

DEVELOPMENT OF STRAIGHT LINE ROBOT MOVEMENT

CHING WAI HOONG

UNIVERSITI MALAYSIA PAHANG

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS


 JUDUL:

SESI PENGAJIAN:_______________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di

 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.

4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan

 SULIT atau kepentingan Malaysia seperti yang termaktub

 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan

 oleh organisasi/badan di mana penyelidikan dijalankan)

  TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________

 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

C43, KAMPUNG BARU, MR. MOHD RIDUWAN BIN GHAZALI

35350 TEMOH, (Nama Penyelia)

PERAK.

Tarikh: 13 JUNE 2012 Tarikh: 13 JUNE 2012

CATATAN: * Potong yang tidak berkenaan.

 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu

 dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan

penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

 2011/2012

CHING WAI HOONG (881115-08-5677)

DEVELOPMENT OF STRAIGHT LINE ROBOT

MOVEMENT

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : __________________________________

 Name : MR. MOHD RIDUWAN BIN GHAZALI

 Date : 13 JUNE 2012 n

DEVELOPMENT OF STRAIGHT LINE ROBOT MOVEMENT

CHING WAI HOONG

A report submitted in partial fulfillment of the requirements for the award of the

degree of Bachelor of Engineering (Electrical and Electronic)

Faculty of Electrical and Electronic Engineering

University Malaysia Pahang

 JUNE 2012

ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : CHING WAI HOONG nn

Date : 13 JUNE 2012 n

iii

To my beloved father, mother and brothers

iv

ACKNOWLEDGEMENTS

 Initially, the special thank conveys to my helpful supervisor, Mr. Mohd

Riduwan Bin Ghazali, for providing me a good opportunity to have a fantastic final

year project. His supervision and support truly help me to accomplish my project and

the thesis can be presented within the time given. The co-operation, guidance and

encouragement are much indeed appreciated.

 I would like to extend my appreciation and deep love to my parents and

brothers to support me with their sincere love, time and money fostering me to be

educated in university. Their cares and encouragements for guiding me to overwhelm

my failure and obstacles encountered from completing this project.

 My grateful thanks go to the contribution of my faculty and laboratory

technicians which provided me a proper experiment environment to test my project’s

functionality and operation. I appreciate the person in-charge of Component’s Store

who provided many essential components to roll my hoop to accomplish my task.

 Last but not least, I would like to send to high appreciation to all my friends

for those who ever help me to complete my project. I sincerely hope that my

knowledge and experiences obtained from this project can be shared and beneficial

to everyone and society in future. Thank you.

v

ABSTRACT

 This project focuses on the development of straight line movement for a four-

wheeled mobile robot. In this project, a DC gear motor is chosen as motion control

for two driving wheels and the direction of robot will be controlled by servo motor to

two steering wheels. PIC is selected as the brain board controller due to react and

respond to the data received from Digital Compass Module to identify and figure out

desired position. The implementation of internal PID algorithm is essentially used to

restore the system to desired set-point position. Application of Digital Compass

Module with the aid of PID control algorithm may command to drive the servo

motor to go towards in straight line platform in accordance to the desired set-point

direction has been fixed. The robotic hardware has been developed and analyzed

successfully. As a result, in despite of unexpected external force varying the desired

direction of robot, the robot would still be able to veer back to the original set-point

direction to achieve a smooth and stabilized straight line movement.

vi

ABSTRAK

 Projek ini tertumpu kepada pembangunan pergerakan garis lurus untuk robot

beralih empat roda. Dalam project ini, motor gear arus terus (DC) dipilih sebagai

kawalan gerakan untuk dua roda memandu dan arah robot akan dikawal oleh motor

servo untuk stering dua roda. Peripheral Interface Controller (PIC) dipilih sebagai

pengendali utama untuk tindak balas dan respon kepada data yang diterima dari

Kompas Digital Modul untuk mengenal pasti dan menentu kedudukan. Perlaksanaan

algorithm Proportional Integral Derivative (PID) dalaman asasnya digunakan untuk

mengembalikan sistem kepada kedudukan titik penentuan yang ditetapkan. Aplikasi

Kompas Digital dengan bantuan algorithm kawalan PID untuk memacu motor servo

ke arah platform garis lurus berdasarkan arah yang ditetapkan. Perkakasan robot

berjaya dibangun dan dianalisis. Hasilnya robot mampu mengembali ke arah set

penentuan asal namun daya luaran yang tidak dijangka mengubah hala tuju robot

yang ditetapkan untuk mencapai pergerakan garis lurus yang lancar dan stabil.

vii

TABLE OF CONTENTS

CHAPTER CONTENT PAGE

 TITLE PAGE i

DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xii

 LIST OF ABBREVIATIONS xv

 LIST OF APPENDICES xvi

 1 INTRODUCTION

 1.1 Background of Project 1

 1.2 Problem Statement 3

 1.3 Objectives 5

 1.4 Scope of Project 6

 1.5 Expected Outcomes 7

 2 LITERATURE REVIEW

viii

 2.1 Introduction 8

 2.2 Previous Project Work 9

 2.2.1 Line_Following Two Wheels Balancing

 Robot 9

 2.2.2 Four-Wheeled Mobile Robot 10

 2.2.3 Straight Line Movement Principle 12

 2.2.4 Digital Compass Module for Direction

 Verification 13

 2.2.5 Ultrasonic Sensor 14

 2.3 Proportional Integral and Derivative (PID)

 Algorithm Control 15

 3 METHODOLOGY

 3.1 Introduction 17

 3.2 Stability and Straight Line Principles 21

 3.2.1 Robot’s Controllability and Stability 21

 3.2.2 PID Control Algorithm 23

 3.3 Software Review 25

 3.3.1 CCS C Compiler 25

 3.3.2 PICkit 2 V2.61 29

 3.4 Hardware Review 35

 3.4.1 PIC Brain Board (SK40C) with

 PIC 18F4550 37

 3.4.2 USB ICSP PIC Programmer V2010

 (UIC00B) 40

 3.4.3 Rainbow Cable 42

 3.4.4 DC Gear Motor with Motor Driver

 IC L293D 43

 3.4.5 Servo Motor 47

 3.4.6 Digital Compass Module 50

 3.5 DC Motor Speed Control 53

 3.6 Servo Motor Turning Control 57

ix

 3.7 Manipulation of Digital Compass Module to

 Servo Motor 61

 3.8 Obstacles and Wall Detection 65

 4 RESULT AND DISCUSSION

 4.1 Introduction 45

 4.1.1 Four-Wheeled Mobile Robot

 (FWMR) 70

 4.1.2 Full Connection Circuits of

 Four-Wheeled Mobile Robot 72

 4.1.3 Full Sequence of FWMR Operation 73

 4.1.4 Full Programming of

 FWMR Operation 75

 4.2 PID Control Algorithm 75

 4.2.1 Theoretical Framework 77

 4.2.2 Practical Results 79

 4.3 Discussion 83

5 CONCLUSION AND RECOMMENDATIONS

 5.1 Introduction 85

5.2 Conclusion 86

 5.3 Recommendations and Improvements 87

 5.4 Additional Elements and Future Tasks 88

REFERENCES 89

APPENDICES 92

x

LIST OF TABLES

TABLE TITLE PAGE

3.1 Types of Activities and Respective Description in

 “File Menu” 27

3.2 Types of Activities and Respective Description in

 “Compile Menu Ribbon” 28

3.3 Types of Activities and Respective Description in

 “Help Menu” 29

3.4 Overview of “File” in Menu Bar 30

3.5 Overview of “Programmer” in Menu Bar 31

3.6 Overview of “Tool” in Menu Bar 32

3.7 Overview of “Help” in Menu Bar 33

3.8 Each Part of SK40C with Function Respectively 38

3.9 Each Part of UIC00B Programmer V2010 with

 Function Respectively 42

3.10 Behavior of Motor Operation with Various

 Input Conditions 45

3.11 Servo Motor Turning in accordance with

 Pulse Width 58

3.12 Manipulation of Compass Heading Degree to Servo

 Motor Turning Degree 62

3.13 MaxSonar EZ1 Pin Out 67

4.1 Respective Parts if Four-Wheeled Mobile Robot 70

xi

4.2 Manipulation of PID Output Range to Servo Motor

 Turning Degree 76

4.3 PID Constants Adjustment of KP, KI and KD 81

xii

LIST OF FIGURES

FIGURE TITLE PAGE

 1.1 Block Diagram of Main Components for FWMR 3

 2.1 A Line Follower Robot 10

 2.2 Front Driven / Steered Ackerman Steering 11

 2.3 Front Steered / Rear Driven Ackerman Steering 11

 2.4 A Four-Wheeled Mobile Robot in Straight Line Movement 13

 2.5 Principle Use of Ultrasonic Sensor 15

 2.6 Basic Structure of a system with PID Control 16

 3.1 FWMR General System Block Diagram 18

 3.2 Overall FWMR’s System Flow 19

 3.3 Types of Wheeled Mobile Robot 22

 3.4 Center of Gravity for FWMR 23

 3.5 CCS C Compiler Overview 26

 3.6 PICkit
TM

2 Programmer Application 30

 3.7 Overall Hardware Configuration of FWMR Block Diagram 36

 3.8 Top View of SK40C Brain Board Layout 38

 3.9 40-Pin PDIP of PIC 18F4550 Configuration 40

 3.10 Top View of USB ICSP PIC Programmer V2010’s

 Broad Layout 41

 3.11 Rainbow Cable or Programming Cable 42

 3.12 DC Gear Motor 44

 3.13 Installation of DC Gear Motor to FWMR 45

 3.14 IC L293D’s Pin Configurations 45

xiii

 3.15 Connection Circuit of DC Motor and IC L293D to PIC 2 46

 3.16 Sequence of DC Gear Motor Operation 46

 3.17 Servo Motor (RC C40R) 47

 3.18 Installation of Servo Motor to FWMR 48

 3.19 Connection Circuit of Servo Motor to PIC 1 48

 3.20 Sequence of Servo Motor Steering Direction 49

 3.21 Digital Compass Module 51

 3.22 Installation of Digital Compass Module

 HMC6352 to FWMR 51

 3.23 Connection Circuit of Digital Compass Module to PIC 1 52

 3.24 Sequence of Digital Compass Module Function 52

 3.25 Installation of Four Switches to Control DC Motor Speed

 In FWMR 54

 3.26 Connection Circuit of DC Gear Motor, Four Switches and

 Two LEDs to PIC 2 55

 3.27 DC Motor Speed Control by Four Switches and LEDs

 Indications 56

 3.28 Pulse Width for Servo Motor Turning 57

 3.29 Turning Degree of Servo Motor C40R 58

 3.30 Installation of Servo Motor Steering Control to

 Two Front Wheels 59

 3.31 Connection Circuit of Servo Motor to Two Front Wheels 59

 3.32 Sequence of Servo Motor Turning Control 60

 3.33 Digital Compass Module to Control Servo Motor

 Turning Degree 63

 3.34 Connection Circuit of Digital Compass Module and Servo

 Motor to PIC 1 63

 3.35 Sequence of Digital Compass Module Heading Degree

 Manipulation to Servo Motor Turning Control 64

 3.36 Side and Bottom View of MaxSonar EZ1 66

 3.37 Installation of Ultrasonic Sensor to FWMR 66

 3.38 Connection Circuit of Ultrasonic Sensor to PIC 2 67

 3.39 Sequence of Ultrasonic Sensor Distance Detection 68

 4.1 Four-Wheeled Mobile Robot (FWMR) 70

xiv

 4.2 Top View of FWMR 71

 4.3 Side View of FWMR 71

 4.4 Front View of FMWR 71

 4.5 Full Connection Circuit of PIC 1 72

 4.6 Full Connection Circuit of PIC 2 72

 4.7 Full Sequence Flow of PIC 1 73

 4.8 Full Sequence Flow of PIC 2 74

 4.9 Equation 1 of PID Output in Time Domain 77

 4.10 Equation 2 of PID Output after Laplace Transform 78

 4.11 Equation 3 of PID Output Application in Programming 78

 4.12 Robot Straight Line Movement in Theoretical Application 78

 4.13 FWMR Straight Line Movement Performance in Heading

 Degree of 275° With and Without PID Control Algorithm 79

 4.14 FWMR Straight Line Movement Performance in Heading

 Degree of 350° With and Without PID Control Algorithm 80

 4.15 Three PID Constants Adjustment in Heading Degree of 275° 82

 4.16 Three PID Constants Adjustment in Heading Degree of 350° 83

xv

LIST OF ABBREVIATION

 PIC - Peripheral Interface Controller

 PID - Proportional Integral Derivative

 DC - Direct Current

 FWMR - Four-Wheeled Mobile Robot

 LCD - Liquid Crystal Display

 USB - Universal Serial Bus

 I
2
C - Inter Integrated IC

 IC - Integrated Circuit

 I / O - Input / Output

 LED - Light-Emitting Diode

 UART - Universal Asynchronous Receiver / Transmitter

 MCU - Microcontroller Unit

 EEPROM - Electrically Erasable Programmable Read Only

 RAM - Random Access Memory

 SPI - Serial Peripheral Interface

 CCP - Capture, Compare or PWM Mode

 PWM - Pulse Width Modulation

 ADC - Analog Digital Converter

 RC - Radio Control

 GND - Ground

 Tx - Transmit

 Rx - Receive

 DCM - Digital Compass Module

 GPS - Global Positioning System

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A Program Source Code 92

 B Four-Wheeled Mobile Robot’s Specification 109

 C Four-Wheeled Mobile Robot’s Overall Circuit Diagram 111

 D Four-Wheeled Mobile Robot’s Pictures 113

CHAPTER 1

INTRODUCTION

1.1 Background of Project

 Robotic technologies have potential to grow and develop rapidly around this

recent century. Robots have been essential and vital which not only applying in

engineering field, however for other aspects especially in field of education, medical,

industries and even to be used for our daily life basis. By time goes by, there is a lot

of mechanical robots have been invented to aid humans for complete their daily life‟s

tasks which difficult to be fulfilled by human beings.

 The main purpose of this project is to develop a mobile robot with moving

straight line ability without the line-following aids. This mobile robot is a four-

wheeled platform robot or car-type drive robot which is common in our surroundings.

