V/I CON DOUDDOT 5942 ANN INIT ELIVILINIA IIVIN FOR MAXIMIZING ATTAINABLE EFFICIENCY OF INDUCTION MOTOR

BY

RAMDAN BIN RAZALI

B.Eng. Sc., University of Miami, Florida, USA

M. Eng. Sc., Multimedia University, Melaka, Malaysia

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

(by Research)

in the

Faculty of Engineering and Technology

MULTIMEDIA UNIVERSITY MALAYSIA

MARCH 2012

ABSTRACT

Induction Motor (IM) drives are widely used in industrial, commercial, domestic, and other applications due to their simple robust construction, safe-long trouble free operation with minimum maintenance and wear and tear etc. Maximum efficiency of an IM usually occurs at near full load operation at rated voltage. But in many applications these motors are required to operate at other than rated load, where, the efficiency is much less than the maximum attainable efficiency. To achieve the maximum attainable efficiency at loads other than rated values, it is necessary to regulate the flux level by changing the voltage/frequency suitably at any given motor load. Large IMs usually are fairly highly efficient, compared to small IM. Low efficiency leads to uneconomic use of power in industrial installations. Maximum attainable efficiency operation of an IM at partial loads may be obtained by using a controller which can search for the maximum attainable efficiency condition at the given partial load and then operate the IM at that condition. The controllers reported in literature arrive at maximum efficiency point by minimizing the power or minimizing the current or maximizing power factor or optimizing the slip.

In this thesis, a technique based on V/I maximum attainable efficiency method is proposed for operating an IM with V/f controller at maximum attainable efficiency at partial loads. The technique requires estimation of V/I reference value $(V/I)_{ref}$, corresponding to maximum attainable efficiency at a given load using IM equivalent circuit parameters. Analysis and theoretical validation of the technique has been carried out using IM equivalent circuit. Experiments ,were carried out in the laboratory using a PWM inverter fed fractional horsepower SCIM with a V/f controller (specially developed and fabricated) at a few selected loads at rated frequency. The supply voltage to the SCIM was varied for the selected loads and the corresponding V/I values were calculated by measuring V and I at stator terminals. The efficiency for various values of V/I were plotted for the selected loads. It has been found from the graphs that for a given load, the maximum attainable efficiency occurs at a value of V/I closer to the calculated $(V/I)_{ref}$. The results thus validate the concept proposed.

To validate the feasibility of online application the technique to VVVF drives, a online V/I maximum attainable efficiency control software using Visual Basic 6.0, V/I_GUI has been developed and incorporated in the motor V/f controller. The V/f controller was designed developed and fabricated using MC3PHAC AC motor controller module. The experiments were repeated at the selected loads for selected frequencies below the rated frequency. The efficiency versus V/I plots for different loads at each selected frequency have confirmed that maximum attainable efficiency can be achieved at V/I values ($(V/I)_{online}$) closer to $(V/I)_{ref}$ value in the frequency range of 0.7 p.u to 1.0 p.u. of rated frequency. This confirms the applicability of the proposed V/I maximum attainable efficiency method for online IM control also.

The control software developed using Visual Basic 6.0 was found to result in some drawbacks with respect to flux regulation and response time due to searching for the optimum control variables corresponding to the maximum attainable efficiency, in multiple steps. To overcome the deficiency, the V/I RBFNN, an improved control software using Radial Based Function Neural Network (RBFNN) was developed and incorporated in the V/f controller. The data obtained using the previous control software was used to train and test the proposed V/I RBFNN. The functioning of the improved control software was verified by simulation using MATLAB 10. It was found that the improved control software using RBFNN predicts with considerable precision the optimum control variables corresponding to maximum attainable efficiency in one single step. Due to technical complexities involved and limitation in the required facilities, the implementation of V/I_RBFNN proposed in a online V/f drive could not be carried out experimentally. However, the proposed method is applicable to any variable frequency drive when the proposed and developed control software based on RBFNN is incorporated into its V/f controller. The theoretical analysis, experimental and simulation methodology and the results obtained are described and discussed in the thesis.

