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ABSTRACT 

Nowadays in Hot press die, the die itself has a strong contribution to overall investment 

and maintenance costs and above all, the influence on produced component cost is 

unusually high. Incompatible usage of machining parameters may lead to the greater 

cost investment due to the frequent changing of tool. The optimum machining 

parameter can help in manufacturing operation by improved and adjusted the 

manufacturing process and at the same time increase their profit. In order to be a 

competent player in the market, a better material with higher thermal conductivity can 

contribute in short cycle time of hot stamping process besides improve the process and 

product performance. HTCS-150 is highly demand materials for making die with high 

thermal conductivity properties. It was predicted that this HTCS 150 will be common 

material in future, so that it is important to improve hot press cycle time. This study 

basically shows a detailed study to investigate the influence of machining parameters to 

tool wear rate and surface roughness and provides the optimum machining parameters 

of HTCS 150 both during annealed and hardened condition. In this study, the recorded 

data was analysed using Signal/Noise (S/N) ratio to find the significant of control 

factors level to the response. The optimum level of machining parameter was obtained 

at lowest mean of control factors as low value of tool flank wear rate and low surface 

roughness was desired. Further analysis was done to predict the flank tool wear rate and 

surface roughness through first linear model regression. Generally, the data show the 

spindle speed was the most dominant control factor contributing to the flank tool wear 

rate and surface roughness. This proved by the S/N ratio showed at the surface 

roughness response for annealed HTCS- 150 and both tool flank wear rate and surface 

roughness for hardened HTCS-150. However, depth of cut was the most contributing 

factor for tool flank wear rate during machining of annealed HTCS-150.
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ABSTRAK 

Kini dalam "Hot press die", die itu sendiri mempunyai sumbangan besar kepada 

keseluruhan pelaburan dan kos penyelenggaraan, kesimpulannya kos komponen yang 

dihasilkan adalah sangat tinggi. Penggunaan parameter yang tidak sesuai di dalam 

proses pemesinan boleh membawa kepada pelaburan kos yang lebih besar disebabkan 

oleh kekerapan pengantian peralatan. Penggunaan parameter yang optimum boleh 

membantu dalam operasi pembuatan dengan lebih efisyen terutama dalam proses 

pembuatan. Dalam usaha untuk menjadi pengusaha yang kompetitif di pasaran, bahan-

bahan yang mempunyai pengaliran suhu yang tinggi dapat membantu di dalam proses 

'Hot stamping" di samping meningkatkan kadar pemprosesan dan prestasi produk. 

HTCS-150 merupakan bahan yang penting dalam pembuatan die yang mana 

mempunyai sifat pengaliran suhu yang tinggi. Kajian mi pada asasnya menunjukkan 

satu kajian terperinci untuk menyiasat pengaruh parameter pemesinan kepada kadar 

haus mata alat dan kekasaran permukaan serta menyediakan parameter pemesinan yang 

optimum untuk HTCS 150 yang mana di dalam keadaan "annealed" dan "hardened". 

Dalam kajian mi, data dianalisis menggunakan nisbah Signal/Noise (S/N) untuk 

mencari nilai kebergantungan sesuatu faktor terhadap tindak balas. Tahap optimum 

parameter pemesinan diperolehi pada nilai purata terendah yang mana nilai tersebut 

adalah nilai yang dikehendaki. Analisis lanjut dilakukan untuk meramal kadar kehausan 

mata alat dan kekasaran permukaan melalui model pertama regresi linear. Secara 

amnya, data menunjukkan kelajuan pusingan merupakan faktor yang paling dominan 

menyumbang kepada kadar kehausan mata alat dan kekasaran permukaan. mi 

dibuktikan oleh nisbah S/N yang ditunjukkan melalui tindak balas kekasaran permukaan 

untuk HTCS-150 dalam keadaan "annealed" dan tindak balas kadar kehausan mata alat 

serta kekasaran permukaan untuk HTCS-150 dalan keadaan "hardened". Walau 

bagaimanapun, kedalaman pemotongan menjadi faktor kebergantungan yang paling 

tinggi dalam menetukan kadar kehausan mata alat semasa pemesinan HTCS-150 dalam 

keadaan "annealed"
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CHAPTER 1 