Four-wheeled mobile robot to be chosen due to its front-wheels drive with a smaller

radius compared to differential drive and tricycle-type robot which apply with three

wheels. To find a configuration that maximizes the qualities especially regards to

controllability, stability and maneuverability, thus four-wheeled robot is right to be

applied than two-wheeled or three-wheeled robots due to achieve the requirement of

development of straight line movement for a robot.

2

 The motion of this mobile robot will be controlled by a direct current (DC)

motor or acts as driving motor to control two driving wheels from behind of the robot.

In order to move in straight line, the two speeds of driving wheels must be equal to

each other for fulfilling the straight line movement requirement. To stop the robot,

speed value of DC motor in the above function must be set to zero. For second

property, servo motor is used to connect to the front wheels or named as steering

wheels for controlling the displacement of two steering wheels. Displacement is set

to be zero to ensure the robot performing the straight line movement. For moving in

straight line platform, the robot may often oscillate or veer to one side, therefore

servo motor has the responsibility to steer the steering wheels back to the original

straight line condition.

 Digital compass module is added up due to ensure the fixed angle of direction

of the robot moving. If the robot suddenly veered to another angle, this error of angle

will be detected and respond to the PIC microcontroller in order to react for adjusting

the position of servo motor due to move back to the original angle of direction for the

robot moving.

 Proportional-Integral-Derivative (PID) control has selected to insert and

program to the microcontroller due to its control algorithm can be attributed partly to

its robust performance and functional simplicity. A PID algorithm consists of three

basic coefficients as the name suggested. These gains are varied to achieve an

optimal system response. A system output of heading degree or position of robot is

read by Digital Compass Module and then compare the reading with the reference

point of desired value has fixed and set into the controller. The difference of the

reference and the measured output may result an error value using to calculate the

proportional, integral and derivative responses. These three responses are then

summed to obtain in the output of the controller which used as input to control the

servo motor turning in order that robot may move in straight line.

3

Figure 1.1: Block Diagram of Main Components for FWMR

1.2 Problem Statement

 Moving vehicles are a popular type of robot and can be apply as perfect

instance for an excellent starting point. Invention of a straight line movement

autonomous four-wheeled mobile robot (FWMR) is a relatively simple and straight

forward robotic project which approaches to the real moving vehicles especially the

cars that we use every day.

 Through this project research, four-wheeled mobile robot is my desired

choice due to its high balancing condition compared to the others. However, FWMR

is a great challenge for the engineers or researches to mainly maintain a straight line

movement. There are many aspects require to be considered essentially for the

constant rotational speed of a DC motor for driving the back wheels purpose and

utilize a servo motor for controlling the displacement of both front wheels due to

return back to the straight line condition if FWMR tilted or tend towards other side

rather than straight line movement.

4

 As a result, Digital Compass Module is added up which used to ensure the

fixes angle of direction of the robot moving. If robot veers to another direction with

different angle, response will be sent to controller due to react and adjust the position

of servo motor for moving back to the original direction of the robot moving.

 Proportional, Integral and Derivative (PID) control is acted as intelligent

control requires to be added up due to suit the objectives and aims as mentioned. It is

a popular loop feedback-control which to provide suitable algorithm for keeping the

FWMR centre always above a certain line for moving straight and the robot will not

oscillate a lot along the line and waste any valuable time and battery supply. The

term of the PID algorithm have to be explicit especially for the Kp, Ki and Kd are the

constants used to vary the effect of Proportional, Integral and Derivative terms

respectively. PID algorithm is being used upon the error based on the current

position of the motors moved. Therefore, PID control is a critical part which requires

being tuned time-by-time for trial due to achieve the less oscillating and tend to

straight line movement.

5

1.3 Objectives

 There are three main objectives in this project which are:

1. To control the FWMR of straight line movement by using PIC

microcontroller.

2. To ensure the angle of direction of the robot moving in a constant

straight direction by the aid of digital compass module.

3. To design and add-up PID control algorithm in PIC microcontroller

for achieving the robot straight line movement.

6

1.4 Scope of Project

 According to the objectives of this project, there are few scopes have been

highlighted as follow:

1. Design a FWMR is acted as autonomous four-wheeled mobile robot

which able to move a straight line with minimizing the oscillation or

tending towards other side.

2. With the aid of PIC controller to control the turning degree of the

servo motor for two front steering wheels and constant speed control

of the DC motor for two back driving wheels after the PIC controller

has been fully programmed due to the straight line movement purpose

of FWMR.

3. By the aid of Digital Compass Module, the robot will be always

ensured with moving in fixed angle of direction for achieving straight

line movement.

4. Develop a PID control algorithm with tuning method in accordance

with the error value which feedback by Digital Compass Module to

the PIC controller to achieve a smooth and stabilized straight line

movement by FWMR.

7

1.5 Expected Outcomes

 After interfacing the hardware, software and full correct programming to this

project, this FWMR can be constructed and produced successfully in the aspects of

mechanical part and its project functionality.

 This FWMR can be functioned mainly depends on the main components

especially for PIC microcontroller that has been programmed to command

controlling the turning degree or angle of servo motor to both front steering wheels

and for DC motor of constant speed control to both back driving wheels.

 Straight line movement of FWMR needs to be based on the mechanical part

especially the equipments of construction of this robot as like the wheels and

fabrication of the robot body. Angle of direction or the heading degree for the robot

movement can be ensured by Digital Compass Module to guide the robot moving in

straight line platform.

 Added up with the PID control algorithm which totally able to minimize the

oscillation of the robot or tend towards other side during the straight line moving

purpose since the integration and derivation of the PID algorithm to recover an error

to the original set value that has been programmed to the PIC controller due to give

the correction to turning angle of servo motor for steering the robot to the desired set-

point direction that has been fixed.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 Literature review is prior tool to begin a research project due to understand

more vivid regarding with the development of four-wheeled robot in straight line

movement in the aspects of robot control technique, mechanical designation and

construction, programming development and the reviews may provide researchers

some ideal information on the methodologies and technologies which have been

applied by other research counterparts around the world. This chapter would convey

a detail summary of a mobile wheeled robot with the main aim of straight line

movement without the aid of line-follower concept. The present project of

development of robot straight line movement with the previous researches will be

compared and discussed further on.

 A wheeled mobile robot is a wheeled vehicle which is capable of autonomous

motion. Autonomous mobile robots are a very interesting subject both in scientific

research and practical applications [1]. Wheeled-robot is a human invention and a

very popular locomotion concept in man made vehicles. The main attributes of

stability are the number and geometry of contact points, the robots centre of gravity,

9

if the robot is static or dynamic stable and the inclination of terrain. Mobile wheeled-

robot is considered as the easy mechanical implementation since there is no need of

balance control if the vehicle has at least three or in some case two wheels

locomotion. When designed a wheeled robot, the developer has the choice of several

different wheel arrangements and wheel types. The combination of wheel type and

arrangement is strongly linked and governs the stability, maneuverability and

controllability if the robot [2].

2.2 Previous Project Work

2.2.1 Line-Following Two Wheels Balancing Robot

 A researcher, Tan Piow Yon (2011) from University Malaysia Pahang has

implemented and investigated regarding with two wheels balancing robot with line

following capability. His project focuses on the development of a line follower

algorithm for a Two Wheels Balancing Robot. Tan Piow Yon (2011) stated that

ATMEGA32 has been chosen as the brain board controller to react towards the data

received from Balancing Processor Chip in the balance board to monitor the changes

of the environment through two infra-red distance sensor to solve the inclination

angle problem. With this project research and investigation, infra-red light sensors

with internal PID algorithms control are vital due to develop a smooth line follower

robot [3].

 On the other side, Pratheek (2009) and Jaseung Ku (2005) had the similar

opinion that the line-follower robot is able to follow a black or white line on the

10

ground in accordance with the requirement from the researchers themselves. Due to

the project name mentioned, the robot can move in straight line with according to the

line-follower. Figure 2.1 expresses that the line-follower robot move in straight based

on the black line on the ground.

Figure 2.1: A Line Follower Robot (Jaseung Ku, 2005)

2.2.2 Four-Wheeled Mobile Robot

 A researcher from Vrijie Universiteit Brussel, Kristof Goris (2004-2005) who

has investigated regarding to autonomous mobile robot mechanical design mentioned

that generally stability of robot can be further improved by adding more wheels,

although once the number if contact points exceeds three, the hyper static nature of

the geometry will require some form of flexible suspension on uneven terrain to

maintain wheel contact with the ground. Kristof Goris stated that balance is not

usually a research problem in four-wheeled robot designs, this is because most of the

wheeled mobile robot with wheels are in ground contact at all times. Instead of

worrying about balance, wheeled robot researcher tends to focus on the problems of

traction and stability, maneuverability, and control.

11

 A car type locomotion or Ackerman steering configuration used in

automobiles which is very common in the „real world‟, but not as common in the

„robot world‟. The limited maneuverability of Ackerman steering has a vital benefit

which its directionality and steering geometry provide it with very good lateral

stability in high-speed turns. Ackerman steering and tricycle steering is designed

with a pair if driving wheels and another separated pair of steering wheels. Figure 2.2

and Figure 2.3 indicate that a front driven car drive and its main concurrent is the

rear wheel driven car drive configuration.

Figure 2.2: Front Driven / Steered Ackerman Steering (Kristof Goris, 2004-2005)

Figure 2.3: Front Steered / Rear Driven Ackerman Steering (Kristof Goris, 2004-

2005)

 A car type drive is one of the simplest locomotion systems in which separate

motors control translation and turning this is an important advantage compared to the

differential drive system. The main condition is the turn mechanism must be

precisely controlled. A small position error in the turning mechanism can cause large

12

odometry errors. This simplicity in line motion is the main reason why car type drive

is popular for human driven vehicles [4].

2.2.3 Straight Line Movement Principles

 According to Ibrahim Kamal (2008), car type drive system consists of two

wheels coupled on the same axe at the back and one or two another front wheels

capable of steering to control the displacement of the robot. Ibrahim Kamal indicated

that this type of wheeled robot has two major advantages which it is easier to control

and more accuracy since traction and steering are connected to two independent

motors. However, the technique of this car type system is very difficult to implement

mechanically [5].

 In order for a wheeled-mobile robot to go straight line, both traction and

driving motors have to be turning at precisely the same rate and the wheels have to

be the same diameter as well. This means that as a wheeled robot travels from A to B,

the wheels on both sides travel the same distance in the same time and therefore to

go with the same speed. This basic principle has been agreed by K-Junior (2010) and

stated that two speed values of the motors to control the two driving wheels have to

be equal, if the two wheels have different values, the robot will move on a circular

trajectory [6]. In addition, the position-control of servo motor to the front steering

wheels need to be set as zero degree or original position-base due to enable the robot

to travel in straight line without veering to other side. Figure 2.4 shows that the four-

wheeled mobile robot travels from position A to B with applying the basic principle

in order to achieve the straight line movement.

13

Figure 2.4: A Four-wheeled Mobile Robot in Straight Line Movement

2.2.4 Digital Compass Module for Direction Verification

 Digital compass module is reviewed which to be applied in this four-wheeled

mobile robot system. This is a great tool for checking the robot often heading to the

desired straight movement position in accordance to a set-point direction in case the

robot is interrupted or interfered by an obstacle or rugged ground.

 The aid of compass module by comparing the compass sensor output with a

set-point, then the controller will be able to control the turning angle of servo motor.

The servo motor will turn clockwise or counter clockwise [7]. The set-point will be

programmed and stated on the first position of the robot set on the ground after the

power supply is provided. If there was any interference occurred accidentally which

cause the robot veering to right or left of the straight motion, the error of the

difference of compass sensor output with the set-point will respond to

microcontroller. Following this, the controller will react and control the servo motor

to veer the steering wheels back to the original point of straight motion condition.

Therefore, the robot may turn and face back to the set point motion.

14

2.2.5 Ultrasonic Sensor

 Ultrasonic sensors or can be known as transceivers when a transmitter is used

to send the sound wave signal where a receiver is used to receive the corresponding

sound wave signal. It works on a principle similar to radar or sonar which evaluate

attributes if a target by interpreting the echoes from radio or sound waves

respectively. Ultrasonic sensors generate high frequency sound waves and evaluate

the echo which us received back by the sensor. Sensors calculate the time interval

between sending the signal and receiving the echo to determine the distance to an

object [8].

 Khairul (2007) mentioned that ultrasonic sensors typically have a

piezoelectric ceramic transducer that converts an excitation electrical signal into

ultrasonic energy bursts. The energy bursts travel from the ultrasonic sensor, bounce

off objects, and are returned towards the sensor as echoes. Transducers are devices

that convert electrical energy to mechanical energy, or vice versa. The transducer

converts received echoes into analog electrical signals that are output from the

transducer.

 The ultrasonic transducer produces ultrasonic signals. These signals are

propagated through a sensing medium and the same transducer can be used to detect

returning signals. In most applications, the sensing medium is simply air. An

ultrasonic sensor typically comprises at least one ultrasonic transducer which

transforms electrical energy into sound and, in reverse, sound into electrical energy, a

housing enclosing the ultrasonic transducers. Ultrasonic sensors transmit ultrasonic

waves from its sensor head and again receive the ultrasonic waves reflected from an

object. By measuring the length of time from the transmission to reception of the

sonic wave, it detects the position of the object [9].

15

Figure 2.5: Principle Use of Ultrasonic Sensor (Khairul, 2007)

2.3 Proportional Integral and Derivative (PID) Algorithm Control

 Proportional Integral and Derivative (PID) algorithm control is generally a

control loop feedback mechanism widely applied in robotic and industrial control

systems. The popularity of PID controllers can be attributed partly to their robust

performance in a wide range of operating conditions and partly their functional

simplicity which allows the researchers and engineers to operate them in simple and

straightforward manner [10].

 A PID algorithm consists of three basic coefficients: Proportional, Integral

and Derivative. All these gains are varied to achieve an optimal system response [10].

The „Proportional‟ value is used to determine the reaction to the current error,

„Integral‟ determines the reaction based on the sum of recent errors and „Derivative‟

is used for the reaction to the rate at which the error has been changing. By using a

sensor to read the system output and compares the reading to a reference point or set

point. The difference between the reference and measured output may result to an

error value which used to calculate proportional, integral and derivative responses.