TABLE OF CONTENTS

	COPYRIGHT PAGE	ii
	DECLARATION	iii
	ACKNOWLEDGEMENT	iv
	DEDICATION	v
	ABSTRACT	vi
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATIONS	XV
	CHAPTER 1: INTRODUCTION	1
	 General Development in IM Drives Thesis Objectives Main Contributions of the Thesis Thesis Organization 	1 1 4 5 6
	CHAPTER 2: LITERATURE REVIEW	8
	 2.1 Introduction 2.2 SCIM as the Largest Electrical Consumer 2.3 Development of IM Controllers 2.3.1. Constant Speed Drive 2.3.2. Variable Speed Drive 2.3.3. Scalar Controllers 2.3.3.1. Volts/Hertz Control 2.3.4. Vector Controllers 2.3.5. Direct Torque Controllers 2.3.6. Artificial Intelligent Controllers 2.4 Speed Sensorless Control for SCIM 2.5 IM Efficiency and Losses 2.6 Component of Energy loss in IM 2.7 The Importance of Efficient Motors and Drive Systems 2.8 Previous Works on Increasing Efficiency of SCIM 2.9 Optimization of SCIM Efficiency using Intelligent Technique 	8 8 9 9 10 11 11 12 13 13 13 16 16 17 21 22 25
· .		

2.10	SCIM Energy Efficiency Standards	27
2.11	Temperature Effect on SCIM	31
2.12	Conclusion	34
CHA	PTER 3: V/I METHOD FOR MAXIMIZING ATTAINABLE	
	EFFICIENCY IN THREE-PHASE INDUCTION	
	MOTORS	37
3.1	Introduction	37
3.2	V/I Control Strategy for Maximizing Attainable Efficiency of IM	38
	3.2.1 Formulation of V/I Equation	38
	3.2.2 Slip for Maximum Efficiency	40
	3.2.3 Designing of V/I Maximum Attainable Efficiency Controller	45
3.3	The Advantages of V/I Maximum Attainable Efficiency Method	47
3.4	Conclusion	49
СНА	ρτερ 4. εχρεριμενται ναι πατιών ως της να	
	MAXIMUM ATTAINABLE EFFICIENCY	
	METHOD	50
4.1	Introduction	50
4.2	V/I Maximum Attainable Efficiency System Hardware Setup	51
4.3	Testing the V/f Drive System	60
	4.3.1 Communication Test	61
	4.3.2 Speed Test	62
	4.3.3 Full Load Test	65
	4.3.4 Maximum voltage and Maximum Current Tests	65 65
44	Validating the V/I Maximum Attainable Efficiency Method on SCIM	66
	4.4.1 Analysis of Results and Discussion	67
4.5	Validating the V/I Maximum Attainable Efficiency Method on WRIM	69
	4.5.1 Result, Analysis and Discussion	69
4.6	Conclusion	70
СНА	PTER 5: ONLINE IMPLEMENTATION OF THE V/I MAXIMUM	
	ATTAINABLE EFFICIENCY METHOD ON V/f SCIM	
	DRIVE SYSTEM	71
5.1	Introduction	71
5.2	Online Efficiency Estimation	74
5.3	The System Hardware	77
	5.3.1 The Feedback Circuits	77
	5.3.1.1 Voltage and Current Sensing Circuit	78
	5.3.1.2 Signals Amplification	79
	5.3.1.3 Low Pass Filter	81
	5.3.1.4 Analogue to Digital Conversion	82
	5.5.1.5 Overall Gain Calculation	83