INTRODUCTION 

1.0 INTRODUCTION 

The term machinability refers to the ease with which a metal can be machined to 

an acceptable surface finish. [1] Materials with good machinability require little power 

to cut, can be cut quickly, easily obtain a good finish, and do not wear the tooling much; 

such materials are said to be free machining. The factors that typically improve a 

material's performance often degrade its machinability. Therefore, to manufacture 

components economically, engineers are challenged to find ways to improve 

machinability without harming performance. Machinability can be difficult to predict 

because machining has so many variables. Two sets of factors are the condition of work 

materials and the physical properties of work materials. [1] 

The condition of the work material includes eight factors: microstructure, grain 

size, heat treatment, chemical composition, fabrication, hardness, yield strength, and 

tensile strength. Physical properties are those of the individual material groups, such as 

the modulus of elasticity, thermal conductivity, thermal expansion, and work hardening. 

Other important factors are operating conditions, cutting tool material and geometry, 

and the machining process parameters. [1] 

HTCS-150 is a new developed engineered material with very high thermal 

conductivity (up to 66 WImk) combined with high wear resistance, which applicable for 

die in hot stamping of coated sheet, closed die forging, and injection of plastics 

reinforced with abrasive fibre glasses. Any other application requiring high thermal 

conductivity and high abrasive wear resistance tool steels may suite well for the 

Particular material. [2]

I 
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1.1 PROJECT BACKGROUND 

A greater thermal conductivity of the die material has some side effects that 

indirectly allow further increase in productivity. The most representative of these side 

effects is the directly proportional decrease of the thermal loading on the cooling 

channels, which allows them to approach the working surface without increasing the 

risk of thermal shock cracks. 

In this project a new developed material of High Thermal Conductivity Tool 

Steel (HTCS-150) is being investigated based on its machinability study where the 

machining operation is perform according to the control parameters which are the 

spindle speed, S ; feed rate, F ; and axial depth of cut (mm). In this machinability study, 

surface roughness (RJ,m and tool flank wear rate (nun/min) will be investigated for 

both annealed and hardened condition of the workpiece material. 

1.2 PROJECT TITLE 

Machinability Study of High Thermal Conductivity Tool Steel HTCS 150 (Tool 

Steel used in Hot Press Die). 

1.3 PROBLEM STATEMENT 

In Hot press die, the die itself has a strong contribution to overall investment and 

maintenance costs and above all, the influence on produced component cost is unusually 

high. Incompatible usage of machining parameters may lead to the greater cost 

investment due to the frequent changing of tool. 

HTCS-150 was introduced that may replace the AISI H13 Tool Steel which 

performs better in overcomes thermal shock and increase productivity in hot working 

tool steel process in the future due to its high thermal conductivity properties. 

Machinability data for this new developed material has not yet been reveal by the 

manufacturer or any third party. If any, there are very limited information for this type 

Of particular material. Thus, the optimum cutting parameter is a matter of concern.



1.4 PROJECT OBJECTIVES 

1 To investigate the influence of machining parameters to tool wear rate and 

surface roughness. 

2 To provide the optimum machining parameters of HTCS 150 both during 

annealed and hardened condition. 

1.5 PROJECT SCOPES 

The project scope are as follow: 

1. Preliminary machining trials on HTCS- 150 both for annealed and hardened 

condition to investigate the suitable levels of parameters of feed rate(f), spindle 

speed (S), and axial depth of cut (doc). 

2. Experimental setup using TiALN coated insert carbide with 16mm diameter end 

mill. 

3. Tool flank wear of TiA1N coated insert carbide and surface roughness 

measurement for both annealed and hardened HTCS-150. 

4. Data collection analysis to determine the significant parameter (Spindle speed, 

feed rate and depth of cut) and machining response (surface roughness and tool 

flank wear rate). 