The weighed sum of these three actions is then used to obtain the output of the

controller.

16

 A PID controller works by continuously measuring the output of the robot

system and providing corrective input calculated from the PID control algorithm.

The PID controller is scalable and tunable. PID scalable means to use the

proportional gain or combination of the proportional gain and either the integral or

derivative gain (P, PI, PD, or PID control). The system is tunable due to adjust the P,

I and D gains to tune the controller for specific system. The basic structure of the

system with PID control implemented is shown in Figure 2.6

Figure 2.6: Basic structure of a system with PID Control

CHAPTER 3

METHODOLOGY

3.1 Introduction

 Research Methodology is an essential chapter which generally gives a

guideline and aid to the researchers to solve problems with specific components

especially methods, techniques, essential tools, tasks, hardware implementation and

software interfacing. The main purpose of this project is to develop a Four-Wheeled

Mobile Robot which behaves to perform a straight line movement without the guide

or aid of line follower. This project involves with DC motors to manipulate the

motion control to the driving wheels or back wheels of robot, whereas servo motor is

used to control the steering wheels or front wheels for direction-steering purpose.

These both motors are managed and controlled by two PIC brain board controllers

respectively. One of the PIC controller is used to control and manipulate the speed or

movement of FWMR where for the second PIC will be attached with PID control

algorithm due to react the data received from Digital Compass Module by comparing

the heading degree of digital compass sensor output and the set-point value which

has been programmed in PIC controller. In case the robot tends to other side

especially veering to left or right from fixed straight line direction, PIC may

command to the servo motor to turn clockwise or counter clockwise due to veer the

robot back to the original set-point straight line direction. The FWMR General

18

System Block Diagram as shown in Figure 3.1 and the Overall FWMR‟s System

Flow as indicated in Figure 3.2.

 The Research Methodology of this project is separated to two portions named

as Hardware Implementation and Software Implementation. Hardware configuration

regards to the interface between the Brain Board Microchip PIC controller to servo

motor, DC motor, ultrasonic sensor and Digital Compass Module which including

with the brief comprehension and introduction to other essential components. In the

software part, all programming and coding development from programming software

which sets and programs to the PIC controller to command and control the

corresponding essential hardware elements especially DC and servo motors, Digital

Compass Module and ultrasonic sensor. In this FWMR project, the Custom

Computer Service (CCS) Compiler will be used by applying the C-programming

language to set and program into the PIC microchip controller for further action to

the robot. Every important part of this project will be discussed and explained further

in the following sections.

Figure 3.1: FWMR General System Block Diagram

19

Figure 3.2: Overall FWMR‟s System Flow

20

 There are three specific topics will be discussed and elaborated detail in

following sections:

i. Stability and Straight Line Principles

a. Robot‟s Controllability and Stability

b. PID Control Algorithm

ii. Software Review

a. CCS C-Compiler

b. PICkit 2 V2.61

iii. Hardware Review

a. PIC Brain Board (SK40C) with PIC 18F4550

b. USB ICSP PIC Programmer V2010 (UIC00B)

c. Rainbow Cable

d. DC Gear Motor with Motor Driver IC L293D

e. Servo Motor

f. Ultrasonic Sensor

g. Digital Compass Module

 For the previous chapter has been discussed and reviewed certain prime

hardware and stability‟s theories of the robot system. In this chapter, three topics as

shown above will be further discussed deeply especially for every vital sub-

component in hardware implementation with their functionalities and applications

respectively. In software part may concentrate to the utilization of CCS C-Compiler

which the way to perform experiment and set the C-programming coding to the Brain

Board Microchip PIC Controller. Through this project methodology research,

researchers and investigators are able to comprehend the functionality, performance

and way to utilize all the hardware and software configurations. Therefore,

21

interfacing between hardware and software parts finally can be accomplished to

fulfill this FWMR project system requirement.

3.2 Stability and Straight Line Principles

 This sub-topic may advance to discuss the controllability, stability and

maneuverability of the robot by complying with all relevant principles and theories

to achieve the robot straight line movement performance. Furthermore, the aid of

PID control algorithm can be further advanced the project‟s performance to achieve

the straight line movement state which based on the programming set into the

controller by applying with the manually tuning method in FWMR.

3.2.1 Robot’s Controllability and Stability

 Autonomous mobile robot mechanical design is mainly to influence the

performance of the robot system that we desire. Thus, the mechanical design to

ensure the stability of a robot can be further improved by added up with more wheels.

Wheels are the essential tool for an autonomous robot to achieve their controllability

and stability since wheels are the contact points with the ground whether it is flat or

uneven terrain which still can be able to maintain the robot‟s stability to escape from

robot falling or unbalanced situation to affect the desired performance.

 In Figure 3.3 has shown as the types of wheeled-mobile robot which in

accordance with their stability and controllability to achieve the moving performance.

Car type locomotion is a very common in the „real world‟, but not the way in the

22

„robot world‟. Therefore, Four-Wheeled Mobile Robot to be chosen for

implementation is an excellent task to learn and exert our capability to build up a

mobile robot which approaches to the „real world‟ vehicles around us.

 Due to achieve the FWMR straight line movement, both traction or driving

motors are required to be operating with same rate or speed and firmly the wheels

must use the same diameter as well. This brings the meaning that once the robot

travel from one starting point to one ending point, both driving wheels must operate

and rotate with the same position and speed in regarded time. Therefore, the robot

may perform the straight line movement without the effect from external

disturbances and interferences.

 Center of gravity of the robot plays the main role to ensure that the total

weight of the robot is adapted to the center of gravity due to avoid robot skidding to

other side or even falling with the unbalanced condition. The center of gravity of a

FWMR can be spotted and observed from the X-point in Figure 3.4 in accordance

with the height and width of the robot to obtain the point of centre of gravity.

Figure 3.3: Types of Wheeled Mobile Robot – (a) Two-Wheeled (b) Three-Wheeled

(c) Four-Wheeled with Front Steering and Back Driving

23

Figure 3.4: Center of Gravity for FWMR

3.2.2 PID Control Algorithm

 In accordance to the literature reviewing, PID control algorithm is

abbreviation of Proportional-Integral-Derivative algorithm which generally used in

control loop feedback mechanism widely applied in robotic and industrial control

systems. The Proportional-Integral-Derivative algorithms are well known with its

three terms to correct and modify the error occurs in many aspects of robotic and

industrial process control. As a result, PID control algorithm has become a basis and

advanced control algorithm to the FWMR in order to fulfill the straight line

movement performance.

 PID control algorithm is a very straight forward algorithm that provides the

necessary output system response to control a process. One unique advantage of the

PID algorithm is to manipulate the process inputs based on the history and rate of

change of the signal. Therefore, the algorithm is suited for linear system modeled

process control which gives more accurate and stable control.

24

 PID control algorithm consists of three basic coefficient terms: Proportional,

Integral and Derivative. Each term would have its own different task in control

process compared to each others. „Proportional‟ term is for determining the reaction

to the current error, „Integral‟ is to ensure the reaction based on the sum of recent

errors and „Derivative‟ is used for the reaction to the rate at which the error has been

changed. All these control terms may have different effects on the system output

response.

 An error is performing as input to the controller which fed from the robot

system output process. The KP, KI and KD are referred as proportional, integral and

derivative constants. Each term may bring its equation respectively and finally

weighed sum of all these three term actions used to obtain the output of the controller

to send to the servo motor for giving a right displacement or turning angle due to

achieve the straight line movement purpose on a fixed set-point direction.

 In this project case, PID control algorithm will be applied in tunable with trial

and error method due to adjust the constant values of each term P, I and D. This

brings meaning that to tune the KP, KI and KD to get the best performance of FWMR.

Observation to the robot performance due to determine what for the next ought to do.

If the robot wobbles in a large value, then reduce the KP value. Instead, if the robot

doesn‟t aim to straight or goes straight on curves or oscillating, action to increase the

KP should be taken. Tune the KP value till the robot to be able to move straight

smoothly. The term of KD should be tuned then follow by the value of KI in order to

observe the robot is able to go on straight with no acceleration. The optimum KP, KI

and KD values vary a lot even from track to track. Therefore, these optimum values

only able to be obtained accurately by testing one-by-one in sequent.

25

3.3 Software Review

 This section generally discusses on programming software that may use in

FWMR project and write suitable programming to PIC microcontroller. The way to

apply, use and utilize the programming software will be further discussed and

elaborated in this section.

3.3.1 CCS C Compiler

 In this FWMR project, programming language C will be selected due to its

popularity and very widely used in microcontroller especially in PIC. By using C-

Language Programming to program the PIC is proper and faster for robot performing

some fairly simple or even complex tasks. As a result, Customer Computer Services

(CCS) Compiler would be chosen as my project‟s main communication and interface

between the microcontroller with desktop and other operational components

especially motors and sensors which are controlled by PIC microcontroller.

 CCS C Compiler is very convenient and useful since it supports the Microhip

PIC12x, PIC16x, PIC18x and dsPIC devices. The compiler is very close to being 100%

ANSI compatible. It supports everything a PIC compiler needs and necessary

superset of ANSI C to work with embedded micros, such as fuse and interrupt level

supports [15].

26

Figure 3.5: CCS C Compiler Overview

 The menus and toolbars of CCS C Compiler are set-up in specially organized

Ribbons. Each Ribbon relates to a specific type of activity and is only shown when

selected. CCS has included a “User Toolbar” Ribbon that allows the user to

customize the Ribbon for individual needs. Following is the guide and instructions

for users to utilize this software for easier to get started and applied.

1. To utilize the following items, click the icon

27

Table 3.1: Types of Activities and Respective Description in “File Menu”

Type of Activity Description of Usage

New Creates a new File.

Open Opens a file to the editor. Includes options for Source,

Project, Output, RTF, Flow Chart, Hex or Text.

Ctrl+O is the shortcut.

Close Closes the file currently open for editing. Note that

while a file is open in PCW for editing, no other

program may access the file. Shift+F11 is the

shortcut.

Close All Closes all files open in the PCW

Save Saves the file currently selected for editing. Ctrl+S is

the shortcut.

Save As Prompts for a file name to save the currently selected

file.

Save All All open files are saved

Encrypt Creates an encrypted include file. The standard

compiler #include directive will accept files with this

extension and decrypt them when read. This allows

include files to be distributed without releasing the

source code.

Print Prints the currently selected file.

Recent Files The right-side of the menu has a Recent Files list for

commonly used files.

Exit The bottom of the menu has an icon to terminate

PCW.

2. Window Editor is used to type and edit the user desired C programming

 coding. A program is made up the following four elements in a file:

 i. Comment

 ii. Pre-Processor Directive

 iii. Data Definition

 iv. Function Definition

 Every C program must contain a main function which is the starting point of

 the program execution. The program can be split into multiple functions

28

 according to their purpose and the functions could be called from main or the

 sub-functions. In a large project functions can also be placed in different C

 files or header files that can be included in the main C file to group the

 related functions by their category.

3. To utilize the Compile Menu Ribbon, click the icon or button

Table 3.2: Types of Activities and Respective Description of “Compile Menu Ribbon”

Type of Activity Description of Usage

Compile Compiles the current project in status bar using the

current compiler.

Build Compiles one or more files within a project.

Compiler Pull-down menu to choose the compiler needed

Lookup Part Choose a device and the compiler needed will

automatically be selected.

Program Chip Lists the options of CCS ICD or Mach X

programmers and will connect to SIOW program.

Debug Allows for input of .hex and will output .asm for

debugging.

C/ASM List Opens listing file in read-only mode. Will show each

C source line code and the associated assembly code

generated.

Symbol Map Opens the symbol file in read-only mode. Symbol

map shows each register location and what program

variables are saved in each location.

Call Tree Opens the tree file in read-only mode. The call tree

shows each function and what functions it calls along

with the ROM and RAM usage for each.

Statistics Opens the statistics file in read-only mode. The

statistics file shows each function, the ROM and

RAM usage by file, segment and name.

Debug File Opens the debug file in read-only mode. The listing

file shows each C source line code and the associated

assembly code generated.

4. To utilize the Help Menu, click the icon or button

29

Table 3.3: Types of Activities and Respective Description of “Help Menu”

Type of Activity Description of Usage

Contents Help File table of contents.

Index Help File index.

Keyword at Cursor Index search in Help File for the keyword at the

cursor location. Press F1 to use this feature.

Debugger Help Help File specific to debugger functionality.

Editor Lists the Editor Keys available for use in PCW.

Shift+F12 will also call this function help file page to

quick review.

Data Types Specific Help File page for basic data types.

Operators Specific Help File page for table of operators that may

be used in PCW.

Statements Specific Help File Page for table of commonly used

statements.

Preprocessor

Commands

Specific Help File page for listing of commonly used

preprocessor commands.

Built-in-Functions Specific Help File page for listing of commonly used

built-in functions provided by the compiler.

Technical Support Technical Support wizard to directly contact

Technical Support via email and the ability to attach

files.

Check for Software

Updates

Automatically invokes Download Manager to view

local and current version of software.

Internet Direct links to specific CCS website pages for

additional information.

About Shows the version of compiler(s) and IDE installed.

3.3.2 PICkit 2 V2.61

 The PICkit 2 Programmer application allows user to program all supported

devices listed in the PICkit 2 Readme file. The programming interface appears as

shown in Figure 3.6. Its controls are listed in the following sections.

30

Figure 3.6: PICkit
TM

 2 Programmer Application

a. Menu Bar

 The Menu bar selects various functions of the PICkit2 Programmer

application. A summary of the functions are:

i. File

Table 3.4: Overview of “File” in Menu Bar

Content Description

Import Hex Import a hex file for programming. The hex file format

INHX32 is supported.

Export Hex Export a hex file read from a device. The hex file is

created in the INHX32 format.

31

File History Up to the last four hex files opened are displayed with

their file path. These recent hex files may be selected to

quickly import them. Note that the file history will

initially be blank on a new installation until a hex file is

imported.

Exit Exit the program.

ii. Device Family

Select a device family to search for a connected device in that family.

