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ABSTRACT 

Induction Motor (IM) drives are widely used in industrial, commercial, 

domestic, and other applications due to their simple robust construction, safe-long 

trouble free operation with minimum maintenance and wear and tear etc. Maximum 

efficiency of an IM usually occurs at near full load operation at rated 'voltage. But in 

many applications these motors are required to operate at other than rated load, 

where, the efficiency is much less than the maximum attainable efficiency. To 

achieve the maximum attainable efficiency at loads other than rated values, it is 

necessary to regulate the flux level by changing the voltage/frequency suitably at any 

given motor load. Large IMs usually are fairly highly efficient, compared to small 

TM. Low efficiency leads to uneconomic use of power in industrial installations. 

Maximum attainable efficiency operation of an IM at partial loads may be obtained 

by using a controller which can search for the maximum attainable efficiency 

condition at the given partial load and then operate the IM at that condition. The 

controllers reported in literature arrive at maximum efficiency point by minimizing 

the power or minimizing the current or maximizing power factor or optimizing the 

slip.

In this thesis, a technique based on V/I maximum attainable efficiency 

method is proposed for operating an IM with V/f controller at maximum attainable 

efficiency at partial loads. The technique requires estimation of V/I reference value 

(VII)ref, corresponding to maximum attainable efficiency at a given load using TM 

equivalent circuit parameters. Analysis and theoretical validation of the technique has 

been carried out using IM equivalent circuit. Experiments were carried out in the 

laboratory using a PWM inverter fed fractional horsepower SCIM with a V/f 

controller (specially developed and fabricated) at a few selected loads at rated 

frequency. The supply voltage to th6 SCIM was varied for the selected loads and the 

corresponding V/I values were calculated by measuring V and T at stator terminals. 

The efficiency for various values of V/I were plotted for the selected loads. It has 

been found from the graphs that for a given load, the maximum attainable efficiency 
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occurs at a value of V/I closer to the calculated (V/I) éf. The results thus validate the 

concept proposed. 

To validate the feasibility of online application the technique to VVVF drives, 

a online V/I maximum attainable efficiency control software using Visual Basic 6.0, 

V/I_GUI has been developed and incorporated in the motor V/f controller. The V/f 

controller was designed developed and fabricated using MC3PHAC AC motor 

controller module. The experiments were repeated at the selected loads for selected 

frequencies below the rated frequency. The efficiency versus V/I plots for different 

loads at each selected frequency have confirmed that maximum attainable efficiency 

can be achieved at V/I values ( (V1I)01 ) closer to (V/J)rej value in the frequency 

range of 0.7 p.0 to 1.0 p.u. of rated frequency. This confirms the applicability of the 

proposed V/I maximum attainable efficiency method for online TM control also. 

The control software developed using Visual Basic 6.0 was found to result in 

some drawbacks with respect to flux regulation and response time due to searching 

for the optimum control variables corresponding to the maximum attainable 

efficiency, in multiple steps. To overcome the deficiency, the V/I_RBFNN, an 

improved control software using Radial Based Function Neural Network (RBFNN) 

was developed and incorporated in the V/f controller. The data obtained using the 

previous control software was used to train and test the proposed V/I_RBFNN. The 

functioning of the improved control software was verified by simulation using 

MATLAB 10. It was found that the improved control software using RBFNN 

predicts with considerable precision the optimum control variables corresponding to 

maximum attainable efficiency in one single step. Due to technical complexities 

involved and limitation in the required facilities, the implementation of V/IRBFNN 

proposed in a online V/f drive could not be carried out experimentally. However, the 

proposed method is applicable to any variable frequency drive when the proposed 

and developed control software based on RBFNN is incorporated into its V/f 

controller. The theoretical analysis, experimental and simulation methodology and 

the results obtained are described and discussed in the thesis. 
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CHAPTER 1 

INTRODUCTION 

1.1.	 General 

Induction motors (IMs), especially squirrel cage induction motors (SCIMs), 

are widely used in almost all industrial applications. According to a recent survey, 

more than half of the electricity generated is consumed by the electric motors of 

SCIM type (Boglietti et al, 2008; Bonnett, 1993). Traditionally, AC machines with 

constant frequency sinusoidal power supply have been used in applications requiring 

nearly constant speed operation, whereas, DC machines have been preferred for 

variable-speed drives. DC machines have the disadvantages of higher cost, higher 

rotor inertia and maintenance problems with their commutation system. 

Commutation in conventional DC machines limits the machine speed and peak 

current, causes electromagnetic interference. (EMI) problems and does not permit 

machine operation in hazardous and explosive environments. IMs on the other hand, 

do not have the disadvantages mentioned above. With the advances made in 

semiconductor technology, the development of variable speed IM drives using static 

inverters, particularly the voltage source inverter (VSI) is found feasible. As a result, 

inverters fed IMs are now replacing conventional DC machines in many industrial 

applications. 