5. Prediction model of flank wear rate and surface roughness towards control 

factors based on first model linear regression.

3 



CHAPTER 2 

LITERATURE REVIEW 

2.1 MACHINABILITY 

The term machinability is used to refer to the ease with which a work material is 

machined under a given set of cutting conditions. A prior knowledge of work material is 

importance to the production engineer so that can plan its processing efficiently. [3] 

In another term is expressed by a complex physical property of a metal which 

involve true machinability, finish ability or ease obtaining a good surface finish and 

abrasiveness or abrasion undergone by the tool during cutting. Apparently, 

"Machinability" was introduced for "Gradation of materials which respect to which 

machining" characteristics in term of chip form, cutting force, tool life and surface 

finish as importance parameters for machining assessment of a material. [3] 

A machinability model may be define as a functional relationship between the 

input of independent cutting variables (speed, feed, depth of cut) and the output known 

as response (tool life, surface finish, cutting force) of a machining process. Since 

machining is basically a finishing process with specified dimensions, tolerances and 

surface finish, the type of surface that be machining operation generates and its 

characteristics are of great importance in manufacturing. Properly optimizing the 

machining factors by considering the machinability criteria the production rates and 

excellent output such as low cutting forces, surface finish, tool life, power consumption 

and dimensional accuracy can be obtained with conventional machining methods if the 

unique characteristics of this metal are taken into account. [3]

4 
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2.2 MACHINABILITY RATING (MR) 

Table 2.1 shows the machinability rating based on various materials. 

Table 2.1: Machinability rating based on various materials. 

Material BHN MR Material BHN MR 

12% (chrome 

stainless steel)

165 0.70 A-8640 170 0.55 

981340 185 0.40 A-8745 219 0.45 

1020 (Castings) 134 0.60 A-8750 212 0.40 

1040 (Castings) 190 0.45 AM 350 420 0.14 

1330 223 0.60 AM 355 360 0.10 

3140 197 0.55 AMS 6407 180 0.50

Source: Serope Kalpakjian. 2010. 6th edition. Manufacturing Engineering and 

Technology 

Machinability ratings are "relative" ratings. They compare the ease of machining 

an alloy to a standard. That standard is 160 Brinel hardness Bli 12 cold drawn steel 

machined at 180 surface feet per minute. Bill 2was assigned a score of 1.00. [4] 

The machinability of all other alloys is compared to the standard score of 1.00. 

The American Iron and Steel Institute (AISI) tested many alloys and compared the 

normal cutting speed, tool life and surface finish to that obtained when machining 

81112. Materials with scores above 1.00 are easier to machine than B1112. Likewise, 

materials with scores of less than 1.00 are more difficult to machine. [4] 
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2.31 Flank wear width 

The tool wear on the flank face was measured after the first path using a tool 

maker's microscope equipped with graduated scale in mm. The wear measurement 

requirement would then depend on the rate of wear growth. [5] 

The measured parameter to represent the progress of wear was the maximum 

tool wear VB.. as shown in Figure 2.1. The machining would be stopped when 

Generally, at the combination of low cutting speed, feed rate and depth of cut resulted in 

better tool life included hardened steels. [5] 

However, increase of cutting speed while keeping the feed rate at high value 

would further shorten the tool life due to the feed rate which strongly influenced the 

range of chip thickness from tooth entry to exit and chip area on the end mill. 

Figure 2.1: Measured region B for the tool flank wear. 