 Selecting the device family of the current part will clear all device data. Some

 families which cannot be auto-detected (such as Baseline) will bring up a

 drop down box from which support devices may be selected.

iii. Programmer

Table 3.5: Overview of “Programmer” in Menu Bar

Content Description

Read Device Reads program memory, data EEPROM memory, ID

locations and configuration bits.

Write Device Writes program memory, data EEPROM memory, ID

locations and configuration bits.

Verify Verifies program memory, data EEPROM memory, ID

locations and configuration bit read from the target

MCU against the code stored in the programming

application.

Erase Performs a Bulk Erase of the target MCU. OSCCAL and

band gap values are preserved on parts with these

features.

Blank Check Performs a Blank Check of program memory, data

EEPROM memory, ID locations and configuration bits.

Verify on Write When checked, the device will be immediately verified

after programming on a Write (recommended). When

unchecked, the device will be programmed but not

verified on a Write.

Hold Device in

Reset

When checked, the MCLR (VPP) pin is held low

(asserted). When unchecked, the pin is released (tri-

stated), allowing an external pull-up to bring the device

out of Reset.

Write on PICkit

Button

When checked, a Write operation will be initiated by

pressing the PICkit 2 push button.

32

iv. Tools

Table 3.6: Overview of “Tools” in Menu Bar

Content Description

Enable Code Protect Enables code protection features of the

microcontroller on future Write operations.

Enable Data Protect Enables data protection feature of microcontrollers

with data EEPROM memory on future Write

operations.

Set OSCCAL Allows the OSCCAL value to be changed for

devices where it is stored in the last location of

Program Memory.

Target VDD Source Auto-Detected – The PICkit 2 will automatically

detect whether the target device has its own power

supply or needs to be powered by the programmer

on each operation.

Force PICkit 2 – The PICkit 2 will always attempt

to supply VDD to the target device.

Force Target – The PICkit 2 will always assume the

target has its own power supply.

Calibrate VDD & Set

Unit ID

Opens a wizard that steps the user through

calibrating the PICkit 2 VDD supplied voltage so it is

more accurate, and optionally assigning a Unit ID to

identify between multiple PICkit2 devices.

Fast Programming When checked, the PICkit 2 will attempt to program

the device as fast as possible. When unchecked, the

PICkit 2 will slow down ICSP communication. This

may be helpful for targets with loaded ICSP lines.

Check

Communication

Verifies USB communication with PICkit 2 and

ICSP communication with a target device by

attempting to identify the connected device by its

device ID.

UART Tool Puts the PICkit 2 in UART Mode and opens a

terminal-like interface for communication with a

PIC MCU device program through the USART pins.

Troubleshoot Opens a wizard to help with troubleshooting

connectivity from the PICkit 2 to the target device.

This is most useful where the programmer is unable

to detect the target device at all.

Download PICkit 2

Programmer

Operating System

Performs a download of the PICkit2 operating

system (firmware)

33

v. Help

Table 3.7: Overview of “Help” in Menu Bar

Content Description

PICkit 2 User’s Guide Attempts to launch the user‟s guide PDF.

44-Pin Demo Board

Guide

Attempts to launch the 44-Pin Demo Board User‟s

Guide PDF.

LPC Demo Board Guide Attempts to launch the Low Pin Count Demo Board

User‟s Guide PDF.

PICkit 2 Programmer on

the web

Opens www.mcrochip.com/pickit2 in the default

web browser.

Readme Opens the PICkit s Readme.txt file

About Opens a dialog with the PICkit 2 Programmer

application version, device file version and firmware

version.

b. Device Configuration

 The Device Configuration window displays the device, User ID,

Configuration Word and Checksum. It also displays OSCCAL and Band Gap for

parts with those features. For baseline (12-bit core) devices and serial EEPROM

devices, user must select the device from the Device drop-down menu. All other part

family devices will be detected by their device ID and the part name will be

displayed on the Device line.

c. Status Window

 The status window displays text status of the operations in progress. If an

operation is successful, the status window will display a green background. If an

operation fails, the status window will display red. If an operation alerts a caution,

the status window will display yellow.

http://www.mcrochip.com/pickit2

34

d. Progress Bar

 The progress bar displays the progress of an operation

e. Device VDD

 The PICkit 2 VDD may be turned on and off by clicking the checkbox “On”/

the voltage may be set in the box on the right either by typing it directly or using the

up / down arrows to adjust it a tenth of a volt at a time. The maximum and minimum

allowed voltages will vary depending on the target device.

f. Device /MCLR State

 When the box is checked the target device will be held in Reset. When

unchecked, the target circuit is allowed to pull /MCLR up to VDD to release the

device from Reset. This function can be used to prevent a device from executing

code before and after programming.

g. Memory Source

 The Source bar displays the source of the currently loaded device data. If read

from a hex file, it will display the hex file name. If read from a device, it will display

the part name. None (Empty / Erased) indicates the buffers are empty, and it will

display Edited once Program Memory or Data EEPROM Memory has been edited in

the window.

h. Program Memory

 Program code can be loaded into the PICkit2 Programmer application by

selecting File>Import HEX to import a hex file or by clicking Read to read the

35

device memory. The original of the code is displayed in the Source block. The

Program Memory window displays the program code in hexadecimal. The code may

be edited in the window.

i. Data EEPROM Memory

 Similar to Program Memory above, data EEPROM code can be loaded into

PICkit 2 Programmer application by selecting File>Import HEX to imp-ort a hex file

or by clicking Read to read the device memory. The origin of the code is displayed in

the Source block. The Data EEPROM Memory window displays the program code in

hexadecimal. This code may be edited in the window.

3.4 Hardware Review

 This part is to review and discuss the entire relevant hardware configurations

which would utilize in FWMR project. The Overall Hardware Configuration of

FWMR Block Diagram as shown in Figure 3.7. All the important components and

devices included for the FWMR project as mentioned following:

i. PIC Brain Board (SK40C) with PIC 18F4580

ii. USB ICSP PIC Programmer V2010 (UIC00B)

iii. Rainbow Cable

iv. DC Gear Motor 12V with Motor Driver IC L293D

v. Servo Motor (RC C40R)

vi. Ultrasonic Sensor (SN-LV-EZ1 or MaxSonar EZ1)

vii. Digital Compass Module (HMC6352)

36

 All these components act as basic necessities due to construct a FWMR to

achieve the straight line movement purpose. Therefore, every sub-part of the

components will further discussed in respective following section.

Figure 3.7: Overall Hardware Configuration of FWMR Block Diagram

PIC-1 Attached

With PID Control

Algorithm

M

Motor Drive

[IC L293D]

Power Supply

9V

DC Motor

M

Digital Compass

Module

Servo Motor

Shaft

Steering Wheel

Driving Wheel

LCD Display

PIC-2 Ultrasonic

Sensor

37

3.4.1 PIC Brain Board (SK40C) with PIC 18F4550

 SK40C has been selected as the FWMR‟s PIC microcontroller Brain Board

which can be used to program directly without anymore to use external programmer

to program the PIC microcontroller. Users are able to utilize the function of PIC by

directly plugging in the I/O components [11]. With the aid of UIC00A connector on

board or UIC00B ICSP PIC Programmer, programming can be directly set for

developing the project with this kit right away. It offer plug and use features as

mentioned following:

a. ICSP connector for UIC00A or UIC00B – simple and fast method to

load program

b. Perfectly fit for 40 pins 16F and 18F PIC

c. 2 × programmable switch

d. 2 × LED indicator

e. Exchangeable Crystal with 20MHZ

f. Existing pad for 16 × 2 characters LCD display

g. UART connection to interface with other controller or even computer

h. All 33 I/O pins are nicely labeled

i. Maximum current is 0.5A

j. USB on board

 In Figure 3.8 is shown as the top view of board layout for the PIC Brain

Board of SK40C and Table 3.8 indicated all the parts in the Brain Broad which has

been specified with regarding „Label‟ respectively. All these „Label‟ parts may

include their function or usage respectively in the Table 3.8.

38

Figure 3.8: Top View of SK40C Brain Board Layout

Table 3.8: Each Part of SK40C with Function Respectively

Label Function Label Function

A DC Power Adaptor Socket I Programmable Push Button

B USB Connector J Reset Button

C Toggle Switch for Power

Supply

K LCD Contrast

D Power indicator LED L JP8 for LCD Backlight

E Connector for UIC00A

Programmer

M JP9 for USB

F LED Indicator N 40 Pin IC Socket for PIC

MCU

G Header Pin and Turn Pin O Turn Pin for Crystal

H UART Connector P LCD Display

 The SK40C of PIC Brain Board Start-up Kit comes without placing the

microcontroller into the board due to provide the freedom for the user or researcher

to choose a desired PIC type. In this FWMR project case, PIC 18F4550 has been

39

selected as the robot brain controller to react the output values obtained from the

encoders and Digital Compass Module, then with the aid from PID control algorithm

to justify and modify the error value, then sum up to a response for further action.

 PIC 18F4550 is an ideal microchip controller for low power with nano-Watt

and connectivity applications that benefit from the availability of three serial ports:

FS-USB (12M bit/s), I
2
C and SPI (up to 10M bit/s) and asynchronous (LIN capable)

serial port (EUSART). Large amounts of RAM memory for buffering and Enhanced

Flash program memory make it ideal for embedded control and monitoring

applications that require periodic connection with a (legacy free) personal computer

via USB for data upload/download and/or firmware updates [12].

 PIC 18F4550 configuration has been shown in Figure 3.9 to indicate overall

40 pins with each pin location purpose. The features or parameters of PIC 18F4550

brain microcontroller indicated as follow

Pin Count: 40

a. Program Memory (KB) 32 Flash

b. CPU Speed (MIPS): 12 RAM Bytes 2,048

c. Data EEPROM (bytes): 256

d. Digital Communication Peripherals: 1-A/E/USART, 1-MSSP

(SPI/I
2
C)

e. Capture/Compare/PWM Peripherals: 1 CCP, 1 ECCP

f. Timers: 1 × 8-bit, 3 × 16-bit

g. ADC: 13ch, 10-bit

h. Comparators: 2

i. USB (speed, compliance): 1, Full Speed, USB 2.0

j. Operating Voltage Range (V): 2 to 5.5

40

Figure 3.9: 40-Pin PDIP of PIC 18F4550 Configuration

3.4.2 USB ICSP PIC Programmer V2010 (UIC00B)

 UIC00B is an enhanced version of UIC00A with offering low cost yet

reliable and user friendly PIC USB programmer solutions for developers and

researchers. It is designed to program popular Flash PIC MCU which includes most

of the PIC family. Besides 8-bit, it can also program 16-bit and 32-bit PIC MCU. On

board ICSP in abbreviation of „In Circuit Serial Programming‟ connector offers

flexible methods to load program, UART Tool and Logic Tool. It supports on board

programming which eliminate the frustration of plug-in and plug-out of PIC MCU.

This also allow user to quickly program and debug the source code while the target

PIC is on the development board. Since USB port is commonly available and widely

used on Laptop and Desktop PC, UIC00B is designed to plug and play with USB

connection. This programmer obtained its power directly from USB connection, thus

there is no external power supply is required, making it a truly portable programmer.

41

This programmer is ideal for field and general usage. UIC00B is designed with

capabilities and features indicated as follow [13]:

a. Compatible with Window XP, Vista and 7

b. Compatible with Microchip‟s PIC Kit 2

c. Powered directly from USB port

d. No external power required for UIC00B to function

e. Compatible with PIC Kit 2‟s Logic Tool and UART Tool

f. UIC00B supports on-board programming which eliminates the need

of plug-in and plug-out of PIC MCU

h. Allow user to modify the program without removing the PIC from the

development board

i. This programmer comes with mini USB cable and rainbow cable

 Figure 3.10 is shown as the top view of board layout for USB ICSP PIC

Programmer V2010 and Table 3.9 indicated all the parts in the UIC00B Programmer

which has been specified with regarding „Label‟ respectively. All these „Label‟ parts

may include their function or usage respectively in the Table 3.9.

Figure 3.10: Top View of USB ICSP PIC Programmer V2010‟s Broad Layout

42

Table 3.9: Each Part of UIC00B Programmer V2010 with Function Respectively

Label Function Label Function

A Switch to Initiate Write Device

Programming

D Target Indicator LED

(Orange)

B Mini USB Port Socket E Busy Indicator LED (Red)

C Main Power Supply Indicator

LED (Green)

F IDC Box Header for

Programming Connector

3.4.3 Rainbow Cable

 This is a programming cable which especially applies to connect one side of

programming cable to box header of UIC00B programmer and other side to box

header of development board or target device to be program. This tool can give a big

help to program a PIC microcontroller plugged-in the SK40C Brain Board in fast

speed.

Figure 3.11: Rainbow Cable or Programming Cable

43

3.4.4 DC Gear Motor with Motor Driver IC L293D

 The prime aim by using DC gear motor in the FWMR project is to apply for

the robot driving purpose in order that it is able to move from a starting point to an

ending point. Figure 3.12 is shown as the type of DC gear motor with its outlook and

Figure 3.13 to indicate the installation of DC gear motor to two back driving wheels

in FMWR. DC gear motor is a vital tool due to rotate two driving wheels at the back

of FWMR with high torque output and fast RPM which is totally compatible and suit

to use in robot system. As a result, it is very essential to know how to control a DC

gear motor effectively with a microcontroller. The specification of DC gear motor as

shown below:

 i. Voltage Supply: DC 12V

 ii. Output Power: 1.1Watt

 iii. Rated Speed: 1.3RPM

 iv. Rated Torque: 127.4mN.m

 v. Sample Application: mobile robot, educational robot, etc.

 DC gear motor is electromechanical device that converts electrical energy

into mechanical energy that used to move or start-up the robot system movement. It

has two wires or pins where used to connect with the power supply, then the shaft

may rotates. The direction of rotation can be reversed by just reversing the polarity of

input of the motor.

 Microcontroller ports are not powerful enough to drive the DC gear motor

directly. Thus, a motor driver IC L293D chip is one of the types of Integrated

Circuits (ICs) which is very easy and safe to use. The pin configuration as shown in

Figure 3.14 and Table 3.10 shown as the behavior of motor to be functioned for

various input conditions. The connection circuit of DC gear motor and IC L293D to

PIC microcontroller as displayed in Figure 3.15.