5.4	Development of Software Interface between DAQ and Motor Controller	83
	5.4.1 V/I Maximum Attainable Efficiency GUI	
	5.4.1.1. The Action Button Segment	89
	5.4.1.1.1. Interfacing DAQ to V/I GUI	89
	5.4.1.1.2. Data Signal Conditioning and data	
	Integrity Checking	90
	5.4.1.1.3. Generation of Maximum Attainable	
	Efficiency Control Variables	96
	5.4.1.2. Reference Values Segment	98
	5.4.1.3. Results Segment	98
	5.4.2 MC3PHAC GUI	100
	5.4.3 Integration of V/I GUI and MC3PHAC GUI	100
	5.4.4 Online Implementation of V/I Maximum Efficiency Method	102
	5.4.5 Results of Online Implementation of the V/I Maximum Attainab	le
	Efficiency Method and Discussion	103
5.4.6	Comparison of the Performance of V/f Drive with and without the	
	Application of V/I Maximum Attainable Efficiency Method	109
5.6	Comparison of the Proposed Control Method with Existing Method	112
5.7.1	Investigation on the Effect of Temperature in the Implementation of	
	V/I Maximum Attainable Efficiency Method	113
5.8	Conclusions	115
		115
		110
CHA	PTER 6: RBFNN BASED APPROACH FOR PREDICTING	110
CHA	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE	
CHA	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE	
CHA	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD	116
CHA	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD	116
CHA	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD	116 116
CHA 6.1 6.2	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based	116 116
CHA 6.1 6.2	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator	116 116 117
 CHA 6.1 6.2 6.3 6.4 	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator	116 116 117 119
 CHA 6.1 6.2 6.3 6.4 6.4 	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators	116 116 117 119 112
 CHA 6.1 6.2 6.3 6.4 6.5 	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators Results and Analysis	116 116 117 119 112 124
 CHA 6.1 6.2 6.3 6.4 6.5 	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators Results and Analysis 6.5.1 Collecting Data of Controlled Variables for Maximum Attainabl	116 116 117 119 112 124 e
 6.1 6.2 6.3 6.4 6.5 	PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators Results and Analysis 6.5.1 Collecting Data of Controlled Variables for Maximum Attainabl Efficiency	116 116 117 119 112 124 e 124
 6.1 6.2 6.3 6.4 6.5 	 PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators Results and Analysis 6.5.1 Collecting Data of Controlled Variables for Maximum Attainable Efficiency 6.5.2 Training and Testing of V/I_RBFNN1 and V/I_RBFNN2 	116 116 117 119 112 124 e 124 124
 CHA 6.1 6.2 6.3 6.4 6.5 	 PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators Results and Analysis 6.5.1 Collecting Data of Controlled Variables for Maximum Attainable Efficiency 6.5.2 Training and Testing of V/I_RBFNN1 and V/I_RBFNN2 6.5.3 Results and Discussion	116 116 117 119 112 124 e 124 124 125
 CHA 6.1 6.2 6.3 6.4 6.5 	 PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators Results and Analysis 6.5.1 Collecting Data of Controlled Variables for Maximum Attainable Efficiency 6.5.2 Training and Testing of V/I_RBFNN1 and V/I_RBFNN2 6.5.3 Results and Discussion Comparison of the Computational Effort in V/I_GUI and 	116 116 117 119 112 124 e 124 124 125
 CHA 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	 PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators Results and Analysis 6.5.1 Collecting Data of Controlled Variables for Maximum Attainable Efficiency 6.5.2 Training and Testing of V/I_RBFNN1 and V/I_RBFNN2 6.5.3 Results and Discussion Comparison of the Computational Effort in V/I_GUI and V/I_RBFNN Method 	116 116 117 119 112 124 e 124 124 125 127
 CHA 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	 PTER 6: RBFNN BASED APPROACH FOR PREDICTING CONTROL VARIABLES FOR ONLINE IMPLEMENTATION V/I MAXIMUM ATTAINABLE EFFICIENCY METHOD Introduction Need for Intelligent Estimator in Place of Visual Basic Based Maximum Attainable Efficiency Control Variable Estimator V/I_RBFNN Estimator Training of V/I_RBFNN Estimators Results and Analysis 6.5.1 Collecting Data of Controlled Variables for Maximum Attainable Efficiency 6.5.2 Training and Testing of V/I_RBFNN1 and V/I_RBFNN2 6.5.3 Results and Discussion Comparison of the Computational Effort in V/I_GUI and V/I_RBFNN Method Conclusion	116 116 117 119 112 124 e 124 125 127 129

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

71	Summary	130
,	7.1.1 New Control Method for Maximizing Attainable Efficiency at Partial Loads in VVVF IM Drive with V/f Controller	130
	7.1.2 Online Implementation of the Proposed Method using Visual Basic	131
	7.1.3 The Effect of Temperature of the Proposed Method	124
	7.1.4 Radial Basis Function Neural Network (RBFNN) Based Approach for Prediction of Control Variables for Online Effective Implementation of V/I Maximum Attainable Efficiency Method	132
	7.1.5 Advantages and Disadvantages of V/I Concept for Maximizing the Efficiency	132
	7.1.6 Application to Large IM	133
7.2	Recommendations	133
7.3	Future Research	134