1.2. Developments in IM Drives 

Issues of controlling the speed and the torque of IM have drawn attention of 

the researchers for many decades. As a result, from the simple scalar control of IM to 

complex vector control incorporating intelligent control, have been attempted. Many 

types of AC motor drives have been developed in the past for the control of speed, 

torque, and position of mechanized systems (Abe et al., 1993; Cardoso; 1998; Danial 
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et a!, 2005; Ebrahim, 2006; Ferreira, 2005; Bensalem, Y. and Abdelkrim, 2009). The 

principle of direct torque control (DTC) was proposed in 1995 (Holtz, 2002). 

Though, IM drives, in general, are simple in construction and operation, they are 

more complex to control than their DC counterparts. The complexity in control 

increases substantially, if high performances are demanded. In spite of being singly 

excited, the reasons for the increased complexity are the need for variable-frequency 

harmonically optimum converter power supplies, complex dynamics, variation in 

machine parameters and difficulties in processing feedback signals in the presence of 

harmonics (Bose, 1996; Boglietti, 2007). Though the control of TM sometimes may 

become costly, industries still favour IMs over DC motors due to simple construction 

of the motor, easy maintenance, longevity and due to their capability to operate in 

harsh and hazardous environments. Continuous and high market demands make it 

desirable that IMs replace high performance motors like separately excited DC motor 

drives. This calls for controllers to be employed in an energy efficient way. 

Integrating energy efficiency schemes in IM drives is very important and is a 

continuous process. They get attention from various communities starting from 

engineers, researchers, utilities and governments (Gray, 1996). One major problem 

associated with IMs is that the efficiency of IM drops when it operates with load 

lower than rated values (Kim et a!, 1984; Kirschen, 1985) as more losses occur 

during such operation. Studies conducted by the Electric Power Research Institute 

(EPRI) revealed that over 60% of industrial motors operate at less than 60 percent of 

their rated load. Idling, cyclic/lightly loaded or oversized motors consume more 

power than required even when they aren't working (Fernando, 2008). These motors 

waste energy, generate excessive utility costs and unnecessary motor wear and tear 

(Bose, 2004). 

From mid 1980 to 2000 many control schemes for energy management in 

scalar or vector or direct torque controlled IMs have been reported. Due to the 
advances in the application of artificial intelligence (Al) in power electronics and 

drive systems to face the continuous crisis of increased fuel price and to conserve 

fossil fuel reserve energy optimization management of TM remains a subject of 

2



further improvement (De Almeida et a!, 1997; De-Keulenaer et al, 2004; Ferreira et 

a!, 2005; Boglietti et a!, 2008; Wang, 2010). Production of efficient and premium 

efficient motors (Peter et a!, 2007; Kwang, 2009) which comply with the National 

Electrical Manufacturer Association (NEMA) and European CEMEP protocols are 

being undertaken. These motors themselves are now very efficient and are able to 

work at variable voltage variable frequency (VVVF). As the VVVF motors have 

become available, the researchers have also been concentrating on inventing and 

producing new VVVF controllers which are better in energy efficiency aspect than 

the direct online (DOL) controllers (Feldman, 2009). For example, volt/hertz (V/f) is 

the most simplest and widely use VVVF controller in industries. The combination of 

premium efficient VVVF motors and VVVF controllers will not only save energy 

but also prolong the life of the motors. These inventions have not closed the door for 

more improvement of the VVVF motors and drive controllers (Bose, 2002). At the 

beginning, the researches to improve the strategies to control and to increase 

efficiency were done separately. However, due to advances in power electronics 

technology, sensing technology, data acquisition and interfacing technology, and 

computer software and hardware, it has been realized that integrating the control and 

efficiency increasing strategies of the IM drive is possible. Researches done to 

improve the efficiency of IM drives (Bonnett, 1993; Brethauer, 1994) include: 1) the 

use of high-efficiency (premium efficiency) motors instead of standard motors, 2) 

replacement of constant speed mechanically controlled processes with variable or 

adjustable speed control, and 3) replacement of DC motor drives with IM adjustable 

speed drives (ASD) in industrials processes where necessary (as in conveyors, textile 

and paper industries, and machine tools). As the Al, power electronics and drive 

systems technology progressed, the focus is given on optimizing the efficiency, along 

with improving the torque and control characteristics of drives. 

The VVVF SCIM drives incorporating Al are preferable to replace the old 

drive systems. Especially, the premium or high efficiency VVVF motor drives with 

intelligent maximum attainable efficiency schemes are more desirable (Bose, 2000; 

Jianye et a!, 2010) for both low performance and high performance drives. The 

reason is that, a significant amount of energy is saved (up to 60%) by such 
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incorporation (Jingli et al, 2008). These replacement strategies not only save energy, 

but they also improve the reliability of the system having less failure, repair and 

maintenance time, thus reducing maintenance cost and increasing productivity. It 

also improves work environment and safety in the area where these drives exist. 