44

The specifications of IC L293D have mentioned as following:

 Wide Supply-Voltage Range: 4.5V to 36V

 Separate Input-Logic Supply

 Internal ESD Protection

 Thermal Shutdown

 Output Current 600mA for L293D Per Channel

 Output Clamp Diodes for Inductive Transient Suppression

3.4.4.1 Hardware Review of DC Motor and IC L293D

Figure 3.12: DC Gear Motor

45

Figure 3.13: Installation of DC Gear Motor to FWMR

(a) Bottom View (b) Side View

Figure 3.14: IC 293D‟s Pin Configurations

Table 3.10: Behavior of Motor Operation with Various Input Conditions

Condition A B

Stop Low Low

Clockwise Low High

Anti-Clockwise High Low

Stop High High

(a) (b)

DC Gear Motor

46

3.4.4.2 Connection Circuit of DC Gear Motor and IC L293D to PIC 2

Figure 3.15: Connection Circuit of DC Motor and IC L239D to PIC 2

3.4.4.3 Sequence of DC Gear Motor Operation

Figure 3.16 Sequence of DC Gear Motor Operation

Start

Connect to IC

L293D

Connect to PIC

Microcontroller

Set the Pulse Width

Modulation (PWM)

Speed

Controlled?

End

Yes

No

47

3.4.4.4 Programming of DC Gear Motor

 * Refer to Appendix A (1)

3.4.5 Servo Motor

 Servo motor is often sold as a complete module which is used within a

position-control or speed-control of feedback control system. Figure 3.17 as shown

to indicate the device of one types of servo motor. Motors which applied in a

servomechanism must have well-documented characteristics for speed, torque, and

power. A servo system has a difference with other motors‟ application which in that

its position feedback is continuous while the motor is running. In this FWMR project,

servo motor plays a vital role in order to displace with 0° displacement for achieving

the robot straight line movement purpose. If the robot tends to other side by certain

external factors, servo motor may take responsibility to veer the wheels of the robot

back to the original set-point direction position after getting the command from the

PIC controller.

3.4.5.1 Hardware Review of Servo Motor

Figure 3.17: Servo Motor (RC C40R)

48

Figure 3.18: Installation of Servo Motor to FWMR

(a) Top View (b) Side View

3.4.5.2 Connection Circuit of Servo Motor to PIC 1

Figure 3.19: Connection Circuit of Servo Motor to PIC 1

Servo Motor

(a) (b)

49

3.4.5.3 Sequence of Servo Motor Operation

Figure 3.20: Sequence of Servo Motor Steering Direction

3.4.5.4 Programming of Servo Motor Steering Operation

 * Refer to Appendix A (2)

Start

Connect to Microcontroller

PIC 1

Verify the Servo Motor

Steering Pulses

Two Switches to Control

the Steering Direction

Switch 1?

Switch 2?

End

Steer to Left

Steer to Right

Yes

Yes

No

No

50

3.4.6 Digital Compass Module

 In order to ensure the fixed angle of direction of the robot moving, Digital

Compass Module (DCM) is necessary to be added up to make sure the angle

direction during the robot is moving which to be matched with the original set point

motion direction. This module has combined 2-axis magneto-resistive sensors with

the required analog and digital support circuits and algorithms for heading

computation. Figure 3.21 indicated that a type of breakout board is fully integrated

DCM. The specification of Digital Compass Module HMC6352 will be shown as

following:

 a. Full integration of 2-axis magnetic sensors and electronics

 b. Firmware included

 c. Small Surface Mount Package (6.5 x 6.5 x 1.5mm, 24-pin LCC)

 d. Low Voltage Operation (2.7 to 5.2V)

 e. I
2
C 2-wire serial interface

 f. Wide Magnetic Field Range

 g. Supply current:

 * Sleep Mode (VSupply = 3.0V) – typical in 1µA, maximum in 10µA

 * Steady State (VSupply = 3.0V) – typical in 1mA, maximum in 10mA

 * Steady State (VSupply = 5.0V) – typical in 2mA, maximum in 10mA

 With the aid of Digital Compass Module, the task and aim have been set to

achieve with has been shown in Figure 3.24. This operation flow can be expressed

detail regarding the way of operation and the main purpose requires to be fulfilled in

this FWMR project system.

51

3.4.6.1 Hardware Review of Digital Compass Module

Figure 3.21: Digital Compass Module

Figure 3.22: Installation of Digital Compass Module HMC6352 to FWMR

Digital Compass Module

52

3.4.6.2 Connection Circuit of Digital Compass Module to PIC 1

Figure 3.23: Connection Circuit of Digital Compass Module to PIC 1

3.4.6.3 Sequence of Digital Compass Module Function

Figure 3.24: Sequence of Digital Compass Module Function

Start

Verify operational mode

from DCM

Send and read a single byte

over the I
2
C interface

Read the heading degree

from DCM

PIC Received

Signal?

Yes

End

Heading degree

displays in LCD

No

53

3.4.6.4 Programming of Digital Compass Module Operation

 * Refer to Appendix A (3)

3.5 DC Motor Speed Control

 A DC geared motor has been chosen in this FWMR project due to achieve its

motion for forward and backward purposes. Four switches will be utilized to control

and manipulate the DC motor speed rotation to confirm the robot either to be moving

fast or slow in forward and backward motion. A programming coding with suitable

pulse width modulation or PWM pulse will be set and programmed to the PIC 2 and

build up the connection circuit to a motor drive IC L293D to control the DC motor

motion speed. When the DC motor is operating, an indicator of green LED will be

turned on simultaneously to indicate the robot is moving. In contrast, when an

indicator of red LED is turned on to be explained as the robot halted.

54

3.5.1 Hardware Review of DC Gear Motor, Four Switches and Two LEDs

Figure 3.25: Installation of Four Switches to Control DC Motor Speed in FWMR

(a) Four Switches in Board (b) DC Gear Motor

Control

(a) (b)

Switches

LEDs IC L293D

DC Gear Motor

55

3.5.2 Connection Circuit of DC Gear Motor, Switches and LEDs to PIC 2

Figure 3.26: Connection Circuit of DC Gear Motor, Four Switches and Two LEDs to

PIC 2.

56

3.5.3 Sequence of Functions for DC Motor Speed Control

Figure 3.27: DC Motor Speed Control by Four Switches and LEDs Indications

3.5.4 Programming of DC Motor Speed Control by Four Switches and LEDs

 Indications

 * Refer to Appendix A (4)

Start

Select PIC 2

Set coding with suitable PWM pulse

If SW1

If SW2

If SW3

If SW4

End

Moves forward slow and

green LED turns ON

Moves forward fast and

green LED turns ON

Moves reverse slow and

green LED turns ON

DC motor halted and

red LED turns ON

Yes

Yes

Yes

Yes

No

No

No

No

Wait for a switch to be

pressed

57

3.6 Servo Motor Turning Control

 Wheeled-robot‟s steering function is very important due to veer and maintain

in certain desired direction. Therefore, radio control (RC) servo motor C40R will be

selected to apply in my project for controlling the steering purpose of two front

wheels of FWMR. Servo is controlled by sending it a pulse of variable width and its

rotation angle is determined by the duration of pulse that is applied to the signal wire.

This is called Pulse Width Modulation (PWM) and the servo expects to obtain a

pulse every 20ms.

 For doing this testing, there are 3 pulses will be concerned initially. A 1.5 ms

pulse will make the motor turning to the 0° position or considered as neutral position,

where 2.0 ms is the maximum pulse width to turn to -40° of left and the minimum

pulse width of 1.0 ms for 40° turning to right. These turning degrees can be observed

and discovered vividly from Figure 3.28.

 (i) (ii) (iii)

Figure 3.28: Pulse Width for Servo Motor Turning – (i) 1ms pulse to turn right 40°

 (ii) 1.5ms pulse to set in neutral position (iii) 2ms pulse to turn left 40°

58

 According to this concept of pulse has been mentioned, the servo can be

tested and obtained more turning degrees within the pulse of 1.0 – 2.0 ms range

which to be shown in Figure 3.29 and Table 3.11 due to indicate that it is not only

rigid for maximum and minimum turning.

Figure 3.29: Turning Degree of Servo Motor C40R

Table 3.11: Servo Motor Turning in accordance with Pulse Width

Pulse Width (ms) Servo Motor Turning Degree (°)

2.000 -40

1.875 -30

1.750 -20

1.625 -10

1.500 0

1.375 10

1.250 20

1.125 30

1.000 40

0°

10°

20°

30°

40°

-10°

-20°

-30°

-40°

59

3.6.1 Hardware Review of Servo Motor Turning Control

Figure 3.30: Installation of Servo Motor Steering Control to Two Front Wheels

3.6.2 Connection Circuit of Servo Motor to PIC 1 with Two Front Wheels

Figure 3.31: Connection Circuit of Servo Motor to Two Front Wheels

2 Front Wheels

Servo Motor

Shafts

60

3.6.3 Sequence of Servo Motor Turning Control

Figure 3.32: Sequence of Servo Motor Turning Control

3.6.4 Programming of Servo Motor Turning Control

 * Refer to Appendix A (5)

Start

Select PIC 1

Set coding with PIC sending suitable

signal pulse to servo

P = X

End

Servo turns according to

the signal pulse received

Servo received the pulse (P ms)

Wait for the pulse signal

received from PIC

“X” is the signal pulse

received in accordance

with the Table 3.11

61

3.7 Manipulation of Digital Compass Module to Servo Motor

 Digital Compass Module is a vital component sensor in order to verify the

position of robot moving. In this sub-section, the further testing would be done in

accordance to the previous 3.6 sub-section for controlling the servo motor turning

degree. With the aid of PIC 1, this microchip controller would be used to receive the

data from compass module, then directly feed the data to the LCD to indicate the

current position of the robot should be. As a result, the position or direction of the

robot can be verified through the observation from the LCD.

 A set-point of direction angle or heading degree will be set in coding.

Following this, some valuable conditions of heading degree from compass sensor to

manipulate the turning degree from servo motor have to be set in order to ensure the

FWMR is able to move straight in one set-point direction. In this project, the set-

point angle will be specified to North or 359° (≈ 0°) of heading degree. Therefore, no

matter which initial position of the robot is placed, compass module may give the

heading data to the PIC and base on the condition have been set in coding, the robot

may find out the desired set-point angle by turning the servo motor with

corresponding turning degree to two front wheels. As a result, the robot straight line

platform will be carried out to move towards to the north direction for achieving the

requirement.

 Although the straight line movement requirement has been fulfilled,

nonetheless, the robot would move in unstable state because of the compass module

is always checking the robot moving direction. The slightly direction change of the

robot during its movement would directly cause the heading degree detected by the

compass to be varied. Because of this situation, FWMR would move in vibration

mode or considered as “sinusoidal waveform” movement based on the fixed set-point

direction. Therefore, PID control algorithm will be implemented to reduce and

minimize the oscillation of the robot during the straight line movement purpose. This

implementation will be further discussed in the following sub-section.

62

 When set-point angle = 359°, the condition of range regarding to the heading

degree to adjust and verify the appropriate turning degree has been expressed in

Table 3.12 which to indicate the manipulation of heading degree from Digital

Compass Module to the servo motor turning degree with specific condition has been

done.

Table 3.12: Manipulation of Compass Heading Degree to Servo Motor

Turning Degree

Compass Heading Degree Servo Motor Turning Degree

U = 359 0°, in neutral position, 1.500 ms pulse

354° <= U <= 358° +10°, turn right, 1.375 ms pulse

340° <= U <= 353° +20°, turn right, 1.250 ms pulse

325° <= U <= 339° +30°, turn right, 1.125 ms pulse

180° <= U <= 324° +40°, turn right, 1.000 ms pulse

35° <= U <= 179° -40°, turn left, 2.000 ms pulse

20° <= U <= 34° -30°, turn left, 1.875 ms pulse

5° <= U <= 19° -20°, turn left, 1.75 ms pulse

0° <= U <= 4° -10°, turn left, 1.625 ms pulse

63

3.7.1 Hardware Review of Digital Compass Module Manipulation to Servo

 Motor

Figure 3.33: Digital Compass Module Heading Degree to Control Servo Motor

Turning Degree

(a) Digital Compass Module (b) Servo Motor

3.7.2 Connection Circuit of Digital Compass Module and Servo Motor to

 PIC 1

Figure 3.34: Connection Circuit of Digital Compass Module and Servo Motor to

PIC 1

Control

Digital Compass Module
Servo Motor

(a) (b)

64

3.7.3 Sequence of Digital Compass Heading Degree to Manipulate Servo

 Motor Turning Degree

Figure 3.35: Sequence of Digital Compass Module Heading Degree Manipulation to

Servo Motor Turning Control

3.7.4 Programming of Compass Heading Degree Manipulation to Servo Motor

 Turning Degree

 * Refer to Appendix A (5)

Start

Set the set-point value

PIC reads the data of degree from

compass

Equal?

End

Compare set-point value

with DCM output value

Display the heading degree (U°) in

LCD

Maintain neutral

displacement angle (0°)

of servo motor to

steering wheels

“U” is the heading degree

detected by compass in

accordance with the Table 3.12

Robot moves in straight

Servo motor will steer in

accordance to the range

set in Table 3.12

Servo turns the two front

wheels until the robot

reaching to the set point

direction

65

3.8 Obstacles and Wall Detection

 MaxSonar EZ1 is a ultrasonic sensor which offers very short to long-range

detection and ranging, in an incredibly small package with ultra low power

consumption. The MaxSonar EZ1 detects objects from 0-inches to 254-inches and

provides sonar range information from 6-inches out to 254-inches with 1-inch

solution. Objects from 0-inches to 6-inches range as 6-inches. The interface output

formats included are pulse width output, analog voltage output, and serial digital

output [14].

 In this FWMR project, ultrasonic sensor is required due to avoid the robot

crashing the front obstacles especially walls and poles. This is an extra component to

affix in front of the robot due to the safety purpose to protect the system and circuitry

of all the component elements from the risk of damage and malfunction after the

robot crashing to a wall or a large obstacle. The ultrasonic transducer would produce

the ultrasonic signals from time-to-time when an appropriate power supply or voltage

provides to EZ1. Program a suitable coding to fix certain distance detection is vital in

order that these signals are propagated through a sensing medium and EZ1 can be

used to detect returning signals which bouncing back from obstacles. The condition

will be set in coding when the distance detected is less than or equal to the fixed set-

distance, therefore the PIC microcontroller may command to the DC motor to be

halted state and stopped for further moving to avoid from crashing to the obstacles.