APPENDICES	134
REFERENCES	169
PUBLICATION LIST	185

· · ·

LIST OF TABLES

,

Table 2.1	NEMA Efficiency Standards for SCIM	23
Table 2.2	Efficiency Improvement by Flux Program (Bose, 1994)	23
Table 2.3	Motor Testing Standards 28	
Table 2.4	Efficient Comparison for Efficiency and Standard Efficiency	
	Motor	32
Table 4.1	MC3PHAC Variable used in Validating V/I Maximum	
	Attainable Efficiency Method	53
Table 5.1	Comparison of Performance with and without the Application of	
	Proposed V/I Maximum Attainable Efficiency Method at Low	
	Speed (750 rpm).	111
Table 5.2	Comparison of Performance with and without the Application of	
	Proposed V/I Maximum Attainable Efficiency Method at High	
	Speed (1500 rpm).	111
Table 5.3	Comparison of Performance of Proposed V/I Maximum	· ·
·	Attainable Efficiency Method with Existing Methods	112
Table 6.1	Typical data used for Training and Testing (only partial list	•
	is given)	125
Table 6.2	Test Results on the Performance of V/I_RBFNN1	126
Table 6.3	Test Results on the Performance of V/I_RBFNN 2	126
Table 6.4	Comparison of Computational Effort for V/I_GUI and	
	V/I_RBFNN Methods at 1200 rpm	128
Table 6.5	Comparison of Computational Effort for V/I_GUI and	
	V/I_RBFNN Methods at 1350 rpm	128
Table C.1	Load: 25% Full Load	137
Table C.2	Load: 50% Full Load	138
Table C.3	Load: 75% Full Load	138
Table D.1	Load: 25% Full Load	139
Table D.2	Load: 50% Full Load	139
Table D.3	Load: 75% Full Load	140
Table G.1	MC3PHAC User Interface Variables	165

Table H.1	Temperature: 27 C° Load: 25% Full Load	172
Table H.2	Temperature: 34 C° Load: 25% Full Load	173
Table H.3	Temperature: 39 C° Load: 25% Full Load	174
Table H.4	Temperature: 44 C° Load: 25% Full Load	175
Table H.5	Temperature: 50 C° Load: 25% Full Load	175

.

LIST OF FIGURES

.

Figure 2.1	Structure of Biological Neuron (Bose, 2007)	15
Figure 2.2	Model of Artificial Neuron (Bose, 2004)	15
Figure 2.3	Loss Component for 3.4 kW, 4-pole SCIM (Hitoshi and	
	Yuji, 2003)	19
Figure 2.4	SCIM Losses Characteristics in VVVF Drive (Bose, 2004)	19
Figure 2.5	Per phase SCIM Equivalent Circuit	25
Figure 2.6	Efficiency Comparison for Mitsubishi Electric Motors	
	(Hitoshi and Yuji, 2003)	33
Figure 3.1	Incorporation of the V/I Maximum Attainable Efficiency	
	Method	38
Figure 3.2	Per Phase Steady-State Equivalent Circuit of IM	39
Figure 3.3	Block Diagram for Implementing V/I Maximum Attainable	
	Efficiency Method	46
Figure 4.1	Experimental Setup	51
Figure 4.2	Modified MC3PHAC Master Mode Schematic Diagram	55
Figure 4.3	Three-phase IGBT Inverter Circuit Schematic	56
Figure 4.4	Upper Arm PWM IGBT Inverter Gate Control Circuit Diagram	57
Figure 4.5	Lower Arm PWM IGBT Inverter Gate Control Circuit Diagram	58
Figure 4.6	Schematic Diagram of Power Supply to Gate Drive Circuits	59
Figure 4.7	The MC3PHAC GUI Start Up Page	61
Figure 4.8	PC Successfully Communicates with MC3PHAC	62
Figure 4.9	PC Failed to Communicate with MC3PHAC	62
Figure 4.10	Motor Parameter and MC3PHAC Control Variable Setup	63
Figure 4.11	MC3PHAC GUI Oscilloscope Shows Speed Changes	64
Figure 4.12	Accessing MC3PHAC Variables to Control SCIM Operation	66
Figure 4.13	Efficiency vs V/I ratio at f=50Hz and at Variable Load for	
	SCIM	68
Figure 4.14	Efficiency vs V/I ratio at f=50Hz and at Variable Load	
	for WRIM	70

