be noted that the crystal must be placed at the bottom and not at the top. If placed at the top due to presence of air no wave will be able to propagate thus giving us erroneous measurement.

b) Crack detection. [21]

Here crack or gap acts as the second medium and thus helps us to detect where the crack has taken place.
Both methods require accurate knowledge of the velocity of propagation. The velocity of sound is 1440 ms\(^{-1}\) in water, 3000 ms\(^{-1}\) in air and 5000 ms\(^{-1}\) in steel. It is also temperature dependent varying in air by 1% for a 30°C temperature change. Pressure also has an effect. If these changes are likely to be significant they can be measured and correction factors applied. The speed of sound in air varies as a function of temperature by the relationship [11]:

\[
\begin{align*}
c(T) &= 13,044 \sqrt{1 + \frac{T}{273}}
\end{align*}
\]

where:

- \(c(T)\) = speed of sound in air as a function of temperature in inches per second
- \(T\) = temperature of the air in °C

The wavelength of sound changes as a function of both the speed of sound and the frequency, as shown by the expression:

\[
\lambda = \frac{c}{f}
\]

where:

- \(\lambda\) = wavelength
- \(c\) = speed of light
- \(f\) = frequency

As the sound travels, the amplitude of the sound pressure is reduced due to friction losses in the transmission medium. Knowing the value of this absorption loss, or attenuation, is crucial in determining the maximum range of a sensor. The attenuation of sound in air increases with the frequency, and at any given frequency the attenuation varies as a function of humidity. The value of humidity that produces the maximum attenuation is not the same for all frequencies. [12,14] Above 125 kHz, for example, the maximum attenuation occurs at 100% RH; at 40 kHz, maximum attenuation occurs at 50% RH. Since an ultrasonic sensor usually is required to operate at all possible humidities, target range calculations should use the largest value of attenuation.
In process industry, ultrasonic sensor also used as level sensor to determine the content or volume of a container. In open or closed tanks, hoppers, and ducts, the liquids, solids suspended in liquid, powdered material, and granular-solid levels are measured. The level of gasoline in the tank for an automobile is measured continuously. [2] Ultrasonic level sensing is based on the damped sensor principle or the density change principle. [2] To detect or locate a particular level, a damped sensor is used. Normally, an automatic filling operation is controlled by this sensor. Generally, to continuous operation, the density change principle is applied. This principle responds to ultrasonic waves being transmitted through materials of the same density. [2] A wave is reflected, when it reaches a pronounced change in density. This is called echo ranging. The operating principle of a damped level sensor shown in Figure 3. On the side of the storage tank, two sensors are located. The sensors respond as ultrasonic wave sources. Each piezoelectric crystal is applied with high-frequency ac, causes vibration and the emission of waves. The upper sensor is surrounded by gas or vapor from the liquid being sensed. The density of this gas is usually quite low. [2] The piezoelectric crystal vibrates with a minimum of opposition as a result.

![Mounted Ultrasonic Sensors](image_url)

Figure 2.10: Mounted Ultrasonic Sensors.