 A desired condition has been set in coding due to verify and figure out the

distance between the ultrasonic sensor and an obstacle. If the distance of the

ultrasonic sensor to an obstacle is less than or equal to the fixed distance value, then

the PIC 2 will react and command the DC motor to be stopped or halted.

66

3.8.1 Hardware Review of Ultrasonic Sensor

Figure 3.36: Side and Bottom View of MaxSonar EZ1

Figure 3.37: Installation of Ultrasonic Sensor to FWMR

(a) Front View (b) Side View

(a) (b)

Ultrasonic Sensor

67

Table 3.13: MaxSonar EZ1 Pin Out

Pin Connection and Description

GND Return for the DC power supply. Must be ripple and noise free for best

operation

+5V Requires 5Vdc +/- 0.5Vdc. Current capability of 3mA capacity

recommended

TX Delivers asynchronous serial with an RS232 format, except voltage are 0-

5V

RX This pin is internally pulled high. The EZ1 will continually measure range

and output if RX data is left unconnected or held high

AN Outputs 0 to 2.55 volts with a scaling factor of 10mV per inch.

PW This pin outputs a pulse width representation of range

BW Reserved

3.8.2 Connection Circuit of Ultrasonic Sensor to PIC 2

Table 3.38: Connection Circuit of Ultrasonic Sensor to PIC 2

68

3.8.3 Sequence of Ultrasonic Sensor Function

Figure 3.39: Sequence of Ultrasonic Sensor Distance Detection

3.8.4 Programming of Ultrasonic Sensor Operation

 * Refer to Appendix A (6)

Start

Connect Ultrasonic

Sensor to PIC 2

Set coding with a desired

distance (d)

If Distance

<= d

DC motor halted

End

Yes

Transmit and Receive

Signal Pulse from

Ultrasonic Sensor

No

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

 This chapter plays the main role to observe and analyze all relevant testing

has been done for the development of straight line movement for four-wheeled

mobile robot. In experiments and testing, the data and responses from every essential

component tools will be collected and recorded for further analysis and interpretation.

In this project, result will be impressed and emphasized in certain main testing

components especially DC motor, servo motor, ultrasonic sensor, digital compass

module and the addition of PID control algorithm.

 The analysis and discussion of each part of result will be specified and

elaborated in detail. All interpretations in accordance to the data collected and

transforms to relevant graphs or charts due to assess the effectiveness, stability,

performance, efficiency and straight line precision of the robot. The comparison

between the actual performances manipulated by compass‟s heading degree and the

PID control output will be fully observed and explored to achieve the straight line

platform with minimal sinusoidal waveform existed due to obtain the best result and

performance.

70

4.1.1 Four-Wheeled Mobile Robot (FWMR)

Figure 4.1: Four-Wheeled Mobile Robot (FWMR)

Table 4.1: Respective Parts of Four-Wheeled Mobile Robot

Label Component Label Component

1 Power Supply 1 with 9V 8 Driving (Front) Wheels

2 Power Supply 2 with 9V 9 Steering (Back) Wheels

3 PIC 1 10 LCD

4 PIC 2 11 IC L293D

5 Digital Compass Module 12 DC Motor

6 Four Switches 13 Servo Motor

7 Ultrasonic Sensor 14 LEDs (Green and Red)

71

Figure 4.2: Top View of FWMR

Figure 4.3: Side View of FWMR

Figure 4.4: Front View of FWMR

72

4.1.2 Full Connection Circuits of Four-Wheeled Mobile Robot

Figure 4.5: Full Connection Circuit of PIC 1

Figure 4.6: Full Connection Circuit of PIC 2

73

4.1.3 Full Sequence of FWMR Operation

Figure 4.7: Full Sequence Flow of PIC 1

Start

Select PIC 1

Test servo motor functionality

Test DCM functionality

Testing

OK?

Testing

OK?

Read data from DCM.

Display the heading degree to LCD.

Develop PID control algorithm coding

to the variation of heading degree

Test and tune PID constants

Utilize PID output to control servo

turning degree

Testing

OK?

End

Y

N

Y

N

Y

N

74

Figure 4.8: Full Sequence Flow of PIC 2

Start

Select PIC 2

Set PWM pulse to DC motor drive

Test DC motor functionality

Testing

OK?

Test Ultrasonic sensor functionality

If <=d

End

N

If Sw1

If Sw2

If Sw3

If Sw4

Distance detection (d) to obstacles

DC motor halted

Y

N

N

N

Y

Y

Y

Y

Move slow forward

Move fast forward

Move slow reverse

Y

N

75

4.1.4 Full Programming of FWMR Operation

 * Refer to Appendix A (7) and (8)

4.2 PID Control Algorithm

 PID control algorithm is implemented due to the instability of compass

heading degrees to control the servo motor turning degrees which cause large

oscillation and veering to other side during the FWMR moving straight in

accordance to the fixed set-point direction. The prime advantage of adding up the

PID algorithm is to manipulate the process inputs based on the previous errors

changes which is suited to apply in this robot straight line movement process in order

to give more stable and accurate control to the servo motor turning.

 The three basic coefficient terms play the prime role with each term would

contribute its own task coherently to stabilize the robot from large oscillation and

maintain a smooth straight line motion. As mentioned in section of Methodology,

“Proportional” is the first coefficient term used to determine the reaction to the

current error, “Integral” to be the second term to sum up the current and previous

errors for the next reaction, and the last term of “Derivative” is used for the reaction

to the rate of the error changed. Each term would have its own constant as KP, KI and

KD, to scale, adjust and tune the terms in order to reach to an optimal PID output

result to enable FWMR moving a smooth straight line platform according with the

fixed set-point direction by minimizing the oscillation.

 The differentiation between the robot system with and without the PID

algorithm will be further discussed in following sub-portions base on the graphs

76

indications. In additional, a suitable tuning and adjustment to these three PID

constants are essential task due to obtain a better PID output result. A reasonable and

proper comparison will be accomplished according to the graphs drawn from the data

recorded through practical testing. Full interpretation will be stated in each graph in

the following sub-sections.

 PID output result will be used to manipulate the servo motor turning degree

instead of heading degree from compass. A full and distinct PID output range has

been expressed in Table 4.2 and each PID output range to respond the PIC

microcontroller due to react the respective servo motor turning degree of FWMR.

Table 4.2: Manipulation of PID Output Range to Servo Motor

Turning Degree

PID Output Servo Motor Turning Degree

P = 0 0°, in neutral position

1° <= P <= 5° +10°, turn right

6° <= P <= 19° +20°, turn right

20° <= P <= 34° +30°, turn right

35° <= P <= 179° +40°, turn right

180° <= P <= 324° -40°, turn left

325° <= P <= 339° -30°, turn left

340° <= P <= 354° -20°, turn left

355° <= P <= 370° -10°, turn left

77

4.2.1 Theoretical Framework

 Before going to the result sections, a theoretical framework is a collection

interrelated concepts which guides to determine what things will be measured and

statistical relationships to be looked for. Theoretical frameworks are obviously

critical in deductive. According to this research, the theoretical framework must be

very specific and well-thought out before the tasks of carrying out the robot straight

line movement analysis to get the corresponding result.

 The equation of PID algorithm is essential to be understood for inserting this

equation to FWMR‟s program coding to manipulate the robot in order to complete

the process smoother, faster and efficient. Equation 1 expresses that the PID output

will be obtained in accordance with time domain function. On the other hand,

Equation 2 shows that the Equation 1 has been transformed using Laplace Transform

to become a frequency domain function equation prime to apply in programming for

manipulation purpose. Equation 3 indicates that the three main coefficients with KP,

KI and KD can be tuned and adjusted to achieve optimal robot movement response.

Figure 4.9: Equation 1 of PID Output in Time Domain

PID Output = u t = Pe t + I e t dt + D
d

dt
e(t)

Where

P = Coefficient of proportion in time domain

I = Coefficient of integral in time domain

D = Coefficient of derivative in time domain

e(t) = Tracking error in time domain

78

Figure 4.10: Equation 2 of PID Output after Laplace Transform

Figure 4.11: Equation 3 of PID Output Application in Programming

 Figure 4.12 indicates that the desired result base on the theoretical application

of PID algorithm into the FWMR‟s operational system. The robot can be gradually

stabilized to go straight and the sinusoidal waveform can be reduced to enable the

robot moving straight efficiently.

Figure 4.12: Robot Straight Line Movement in Theoretical Application

PID Output = u t = Pe s + I
1

s
e(s) + Dse(s)

Where

s = Laplace element of s domain

PID Output = u t = KPProportion + KIIntegral + KDDerivative

Where

Proportion = current error

Integral = cumulative of current and previous errors

Derivative = current error – previous error

79

4.2.2 Practical Results

 Figure 4.13 and Figure 4.14 indicate the FWMR straight line movement in

accordance with the robot heading angle of 275° and 350°. The graphs obtained from

these two figures can be verify and figure out the difference by applying PID and

without PID output range to manipulate the servo turning degree to achieve the

straight line platform performance to the set-point angle with 359° ≈ 0° (or to North).

Figure 4.13: FWMR Straight Line Movement Performance in Heading Degree of

275° With and Without PID Control Algorithm

Set-point direction ≈ 0°

Robot in 275°

80

Figure 4.14: FWMR Straight Line Movement Performance in Heading Degree of

350° With and Without PID Control Algorithm

Robot in 350°

Set-point direction ≈ 0°

81

 Three coefficient terms of PID can be adjusted and tuned with its respective

constant in order to reach to the smoother straight line movement by FWMR. In this

case, KP, is set as “1” for the direct reaction to the current error. In the process of

tending straight to the set-point angle, robot may overshoot the set-point direction

and move to the other side. Therefore, KI and KD have to be adjusted to reduce the

oscillation during its motion tending to desired set-point direction. Table 4.3

expresses the adjustment of KP, KI and KD with different values.

Table 4.3: PID Constants Adjustment of KP, KI and KD

Testing KP KI KD

a. 1 0.0005 0.005

b. 1 0.00125 0.0125

c. 1 0.002 0.02

82

 The PID output result is not able to manipulate the servo turning degree if the

PID constants values are set to be too large since this output value would exceed the

condition ranges and robot is unable to identify the correct direction to go forward. In

addition, the PID output control would be similar to the compass heading degree

control to servo motor turning if the PID constants values have been set to be very

small. According to the Table 4.3, KP will be set in 1 where KI and KD are adjustable

and tunable in order to obtain better result which may achieve the closest point for

the robot to overshoot to the set-point angle to implement its better performance to

straight line movement. Figure 4.15 and Figure 4.16 express that three PID algorithm

constants are adjusted in accordance to the Table 4.3 with the robot heading angle of

275° and 350°.

Figure 4.15: Three PID Constants Adjustment in Heading Degree of 275°

Robot in 275°

Set-point direction ≈ 0°

83

Figure 4.16: Three PID Constants Adjustment in Heading Degree of 350°

4.3 Discussion

 According to the graphs obtained in Figure 4.11 and Figure 4.12, FWMR can

move smoother for achieving the straight line movement platform after the utilization

of PID algorithm into this robot system. Obviously, movement of FWMR will be

very unstable and a large oscillation will be happened if the coding system without

applying PID algorithm control.

Robot in 350°

Set-point direction ≈ 0°

84

 Three testing have been done by varying the values of PID constants values

and the robot performances have been shown in Figure 4.13 and Figure 4.14. The

graphs imply that the smaller or higher values of KI and KD will affect the robot

tends to the set-point direction with better solution or vice versa. I would select the

“PID Medium” (KP = 1, KI = 0.00125, KD = 0.0125) to set into the FWMR coding

system in order to reduce the oscillation and to be more accurate for the robot

tending to North or 359° ≈ 0° direction.

 Nonetheless, the FWMR may not be able to achieve the smoother straight

line movement in despite of the PID algorithm has been inserted to the coding

system. This circumstance is because of the environment effects and also with the

components limitations. A very large testing space must be used in order for the

robot to achieve better straight line movement and the data collected would be in

high accuracy. High sensitivity of Digital Compass Module is one of the main

reasons to depress the FWMR movement performance.

 Some of the issues may affect the robot straight line movement performance

which indicated in detail as following:

 A small area or space is not able to observe the movement performance and

obtain the accurate data

 External force especially with the friction and external interrupts to the robot

 Rotational speed of DC motor

 Ground roughness

 Sufficiency of power supply

 Compass Module position detection to be failed because of the

electromagnetic effect from other components or electronic devices, internet

wireless signal and surrounding full of plants or forest

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

 Conclusion and recommendations are essential section to tie or integrate the

various issues and researches that have completed from previous chapters to make

comments upon the meaning for all of the portions due to fulfill the requirements of

FWMR straight line movement performance. All testing and analysis for each stage

may guide to ensure and ascertain the key of success to develop the robot to function

and operate correctly. There are some points will be introduced and elaborated in this

chapter as well as recommendations for improvements, research with additional

elements and future investigation will be further discussed and explained. The

platform will be provided to minimize the problems encountered to the next

researchers continuing for the future works and investigations.

86

5.2 Conclusion

 In conclusion, this project can be managed to develop the Four-Wheeled

Mobile Robot to move in straight line platform in combination the software and

hardware parts to ensure that it could fulfill and meet the requirements and objectives.

The electrical and mechanical hardware can be successfully installed and set to build

up a Four-Wheeled Mobile Robot to achieve the satisfaction stage. Apart from this,

the software part consists of C-Language coding is vital to thoroughly manipulate the

robot functionality and operation to meet the straight line movement performance.

PID control algorithm has been appended to the coding instead of utilizing heading

degree of compass to control the servo turning to minimize the oscillation of the

robot to tend to other side during its straight line performance to the fixed set-point

angle. Nonetheless, this robot straight line movement is not able to perform with

higher accuracy during its repeating movement operation by using PID algorithm and

the robot is easily affected by the issues as well as the external force, rotational speed

of DC motor, ground roughness, sufficiency of power supply and sensitivity of

compass module. As a result, some appropriate recommendations will be provided to

enhance this robot movement system and implement the future investigations

explicitly.