xv

Figure 5.1	Block Schematic for Online Implementation of V/I	
	Maximum Attainable Efficiency Method	73
Figure 5.2	V/I_GUI Software Architecture for Online Maximum	
	Attainable Efficiency Method	73
Figure 5.3	Schematic of Feedback Signal Processing and Interfacing with	
	V/I_GUI	77
Figure 5.4	Voltage and Current Sensing Circuit	78
Figure 5.5	Voltage Signal Amplifier	79
Figure 5.6	Current Signal Amplifier	80
Figure 5.7	Low Pass Filter for Voltage Signals	81
Figure 5.8	Low Pass Filter for Current Signal	82
Figure 5.9	DAQ and MC3PHAC Controller Interfacing Architecture	84
Figure 5.10(a)	Independent Mode of Operation of the GUIs	85
Figure 5.10(b)	Integrated Mode of Operation of the GUIs	85
Figure 5.11	Contex Diagram Showing the Integration of V/I Maximum	
	Attainable Efficiency Controller with MC3PHAC	86
Figure 5.12	A Screen Shot of the Output Results Obtained using V/I_GUI	
	Maximum Efficiency Method	88
Figure 5.13	The Flow Diagram of the Process of Interfacing DAQ to	
	V/I_GUI	90
Figure 5.14	Flow Diagram for Integrity Check V_{I} , and I_{I} Calculation	91
Figure 5.15	Flow Chart for Frequency Calculation Algorithm	93
Figure 5.16	Flow Diagram of the Algorithm Used for Calculation of	
	Phase Angle	95
Figure 5.17	Flow Diagram of the Algorithm to Run the Motor at	
	Maximum Attainable Efficiency	97
Figure 5.18	Flow Diagram of the Motor Parameter Assignment Algorithm	99
Figure 5.19	System Overview of MC3PHAC (Steven, 2002)	101
Figure 5.20	Online Visualization of Input and Output Variable Using Speed	
	Scope in MC3PHAC_GUI (Steven, 2002)	101

Figure 5.21	V/I_GUI Screen Shot Showing the Results of the	
	Implementing V/I Maximum Attainable Efficiency	105
Figure 5.22	Efficiency Vs V/I ratio at Different Frequencies (speeds)	106
Figure 5.23	Variation of Efficiency with Slip Corresponding to Various	
	Values of V/I	107
Figure 5.24	Efficiency Vs V/I ratio at 40Hz, with Varying Loads	108
Figure 5.25	Efficiency Vs Slip (for various values of V/I ratio) at f=40Hz,	
	with Varying Loads	108
Figure 5.26	Power Factor Vs V/I ratio at a Given Load with Various	
	Operating Frequency	110
Figure 5.27	Power Factor Vs Slip at a Given Load with Various	
	Operating Frequency	110
Figure 5.28	Efficiency Vs V/I ratio at Various Temperature (for a SCIM	
	with $(V/I)_{ref}$ equal to 258.8)	114
Figure 6.1	Implementation of V/I Maximum Attainable Efficiency	
	Method with V/I_RBFNN Estimator	167
Figure 6.2	V/I_RBFNN1 Estimator with 4 Inputs and 1 Output Node with	
	2 Outputs	121
Figure 6.3	V/I_RBFNN2 Estimator with 4 Inputs and 2 Output Node	
	Each with 1 Output	121
Figure 6.4	Flow Diagram of V/I_RBFNN Estimator Generalization	123
Figure A.1	Circuit of Feedback Signal Processing and Interfacing with	
	V/I_GUI	135
Figure B.1	Over all Experiment Setup	136
Figure E1	The Code to Configure Select and Open the DAQ	141
Figure E.2	The Code to Configure Select and Open the DAQ	141
Figure E.2	The Code to Set the Input Channel	
Figure E.3	Subroutine to Real Data Sample from Buffer Memory to	
	Temporary Memory	142
Figure E.4	The Code to Receive Data from MC3PHAC	143
Figure E.5	The code to Transmit Data to MC3PHAC	144
Figure G.1	MC3PHAC GUI Design and Organization	163

Figure G.2	MC3PHAC Motor Control State Diagram	166
Figure G.3(a)	MC3PHAC GUI Page	168
Figure G.3(b)	System Fault Segment of MC3PHAC GUI page Showing	
	Intermittent Problem Due to Noise	168
Figure G.4	Modified and Improved MC3PHAC Control Circuit	
	Configuration	169
Figure G.5	System Faults Segment of MC3PHAC GUI Page with Noise	
	Immunity Improvement	170
Figure G.6	V/I_GUI Screen Shot Prompting to Select DAQ	171

.

.