Many motors can be controlled by a single supervisory control system. 

Achieving maximum attainable efficiency in IM is directly related to the choice of 

the flux level. The higher the flux level, the larger the iron losses are. However, 

extreme minimization causes greater copper losses. Thus, there is an optimal flux 

level that guarantees loss minimization. Choosing the optimum flux level in the TM 

remains an open problem from the perspective of motor efficiency. Many researchers 

continue to work on this problem. In general, most of the researchers have attempted 

IM control for maximum efficiency through optimum current control, optimum 

power factor control, optimum slip control, minimum power control etc. 

(Abrahamsen, 1997; 2000; Benbouzid, 1997; Bose, 1999; 2002; Feng, 2003; 

Cacciato , 2006; Chakraborty, 2002; Gamboa, 2007; Ahmed, Ebrahim ; 2009) 

These methods have one or more of the following disadvantages: need for large 

computational effort, sensitivity to machine parameter variations (especially due to 

high temperature), need for extra sensors on the rotor side, working in parallel with 

speed control loop resulting in complex controller configuration. 

1.3.	 Thesis Objectives 

The objectives of the thesis are: 

1. To study and develop a new method which overcomes the deficiencies of 

the existing methods for maximizing the attainable efficiency of IM 

drives at a given load. The method is based on the use of V/I reference 

value (specific for each motor) calculated using motor constants. 
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2. To validate the method experimentally in the laboratory using a three-

phase PWM inverter fed low power induction motor and develop the 

required hardware and software effective for online implementation of the 

method in variable voltage variable frequency IM drives with V/f 

controller. 

1.4. Main Contributions of the Thesis 

The main contributions of the thesis are: 

1. The continuous crisis of increased fuel price and the need to conserve 

fossil fuel reserve, energy optimization management of induction 

motors remains a subject of great concern and further research. This 

thesis proposes a new method for achieving maximum attainable 

efficiency of IM drives even at partial loads (lower than full load) and 

thus contributing to energy saving. The method called "V/I Maximum 

attainable efficiency method" shall provide a new approach in the 

control of modern induction motors. The method can be implemented 

on three-phase induction motors (squirrel cage or wound rotor) with 

VVVF drive system. 

2. The conventional V/f IM drives are provided with open-loop control. 

A new online closed-loop control method and related software for 

incorporating V/I maximum attainable efficiency method have been 

proposed and developed for V/f IM drives for applications where the 

speed control requirement is not very stringent. 

3. A new effective intelligent method called "V/I_RBFNN maximum 

attainable efficiency method" for online implementation of "V/I 

maximum attainable efficiency method" in VVVF IM drives is 

proposed and the relevant control software has been developed. The 

method has been validated by MATLAB simulation. 
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The research publications based on the thesis are listed at the end of 

thesis. 

1.5. Thesis Organization 

This thesis consists of seven chapters. The content of each chapter is outlined 

as below: 

Chapter 1 of the thesis introduces the subject matter with a brief review of IM 

control methods, modern control and efficiency improvement techniques for IMs. 

Then the objectives and contributions of the thesis are presented. 

Chapter 2 deals with literature review, where, the previous works related to the 

subject are briefly discussed. This includes the conventional and intelligent IM 

drives and controllers and various types of losses and techniques of evaluating 

efficiency of IM. The motivation for the research work carried out in this thesis has 

been outlined. 

Chapter 3 describes basic principle of the proposed method of maximizing 

attainable efficiency of IM drives using V/I control method. The derivation of (VII)ref 

corresponding to maximum attainable efficiency using IM equivalent circuit 

Parameters is discussed. The related mathematical analysis is presented. 

Chapter 4 describes the development of experimental setup for V/f SCIM drive 

using SCIM system in the laboratory and latest AC motor controller module 

available in the market for the implementation and verification of the proposed 

method. The experimental validation and results are presented and discussed. 
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Chapter 5 describes the design, development and integration of software and 

hardware in the online implementation of the proposed method, and study of the 

performance for a given operating condition (voltage, load, speed, and temperature). 

The development of a closed-loop V/f controller and development of the required 

GUI software for incorporating the proposed method using Visual Basic 6.0, are 

discussed. The results obtained from the laboratory implementation are presented and 

discussed. 

Chapter 6 presents a method of using RBFNN for online implementation of V/I 

control method in industrial environment. The development of two RBFNN based 

intelligent control variable estimator with relevant software has been discussed. The 

verification of the method by MATLAB simulation and simulation results are 

presented. 

Chapter 7 summarizes the achievements of this research and the recommendations 

for future work.
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