87

5.3 Recommendations and Improvements

 This Four-Wheeled Mobile Robot straight line movement development is

recommended to be undertaken again with better experience and expert in

manipulation of PID control algorithm set into the coding system. The PID auto-

tuning technique can be investigated and utilized instead of manually trial-and-error

method to set those three PID coefficient constants in the coding.

 PID algorithm is essential to build up and develop the robot to be capable to

move in straight line platform. As a result, auto-tuning technique is rightly to tune

the constants of KP, KI and KD until the robot reaches the most corresponding values

to minimize the oscillation during its straight line movement to the desired set-point

direction.

 To observe and investigate the robot movement, the investigator should place

the robot which is free of any wireless signal transmission and the surrounding with

fewer plants due to avoid the affects of the compass module position detection. In

addition, the space must be sufficiently large to enable the robot to move longer and

the robot movement performance can be observed explicitly due to improve the data

accuracy and precision.

 The designation and construction of mechanical hardware of this Four-

Wheeled Mobile Robot ought to make in smaller size and weight. The robot with

smaller size and weight can be easier for the DC gear motor to rotate the wheels in

forward or backward manner. Moreover, this improvement can reduce the robot

sliding or veering to other side during its straight line movement to a fixed set-point

direction and directly to enhance the capability of the robot to meet the point of

straight line movement.

88

5.4 Additional Elements and Future Tasks

 High inaccuracy and instability will be encountered if the robot is dependent

solely on Digital Compass Module to manipulate the servo motor turning degree.

Therefore, several elements or features can be further added that may improve the

effectiveness, efficiency, accuracy and operability of the Four-Wheeled Mobile

Robot and better solution or method to achieve the robot‟s straight line movement

purpose.

 A GPS sensor can be applied and implemented to the FWMR due to enable

the robot to search, identify and verify the desired set-point direction to be reached.

Furthermore, this type of sensor for use in machine or robot controls to provide pace

and distance measurement. Hence, this may enhance the robot system to verify the

robot current position correctly instead of just using the compass module to verify

the robot direction and even used to manipulate the servo motor turning degree as to

reach the desired result of development of straight line movement.

 To identify the front objects or obstacles, a vision sensor can be used in the

FWMR to allow the robot autonomously navigating and figuring out the objects or

obstacles. The capability of this vision sensor can perform to verify the shape and

size of the obstacles then used to respond to the microcontroller to implement further

action whether to avoid the small obstacles or halt the robot as to protect from

crashing to the large objects or walls.

REFERENCES

[1] Gyula Mester (2006). “Motion Control Of Wheeled Mobile Robots,” SISY

2006 Serbian-Hungarian Joint Symposium On Intelligent Systems.

Department Of Informatics, Polytechnical Engineering College, Marka

Oreskovica 16, 24000 Subotica, Serbia.

[2] Sven Bottcher (2006). “Principles Of Robot Locomotion,” Seminar „Human

Robot Interaction‟.

[3] Tan Piow Yon (2011). “Two Wheels Balancing Robot with Line Following

Capability,” World Academy Of Science, Engineering and Technology 79

2011, Bachelor Degree of Electrics (Electronics) in University Malaysia

Pahang, Faculty of Electrical and Electronics.

[4] Kritof Goris (2004-2005). “Autonomous Mobile Robot Mechanical Design,”

Vrije Universiteit Brussel, Faculteit Ingenieurswetenschappen Vakgroep

Werktuigkunde.

[5] Ibrahim Kamal (2008). “Small Robot Drive Trains,” Website Of IKA LOGIC

Electronics Solutions.

 Citing Internet Sources URL: ikalogic.com/tut_mech_1.php

http://ikalogic.com/tut_mech_1.php

90

[6] K-Junior (2010). “Moving Straight and Detecting Obstacles,” K-Team S.A

Rue Galilee 9, Switzerland, in Collaboration with Department of Electrical

Engineering Politechnica University of Bucharest, Romania.

[7] Zhao Zhang (2009). “Automatic North-Facing Robot with Compass Module

And Closed-Loop Control,” Missouri Western State University 4525 Downs

Drive, Saint Joseph, MO 64507.

[8] Wikipedia. “Ultrasonic Sensor.”

 Citing Internet Sources URL: http://en.wikipedia.org/wiki/Ultrasonic_sensor

[9] Khairul A‟Alam Bin Abdul Ghani (2007). “Obstacle Avoidance Mobile

Robot,” University Malaysia Pahang

[10] Wikipedia. “PID Controller.”

 Citing Internet Sources URL: http://en.wikipedia.org/wiki/PID_controller

[11] User‟s Manual of SK40C Development Board Start Up Kit. Available at:

http://www.cytron.com.my/usr_attachment/SK40C_Users_Manual.pdf

[12] Datasheet of Microchip PIC 18F Series. Available at:

http://www.cytron.com.my/datasheet/IC/MCU/18f2455_2550_4455_4550.pd

f

[13] User‟s Manual of UIC00B ICSP PIC Programmer. Available at:

 http://www.cytron.com.my/usr_attachment/UIC00B_&_UICS_Users_Man

http://en.wikipedia.org/wiki/Ultrasonic_sensor
http://en.wikipedia.org/wiki/PID_controller
http://www.cytron.com.my/datasheet/IC/MCU/18f2455_2550_4455_4550.pdf
http://www.cytron.com.my/datasheet/IC/MCU/18f2455_2550_4455_4550.pdf
http://www.cytron.com.my/usr_attachment/UIC00B_&_UICS_Users_Man

91

[14] Datasheet of MaxSonar EZ1. Available at:

 http://www.cytron.com.my/datasheet/sensor/LVEZ1.pdf

[15] C Compiler Reference Manual July 2011. Available at:

 www.ccsinfo.com/downloads/ccs_c_manual.pdf

[16] Pratheek (2009). “An Advanced Line Following Robot with PID Control,”

Society of Robots with Robot Tutorials. Available at:

www.societyofrobots.com/member_tutorials/book/export/html/350

[17] Jaseung Ku (2005). “A Line-Follower Robot,” Available at:

 online.physics.uiuc.edu/courses/.../Robot_project_jaseung_.pdf

http://www.cytron.com.my/datasheet/sensor/LVEZ1.pdf
http://www.ccsinfo.com/downloads/ccs_c_manual.pdf
http://www.societyofrobots.com/member_tutorials/book/export/html/350

APPENDIX A

Program Source Code

93

(1) Source Code of DC Gear Motor with IC L293D

//**

*Title: Programming of Four-Wheeled Mobile Robot PIC Brain Board *

*Program Author: Ching Wai Hoong *

*Software: PIC C Compiler (CCS) *

*PIC Type: PIC Microchip 18F4550 *

*PIC-2 *

//**

#include <18F4550.h>

#fuses NOLVP, NOWDT, HS, NOPBADEN

#use delay(clock=20M, crystal)

#define L293D_2 PIN_B3

#define L293D_7 PIN_B4

#define L293D_10 PIN_B1

#define L293D_15 PIN_B2

void main ()

{

 setup_adc_ports(NO_ANALOGS);

 set_tris_b(0x00);

 output_b(0x00);

 delay_ms(50);

 while(true)

 {

 //Motors Run Forward

 output_high(L293D_2); //L293D input1 set as 1//

 output_low(L293D_7); //L293D input2 set as 0//

 output_high(L293D_10);

 output_low(L293D_15);

 delay_ms(5000);

 //Motors Stopped

 output_low(L293D_7); //L293D input2 set as 0//

 output_low(L293D_2);

 output_low(L293D_15);

 output_low(L293D_10);

 delay_ms(5000);

 //Motors Run Backward

 output_high(L293D_7); //L293D input2 set as 1//

 output_low(L293D_2);

 output_high(L293D_15);

 output_low(L293D_10); //L293D input1 set as 0//

 delay_ms(5000);

94

 //Motors Stopped

 output_low(L293D_7); //L293D input2 set as 0//

 output_low(L293D_2);

 output_low(L293D_15);

 output_low(L293D_10);

 delay_ms(5000);

 }

}

(2) Source Code of Servo Motor Steering Operation

//**

*Title: Programming of Four-Wheeled Mobile Robot PIC Brain Board *

*Program Author: Ching Wai Hoong *

*Software: PIC C Compiler (CCS) *

*PIC Type: PIC Microchip 18F4550 *

*PIC-1 *

//**

#include <18f4550.h>

#fuses NOLVP, NOWDT, HS, NOPBADEN, NOPROTECT

#use delay(clock=20M, crystal)

#define L293D_1 PIN_B2

#define SW1 PIN_B0

#define SW2 PIN_B1

void main ()

{

 set_tris_b(0x03);

 output_b(0x00);

 delay_ms(50);

 while(true)

 {

 if(!input(SW1)==1)

 {

 //Motors Run Forward 40 degree

 output_high(L293D_1);

 delay_ms(2);

 output_low(L293D_1);

 delay_ms(18);

 }

 if(!input(SW2)==1)

 {

95

 //Motors Run Reverse 40 degree

 output_high(L293D_1);

 delay_ms(1);

 output_low(L293D_1);

 delay_ms(19);

 }

 }

}

(3) Source Code of Digital Compass Module Operation

//**

*Title: Programming of Four-Wheeled Mobile Robot PIC Brain Board *

*Program Author: Ching Wai Hoong *

*Software: PIC C Compiler (CCS) *

*PIC Type: PIC Microchip 18F4550 *

*PIC-1 *

//**

#include <18f4550.h>

#fuses HS, NOWDT, NOPROTECT, BROWNOUT, PUT, NOLVP

#use delay(clock=20M, crystal)

#include <flex_lcd.c>

#use i2c(master, sda=PIN_B0, scl=PIN_B1, FORCE_HW)

#define HMC6352_I2C_WRITE_ADDRESS 0x42

#define HMC6352_I2C_READ_ADDRESS 0x43

#define HMC6352_GET_DATA_COMMAND 0X41 //Transmit "A" to compass

for heading

// Read the compass heading. This is in unit of 1/10 of a degree

// from 0 to 3599

int16 HMC6352_read_heading(void)

{

 int8 lsb;

 int8 msb;

 i2c_start();

 i2c_write(HMC6352_I2C_WRITE_ADDRESS); //0x42 is the address that we

need to communicate with to write information to the device

 i2c_write(HMC6352_GET_DATA_COMMAND); //"A" or 0x41 is sent to

magnetometer to get a response that pertains to what direction it is facing

 i2c_stop();

 delay_ms(10);

 i2c_start();

 i2c_write(HMC6352_I2C_READ_ADDRESS); //0x43 is the address that to

communicate with to read information from compass

96

 msb=i2c_read(); //Response 1 for MSb data after reading the data from compass

 lsb=i2c_read(0); //Response 2 for LSb data after reading the data from compass

 i2c_stop();

 return((int16)lsb | (int16)msb << 8);

}

void main()

{

 Int16 heading;

 while(true)

 {

 heading=(HMC6352_read_heading())/10;

 lcd_init();

 printf(lcd_putc, "\fHeading degree:");

 printf(lcd_putc, "\n %LuDE", heading);

 delay_ms(1000);

 }

}

(4) Source Code of DC Motor Speed Control

//**

*Title: Programming of Four-Wheeled Mobile Robot PIC Brain Board *

*Program Author: Ching Wai Hoong *

*Software: PIC C Compiler (CCS) *

*PIC Type: PIC Microchip 18F4550 *

*PIC-2 *

//**

#include <18F4550.h>

#fuses NOLVP, NOWDT, HS, NOPROTECT, BROWNOUT, PUT,

#use delay(clock=20M, crystal)

#define SW1 PIN_A0

#define SW2 PIN_A1

#define SW3 PIN_A2

#define SW4 PIN_A3

#define GREEN_LED PIN_B2

#define RED_LED PIN_B3

void DC_MOTOR(void)

{

 if(!input(SW1)==1)

 {

 output_high(GREEN_LED);

 output_low(RED_LED);

 //Motors Run Forward

 set_pwm1_duty(110);

97

 set_pwm2_duty(0);

}

 else if(!input(SW2)==1)

 {

 output_high(GREEN_LED);

 output_low(RED_LED);

 //Motors Run Forward

 set_pwm1_duty(150);

 set_pwm2_duty(0);

}

 else if(!input(SW3)==1)

 {

 output_high(GREEN_LED);

 output_low(RED_LED);

 //Motors Run Reverse

 set_pwm1_duty(0);

 set_pwm2_duty(110);

}

 else if(!input(SW4)==1)

 {

 output_low(GREEN_LED);

 output_high(RED_LED);

 //Motors stopped

 set_pwm1_duty(0);

 set_pwm2_duty(0);

}

}

void main ()

{

 int anvolt;

 set_tris_b(0x03);

 set_tris_c(0x00);

 set_tris_a(0b00001111);

 output_low(RED_LED);

 output_low(GREEN_LED);

 output_low(PIN_C2); // Set CCP1 output low

 output_low(PIN_C1); // Set CCP2 output low

 setup_ccp1(ccp_PWM); // Configure CCP1 as a PWM of pin c2

 setup_ccp2(ccp_PWM); // Configure CCP2 as a PWM of pin c1

 setup_timer_2(T2_DIV_BY_16, 150, 1); // Setup for 1220.7Hz

 set_pwm1_duty(0); // 0% duty cycle

 set_pwm2_duty(0); // 0% duty cycle

 delay_ms(10);

 while(true)

 {

 DC_MOTOR(); }}

98

(5) Source Code of Manipulation of Digital Compass Module to Servo Motor

//**

*Title: Programming of Four-Wheeled Mobile Robot PIC Brain Board *

*Program Author: Ching Wai Hoong *

*Software: PIC C Compiler (CCS) *

*PIC Type: PIC Microchip 18F4550 *

*PIC-1 *

//**

#include <18f4550.h>

#fuses HS, NOWDT, NOPROTECT, BROWNOUT, PUT, NOLVP

#use delay(clock=20M, crystal)

#include <flex_lcd.c>

#use i2c(master, sda=PIN_B0, scl=PIN_B1, FORCE_HW)