LIST OF ABBREVIATIONS

AC	Alternating Current
AI	Artificial Intelligent
ANN	Artificial Neural Network
ANSI	American National Standard Institute
ASD	Adjustable Speed Drive
BJT	Bipolar Junction transistors
BS	British Standard
CSA	Canadian Standards Association
CSI	Current Source Inverter
DAS	Data Acquisition Interface System
DAQ	Data Acquisition
DAQv	Voltage Signal at A/D Converter
DC	Direct Current
DOL	Direct Online
DSP	Digital Signal Processing
DTC	Direct Torque Control
EMI	Electromagnetic Interference
EPAct	The Energy Policy and Conversation Act
EPRI	Electric Power Research Institute
f	Supply Frequency
FL	Fuzzy Logic
GA	Genetic Algorithm
$G_{amp,v}$	Voltage Gain from amplifier
$G_{f,I}$	Current Gain from Low-pass Filter
$G_{f,v}$	Voltage Gain from Low-pass filter
GTO	Gate Turn-off (GTO) Thyristor,
HTML	Hypertext Mark-up Language
I_1	Stator Current
I ₂	Rotor Current Referred to Stator,
I_I	RMS Phase Current

I _{1,max}	Maximum Fundamental Phase Current
Iphase	Phase Current Signal
Isense	Sensed Current Signal
IC	Integrated Circuit
IEC	International Electrotechnical Commission
IEEE	Institute of Electric and Electronic Engineering
IGBT	Insulated Gate Bipolar Transistor
IM	Induction Motor
JEC	Japanese Electrotechnical Committee
LED	Light Emitting Diode
LPF	Low-pass Filter
m	Modulation Index
MOSFET	Metal Oxide Silicon Field Effect Transistor
MSQ	Mean Squared Error
NEMA	National Electrical Manufacturer Association
Nr	Rotor Speed
N _{r,η_max}	Rotor Speed at Maximum Attainable Efficiency
PC	Personal Computer
Pcl	Primary copper losses
Pin	Power in
PWM	Pulse Width Modulation
RBFNN	Radial Based Function Neural Network
RPM	Revolution per minute
S	slip
SCADA	Supervisory Control and Data Acquisition
SCIM	Squirrel Cage Induction Motor
SLL	Stray Load Losses/Stray Losses
R_{l}	Stator Winding Resistance
R_2	Rotor Resistance
T_{I}	Time at First Zero Crossing
T_2	Time at Second Zero Crossing
T_3	Time at Third Zero Crossing

V ₁	Stator Voltage
VB	Visual Basic
V/f	Voltage/frequency
(V_l/I_l)	Measured Value of V/I
V/I	Voltage over Current
V/I_GUI	V/I Graphic User Interface
(V/I) _{online}	Online Value of V/I
(V/I) _{ref}	Reference Value of V/I
V_1	RMS Phase Voltage
$V_{l,max}$	Maximum Fundamental Phase Voltage
V _{boost}	Voltage Boost
V/I_RBFNN	V/I Radial Basis Function Neural Network
V_m	Maximum Voltage
V_{phase}	Phase Voltage Signal
V _{sense}	Sensed Voltage Signal
VSI	Voltage Source Inverter
VVVF	Variable Voltage Variable Frequency
WRIM	Wire Wound Induction Motor
X_l	Stator Winding Leakage Reactance
X_2	Rotor Leakage Reactance
Xm	Magnetizing Reactance

CHAPTER 1

INTRODUCTION

1.1. General

Induction motors (IMs), especially squirrel cage induction motors (SCIMs), are widely used in almost all industrial applications. According to a recent survey, more than half of the electricity generated is consumed by the electric motors of SCIM type (Boglietti et al, 2008; Bonnett, 1993). Traditionally, AC machines with constant frequency sinusoidal power supply have been used in applications requiring nearly constant speed operation, whereas, DC machines have been preferred for variable-speed drives. DC machines have the disadvantages of higher cost, higher rotor inertia and maintenance problems with their commutation system. Commutation in conventional DC machines limits the machine speed and peak current, causes electromagnetic interference (EMI) problems and does not permit machine operation in hazardous and explosive environments. IMs on the other hand, do not have the disadvantages mentioned above. With the advances made in semiconductor technology, the development of variable speed IM drives using static inverters, particularly the voltage source inverter (VSI) is found feasible. As a result, inverters fed IMs are now replacing conventional DC machines in many industrial applications.