#define HMC6352_I2C_WRITE_ADDRESS 0x42

#define HMC6352_I2C_READ_ADDRESS 0x43

#define HMC6352_GET_DATA_COMMAND 0X41 //Transmit "A" to compass

for heading

// Read the compass heading. This is in unit of 1/10 of a degree

// from 0 to 3599

#define SERVO_CONTROL PIN_A4

unsigned int a;

int16 heading;

int16 HMC6352_read_heading(void)

{

 int8 lsb;

 int8 msb;

 i2c_start();

 i2c_write(HMC6352_I2C_WRITE_ADDRESS); //0x42 is the address that we

need to communicate with to write information to the device

 i2c_write(HMC6352_GET_DATA_COMMAND); //"A" or 0x41 is sent to

magnetometer to get a response that pertains to what direction it is facing

 i2c_stop();

 delay_ms(10);

 i2c_start();

 i2c_write(HMC6352_I2C_READ_ADDRESS); //0x43 is the address that to

communicate with to read information from compass

 msb=i2c_read(); //Response 1 for MSb data after reading the data from compass

 lsb=i2c_read(0); //Response 2 for LSb data after reading the data from compass

 i2c_stop();

 return((int16)lsb | (int16)msb << 8);

}

99

void SERVO_MOTOR(void)

{

 ///////////////////////////////control the servo motor turning

 if(heading==359)

 {

 for(a=0; a<10; a++) //servo in neutral position

 {

 output_high(SERVO_CONTROL);

 delay_us(1500);

 output_low(SERVO_CONTROL);

 delay_us(18500);

 }

 }

 else if(heading<=19) //servo -20degree turns left

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1750);

 output_low(SERVO_CONTROL);

 delay_us(18250);

 }

 }

 else if(heading<=34) //servo -30degree turns left

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1875);

 output_low(SERVO_CONTROL);

 delay_us(18125);

 }

 }

 else if(heading<=179) //servo -40degree turns left

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(2000);

 output_low(SERVO_CONTROL);

 delay_us(18000);

 }

 }

 else if(heading<=324) //servo +40degree turns right

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1000);

 output_low(SERVO_CONTROL);

100

 delay_us(19000);

 }

 }

 else if(heading<=339) //servo +30degree turns right

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1125);

 output_low(SERVO_CONTROL);

 delay_us(18875);

 }

 }

 else if(heading<=358) //servo +20degree turns left

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1250);

 output_low(SERVO_CONTROL);

 delay_us(18750);

 }

 }

 else

 {

 for(a=0; a<10; a++) //servo in neutral position

 {

 output_high(SERVO_CONTROL);

 delay_us(1500);

 output_low(SERVO_CONTROL);

 delay_us(18500);

 }

 }

}

void main()

{

 set_tris_b(0b00000011);

 set_tris_a(0x00);

 output_low(SERVO_CONTROL);

 while(true)

 {

 heading=(HMC6352_read_heading())/10; //get 3 digits value from the

digital compass

 lcd_init();

 printf(lcd_putc, "\fHead Deg=%Lu", heading); //display heading degree

error and error value based on robot position

 SERVO_MOTOR();

 }}

101

(6) Source Code of Manipulation of Obstacles and Wall Detection

//**

*Title: Programming of Four-Wheeled Mobile Robot PIC Brain Board *

*Program Author: Ching Wai Hoong *

*Software: PIC C Compiler (CCS) *

*PIC Type: PIC Microchip 18F4550 *

*PIC-2 *

//**

#include <18f4550.h>

#device adc = 8

#fuses HS, NOWDT, NOPROTECT, BROWNOUT, PUT, NOLVP

#use delay(clock=20M, crystal))

#include <flex_lcd.c>

#define LED PIN_B3

void main()

{

 int anvolt;

 set_tris_b(0x00);

 setup_adc_ports(NO_ANALOGS);

 setup_adc(ADC_CLOCK_INTERNAL);

 set_adc_channel(5);

 while(true)

 {

 delay_us(100);

 output_low(LED);

 anvolt = read_adc();

 lcd_init();

 printf(lcd_putc,"inches=%u",anvolt);

 if(anvolt<=3)

 {

 output_high(LED);

 }

 delay_ms(300);

 }

}

102

(7) Source Code of Four-Wheeled Mobile Robot with PID Control Algorithm

//**

*Title: Programming of Four-Wheeled Mobile Robot PIC Brain Board *

*Program Author: Ching Wai Hoong *

*Software: PIC C Compiler (CCS) *

*PIC Type: PIC Microchip 18F4550 *

*PIC-1 *

//**

#include <18f4550.h>

#fuses HS, NOWDT, NOPROTECT, BROWNOUT, PUT, NOLVP

#use delay(clock=20M, crystal)

#include <flex_lcd.c>

#use i2c(master, sda=PIN_B0, scl=PIN_B1, FORCE_HW)

#define HMC6352_I2C_WRITE_ADDRESS 0x42

#define HMC6352_I2C_READ_ADDRESS 0x43

#define HMC6352_GET_DATA_COMMAND 0X41

//Transmit "A" to compass for heading

// Read the compass heading. This is in unit of 1/10 of a degree from 0 to 3599

#define SERVO_CONTROL PIN_A4

#define Kp 1

#define Ki 0.00125 //can be adjustable

#define Kd 0.0125 //can be adjustable

#define setpoint 359

unsigned int a;

int16 error, error1, error2, error3, error4, heading;

float proportional, derivative;

float PID, output, output2;

int16 HMC6352_read_heading(void)

{

 int8 lsb;

 int8 msb;

 i2c_start();

 i2c_write(HMC6352_I2C_WRITE_ADDRESS);

 //0x42 is the address that we need to communicate with to write information to the

//device

 i2c_write(HMC6352_GET_DATA_COMMAND);

//"A" or 0x41 is sent to magnetometer to get a response that pertains to what

direction it //is facing

 i2c_stop();

 delay_ms(10);

 i2c_start();

 i2c_write(HMC6352_I2C_READ_ADDRESS);

 //0x43 is the address that to communicate with to read information from compass

103

 msb=i2c_read();

 //Response 1 for MSb data after reading the data from compass

 lsb=i2c_read(0);

 //Response 2 for LSb data after reading the data from compass

 i2c_stop();

 return((int16)lsb | (int16)msb << 8);

}

float pidcal(void)

//PID control algorithm

{

 static float pre_error = 0;

 static float integral = 0;

 error = setpoint - heading;

 //check error with PID algorithm

 proportional = error;

 integral = integral + error;

 derivative = error - pre_error;

 output = (Kp*proportional)+(Ki*integral)+(Kd*derivative);

 //sum up three terms of PID

 error4 = error + 4;

 error3 = error + 3;

 error2 = error + 2;

 error1 = error + 1;

 if(output == 0)

 {

 output2=0;

 }

 else if(output <= error1)

 {

 output2=error1;

 }

 else if(output <= error2)

 {

 output2=error2;

 }

 else if(output <= error3)

 {

 output2=error3;

 }

 else if (output <= error4)

 {

 output2=error4;

 }

 else

 {

 output2=error4;

104

 }

 pre_error = error;

 //previous error saved in PIC

 return(output2);

}

void SERVO_MOTOR(void)

{

 ///////////////////////////////control the servo motor turning

 if(PID==0)

 {

 for(a=0; a<10; a++)

 //servo in neutral position

 {

 output_high(SERVO_CONTROL);

 delay_us(1500);

 output_low(SERVO_CONTROL);

 delay_us(18500);

 }

 }

 else if(PID<=5)

 //servo +10degree turns right

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1375);

 output_low(SERVO_CONTROL);

 delay_us(18625);

 }

 }

 else if(PID<=19)

 //servo +20degree turns right

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1250);

 output_low(SERVO_CONTROL);

 delay_us(18750);

 }

 }

 else if(PID<=34)

 //servo +30degree turns right

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1125);

 output_low(SERVO_CONTROL);

 delay_us(18875);

105

 }

 }

 else if(PID<=179)

 //servo +40degree turns right

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1000);

 output_low(SERVO_CONTROL);

 delay_us(19000);

 }

 }

 else if(PID<=324)

 //servo -40degree turns left

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(2000);

 output_low(SERVO_CONTROL);

 delay_us(18000);

 }

 }

 else if(PID<=339)

 //servo -30degree turns left

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1875);

 output_low(SERVO_CONTROL);

 delay_us(18125);

 }

 }

 else if(PID<=353)

 //servo -20degree turns left

 {

 for(a=0; a<10; a++)

 {

 output_high(SERVO_CONTROL);

 delay_us(1750);

 output_low(SERVO_CONTROL);

 delay_us(18250);

 }

 }

 else if(PID<=370)

 {

 for(a=0; a<10; a++)

 //servo -10degree turns left

106

 {

 output_high(SERVO_CONTROL);

 delay_us(1625);

 output_low(SERVO_CONTROL);

 delay_us(18375);

 }

 }

 else

 {

 for(a=0; a<10; a++)

 //servo in neutral position

 {

 output_high(SERVO_CONTROL);

 delay_us(1500);

 output_low(SERVO_CONTROL);

 delay_us(18500);

 }

 }

}

void main()

{

 set_tris_b(0b00000011);

 set_tris_a(0x00);

 output_low(SERVO_CONTROL);

 while(true)

 {

 heading=(HMC6352_read_heading())/10;

//get 3 digits value from the digital compass

 PID = pidcal();

 lcd_init();

 printf(lcd_putc, "\fHDeg=%Lu,e=%Lu", heading, error);

//display heading degree error and error value based on robot position

 printf(lcd_putc, "\nPID=%f",PID);

//PID algorithm output value by trial&error to adjust Kp, Ki and Kd

 SERVO_MOTOR();

 }

}

107

(8) Source Code of DC Gear Motor Control with Ultrasonic Sensor

//**

*Title: Programming For Four-Wheeled Mobile Robot PIC Brain Board *

*Program Author: Ching Wai Hoong *

*Software: PIC C Compiler (CCS) *

*PIC Type: PIC Microchip 18F4550 *

*PIC-2 *

//**

#include <18F4550.h>

#device adc = 8

#fuses NOLVP, NOWDT, HS, NOPROTECT, BROWNOUT, PUT,

#use delay(clock=20M, crystal)

#define SW1 PIN_A0

#define SW2 PIN_A1

#define SW3 PIN_A2

#define SW4 PIN_A3

#define GREEN_LED PIN_B2

#define RED_LED PIN_B3

void DC_MOTOR(void)

{

 if(!input(SW1)==1)

 {

 output_high(GREEN_LED);

 output_low(RED_LED);

 //Motors Run Forward

 set_pwm1_duty(110);

 set_pwm2_duty(0);

 }

 else if(!input(SW2)==1)

 {

 output_high(GREEN_LED);

 output_low(RED_LED);

 //Motors Run Forward

 set_pwm1_duty(150);

 set_pwm2_duty(0);

 }

 else if(!input(SW3)==1)

 {

 output_high(GREEN_LED);

 output_low(RED_LED);

 //Motors Run Reverse

 set_pwm1_duty(0);

 set_pwm2_duty(110);

 }

 else if(!input(SW4)==1)

108

 {

 output_low(GREEN_LED);

 output_high(RED_LED);

 //Motors stopped

 set_pwm1_duty(0);

 set_pwm2_duty(0);

 }

}

void main ()

{

 int anvolt;

 set_tris_b(0x03);

 set_tris_c(0x00);

 set_tris_a(0b00001111);

 output_low(RED_LED);

 output_low(GREEN_LED);

 output_low(PIN_C2); // Set CCP1 output low

 output_low(PIN_C1); // Set CCP2 output low

 setup_ccp1(ccp_PWM); // Configure CCP1 as a PWM of pin c2

 setup_ccp2(ccp_PWM); // Configure CCP2 as a PWM of pin c1

 setup_timer_2(T2_DIV_BY_16, 150, 1); // Setup for 1220.7Hz

 set_pwm1_duty(0); // 0% duty cycle

 set_pwm2_duty(0); // 0% duty cycle

 delay_ms(10);

 setup_adc_ports(NO_ANALOGS);

 setup_adc(ADC_CLOCK_INTERNAL);

 set_adc_channel(5);

 delay_us(100);

 while(true)

 {

 DC_MOTOR();

 anvolt = read_adc();

 if(anvolt<=4)

 {

 set_pwm1_duty(0);

 set_pwm2_duty(0);

 output_high(RED_LED);

 output_low(GREEN_LED);

 delay_ms(200);

 }

 }

}

109

APPENDIX B

Four-Wheeled Mobile Robot’s Specification

110

The specification of Four-Wheeled Mobile Robot

Microchip Controller  Programmable PIC 18F4550 microchip

controller to program desire source coding to

respond, react or manipulate the sensors,

switches and other devices.

 PIC-1 is used to respond to the PID algorithm

output result to manipulate the servo turning

degree.

 PIC-2 is used to respond to switches for

controlling the DC motor rotational speed and

react to distance detection of ultrasonic sensor.

Robot’s Motion  1 9V DC geared motor to control two back-

wheels.

 Rotational speed and forward or backward

manner controlled by motor driver IC L293D.

Robot’s Turning  1 5V RC servo motor to adjust and verify two

front-wheels turning degree.

Position and Direction

Verification

 Digital Compass Module is utilized to identify

and figure the robot moving direction with

pointing to the desired set-point direction angle.

Distance Detection  Ultrasonic sensor is used to verify certain

distance repelling from obstacle or wall due to

respond to controller to halt the DC motor from

crashing tremendously to ruin the robot.

Communications  I
2
C communication is two wire serial interfaces

to communicate to the compass sensor that

requires a host device or controller to properly

command and function.

Power Source  8 x AA batteries, Ni-Cd, 1000mAh, 9.6V for

supplying to PIC-1 of DC motor rotational speed

control.

 1 x 9V recharger batter, Nickel-Metal Hydride,

175mAh

Dimension  40cm long x 20cm wide x 11cm high

Weight  Approximately 2kg

111

APPENDIX C

Four-Wheeled Mobile Robot’s Overall Circuit Diagram

FWMR’s Overall Circuit Diagram

113

APPENDIX D

Four-Wheeled Mobile Robot’s Pictures

114

Four-Wheeled Mobile Robot

Overall Connection Circuitry of FWMR

115

Digital Compass Module

Distance Detection of Ultrasonic Sensor