1.2. Developments in IM Drives

Issues of controlling the speed and the torque of IM have drawn attention of the researchers for many decades. As a result, from the simple scalar control of IM to complex vector control incorporating intelligent control, have been attempted. Many types of AC motor drives have been developed in the past for the control of speed, torque, and position of mechanized systems (Abe et al., 1993; Cardoso; 1998; Danial

et al, 2005; Ebrahim, 2006; Ferreira, 2005; Bensalem, Y. and Abdelkrim, 2009). The principle of direct torque control (DTC) was proposed in 1995 (Holtz, 2002). Though, IM drives, in general, are simple in construction and operation, they are more complex to control than their DC counterparts. The complexity in control increases substantially, if high performances are demanded. In spite of being singly excited, the reasons for the increased complexity are the need for variable-frequency harmonically optimum converter power supplies, complex dynamics, variation in machine parameters and difficulties in processing feedback signals in the presence of harmonics (Bose, 1996; Boglietti, 2007). Though the control of IM sometimes may become costly, industries still favour IMs over DC motors due to simple construction of the motor, easy maintenance, longevity and due to their capability to operate in harsh and hazardous environments. Continuous and high market demands make it desirable that IMs replace high performance motors like separately excited DC motor drives. This calls for controllers to be employed in an energy efficient way.

Integrating energy efficiency schemes in IM drives is very important and is a continuous process. They get attention from various communities starting from engineers, researchers, utilities and governments (Gray, 1996). One major problem associated with IMs is that the efficiency of IM drops when it operates with load lower than rated values (Kim et al, 1984; Kirschen, 1985) as more losses occur during such operation. Studies conducted by the Electric Power Research Institute (EPRI) revealed that over 60% of industrial motors operate at less than 60 percent of their rated load. Idling, cyclic/lightly loaded or oversized motors consume more power than required even when they aren't working (Fernando, 2008). These motors waste energy, generate excessive utility costs and unnecessary motor wear and tear (Bose, 2004).

From mid 1980 to 2000 many control schemes for energy management in scalar or vector or direct torque controlled IMs have been reported. Due to the advances in the application of artificial intelligence (AI) in power electronics and drive systems, to face the continuous crisis of increased fuel price and to conserve fossil fuel reserve, energy optimization management of IM remains a subject of

further improvement (De Almeida et al, 1997; De-Keulenaer et al, 2004; Ferreira et al, 2005; Boglietti et al, 2008; Wang, 2010). Production of efficient and premium efficient motors (Peter et al, 2007; Kwang, 2009) which comply with the National Electrical Manufacturer Association (NEMA) and European CEMEP protocols are being undertaken. These motors themselves are now very efficient and are able to work at variable voltage variable frequency (VVVF). As the VVVF motors have become available, the researchers have also been concentrating on inventing and producing new VVVF controllers which are better in energy efficiency aspect than the direct online (DOL) controllers (Feldman, 2009). For example, volt/hertz (V/f) is the most simplest and widely use VVVF controller in industries. The combination of premium efficient VVVF motors and VVVF controllers will not only save energy but also prolong the life of the motors. These inventions have not closed the door for more improvement of the VVVF motors and drive controllers (Bose, 2002). At the beginning, the researches to improve the strategies to control and to increase efficiency were done separately. However, due to advances in power electronics technology, sensing technology, data acquisition and interfacing technology, and computer software and hardware, it has been realized that integrating the control and efficiency increasing strategies of the IM drive is possible. Researches done to improve the efficiency of IM drives (Bonnett, 1993; Brethauer, 1994) include: 1) the use of high-efficiency (premium efficiency) motors instead of standard motors, 2) replacement of constant speed mechanically controlled processes with variable or adjustable speed control, and 3) replacement of DC motor drives with IM adjustable speed drives (ASD) in industrials processes where necessary (as in conveyors, textile and paper industries, and machine tools). As the AI, power electronics and drive systems technology progressed, the focus is given on optimizing the efficiency, along with improving the torque and control characteristics of drives.

The VVVF SCIM drives incorporating AI are preferable to replace the old drive systems. Especially, the premium or high efficiency VVVF motor drives with intelligent maximum attainable efficiency schemes are more desirable (Bose, 2000; Jianye et al, 2010) for both low performance and high performance drives. The reason is that, a significant amount of energy is saved (up to 60%) by such incorporation (Jingli et al, 2008). These replacement strategies not only save energy, but they also improve the reliability of the system having less failure, repair and maintenance time, thus reducing maintenance cost and increasing productivity. It also improves work environment and safety in the area where these drives exist.

Many motors can be controlled by a single supervisory control system. Achieving maximum attainable efficiency in IM is directly related to the choice of the flux level. The higher the flux level, the larger the iron losses are. However, extreme minimization causes greater copper losses. Thus, there is an optimal flux level that guarantees loss minimization. Choosing the optimum flux level in the IM remains an open problem from the perspective of motor efficiency. Many researchers continue to work on this problem. In general, most of the researchers have attempted IM control for maximum efficiency through optimum current control, optimum power factor control, optimum slip control, minimum power control etc. (Abrahamsen, 1997; 2000; Benbouzid, 1997; Bose, 1999; 2002; Feng, 2003; Cacciato , 2006; Chakraborty, 2002; Gamboa, 2007; Ahmed, Ebrahim ; 2009) . These methods have one or more of the following disadvantages: need for large computational effort, sensitivity to machine parameter variations (especially due to high temperature), need for extra sensors on the rotor side, working in parallel with speed control loop resulting in complex controller configuration.

1.3. Thesis Objectives

The objectives of the thesis are:

 To study and develop a new method which overcomes the deficiencies of the existing methods for maximizing the attainable efficiency of IM drives at a given load. The method is based on the use of V/I reference value (specific for each motor) calculated using motor constants. To validate the method experimentally in the laboratory using a threephase PWM inverter fed low power induction motor and develop the required hardware and software effective for online implementation of the method in variable voltage variable frequency IM drives with V/f controller.

1.4. Main Contributions of the Thesis

The main contributions of the thesis are:

- 1. The continuous crisis of increased fuel price and the need to conserve fossil fuel reserve, energy optimization management of induction motors remains a subject of great concern and further research. This thesis proposes a new method for achieving maximum attainable efficiency of IM drives even at partial loads (lower than full load) and thus contributing to energy saving. The method called "V/I Maximum attainable efficiency method" shall provide a new approach in the control of modern induction motors. The method can be implemented on three-phase induction motors (squirrel cage or wound rotor) with VVVF drive system.
- 2. The conventional V/f IM drives are provided with open-loop control. A new online closed-loop control method and related software for incorporating V/I maximum attainable efficiency method have been proposed and developed for V/f IM drives for applications where the speed control requirement is not very stringent.
- 3. A new effective intelligent method called "V/I_RBFNN maximum attainable efficiency method" for online implementation of "V/I maximum attainable efficiency method" in VVVF IM drives is proposed and the relevant control software has been developed. The method has been validated by MATLAB simulation.

The research publications based on the thesis are listed at the end of thesis.

1.1

1.5. Thesis Organization

This thesis consists of seven chapters. The content of each chapter is outlined as below:

Chapter 1 of the thesis introduces the subject matter with a brief review of IM control methods, modern control and efficiency improvement techniques for IMs. Then the objectives and contributions of the thesis are presented.

Chapter 2 deals with literature review, where, the previous works related to the subject are briefly discussed. This includes the conventional and intelligent IM drives and controllers and various types of losses and techniques of evaluating efficiency of IM. The motivation for the research work carried out in this thesis has been outlined.

Chapter 3 describes basic principle of the proposed method of maximizing attainable efficiency of IM drives using V/I control method. The derivation of $(V/I)_{ref}$ corresponding to maximum attainable efficiency using IM equivalent circuit parameters is discussed. The related mathematical analysis is presented.

Chapter 4 describes the development of experimental setup for V/f SCIM drive using SCIM system in the laboratory and latest AC motor controller module available in the market for the implementation and verification of the proposed method. The experimental validation and results are presented and discussed. **Chapter 5** describes the design, development and integration of software and hardware in the online implementation of the proposed method, and study of the performance for a given operating condition (voltage, load, speed, and temperature). The development of a closed-loop V/f controller and development of the required GUI software for incorporating the proposed method using Visual Basic 6.0, are discussed. The results obtained from the laboratory implementation are presented and discussed.

Chapter 6 presents a method of using RBFNN for online implementation of V/I control method in industrial environment. The development of two RBFNN based intelligent control variable estimator with relevant software has been discussed. The verification of the method by MATLAB simulation and simulation results are presented.

Chapter 7 summarizes the achievements of this research and the recommendations for future work.