Source: Umesh Khandey Optimization Of Surface Roughness, Material Removal Rate 

And Cutting Tool Flank Wear In Turning Using Extended Taguchi Approach. National 

Institute Of Technology Rourkela 769008, India 

It is found that the flank wear land increases gradually at low cutting speed. At 

low cutting speed wear mechanism is due to abrasion and micro-attrition. [5]



o 

Study of the progress wear shows that at low combination of cutting speed, feed 

rate, and depth of cut, uniform flank wear was observed as shown in Figure 2.2. Least 

effect of cutting speed was also supported the displacement of the stable built up layer 

(BUL) from the rake face to the flank of the tool as the cutting speed increases enables 

to keep an acceptable life in high-speed cutting conditions provided that the tool 

geometry is appropriate. However, when a very high speed is used, more heat will be 

generated. Consequently, when the temperature exceeds a certain limit, it will cause 

total failure of the cuffing edge as high temperature and periodic tool movements in and 

out of the workpiece cause the temperature fluctuations. Thermal cycling combined with 

thermal shock causes the thermal fatigue. [6] 

Figure 2.2: Progressive wear 

Source: J.A. Ghania, I.A. Choudhuryb, H.H. Masjukic. 2004. Performance of P 1 TiN 

coated carbide tools when end milling AISI H13 tool steel at high cutting speed. 

National University of Malaysia.
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2.3 SURFACE ROUGHNESS 

Turning, milling, grinding and all other machining processes impose 

characteristic irregularities on a parts surface. Additional factors such as cutting tool 

selection, machine tool condition, speeds, feeds, vibration and other environmental 

influences further influence these irregularities. [7] 

Roughness is essentially synonymous with tool marks. Every pass of a cutting 

tool leaves a groove of some width and depth. In the case of grinding, the individual 

abrasive granules on the wheel constitute millions of tiny cutting tools, each of which 

leaves a mark on the surface. Rough surfaces usually wear more quickly and have 

higher friction coefficients than smooth surfaces. 

Roughness is often a good predictor of the performance of a mechanical 

component, since irregularities in the surface may form nucleation sites for cracks or 

corrosion. Although roughness is usually undesirable, it is difficult and expensive to 

control in manufacturing. Decreasing the roughness of a surface will usually increase 

exponentially its manufacturing costs. This often results in a trade-off between the 

manufacturing cost of a component and its performance in application. [7] 

Surface roughness is used to determine and evaluate the quality of a product, is 

one of the major quality attributes of an end-milled product. In order to obtain better 

surface roughness, the proper setting of cutting parameters is crucial before the process 

take place. [7] 

This good-quality milled surface significantly improves fatigue strength, 

corrosion resistance, or creep life. Thus, it is necessary to know how to control the 

machining parameters to produce a fine surface quality for these parts. The control 

factors for the machining parameters are spindle speed, feed rate and depth of cut and 

the uncontrollable factors, such as tool diameter, tool chip and tool wear. [7]
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2.5	 Design of experiment 

2.5.1 Taguchi method 

Technically, Taguchi' s method is somewhat different than these techniques, but 

(i) several underlying principles remain the same, and (ii) for most practical purposes, it 

works remarkably well - there are very large number of practical, industrial examples of 

successful designs generated using Taguchi' s method. The principles in selecting the 

proper subsets are based on two simple ideas: balance and orthogonality. [8] 

Balance: Assume that a variable (i.e. a design parameter under investigations) 

can take n different values, vi. . .vn. Assume that a total of m experiments are 

conducted. Then a set of experiments is balanced with respect to the variable if: (i) m = 

kn, for some integer k; (ii) each of the values, vi, is tested in exactly k experiments. An 

experiment is balanced if it is balanced with respect to each variable under 

investigation. [8] 

Orthogonality: The idea of balance ensures giving equal chance to each level of 

each variable. Similarly, we want to give equal attention to combinations of two 

variables. Assume that we have two variables, A (values: al, ..., an) and B (values bi, 

bm). Then the set of experiments is orthogonal if each pair-wise combination of 

values, (ai, bj) occurs in the same number of trials. [8] 

Consider a design with three variables, each of which can be set at two different 

values. For convenience, we denote these values as levels, 1 and 2. A complete 

investigation requires 23 = 8 experiments, as shown in Table 2.3.
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Table 2.3: Taguchi method L8 orthogonal array 

Table 2.3a. 

Run A B C 

1 1 1 1 

2 1 1 2 

3 1 2 1 

4 1 2 2 

5 2 1 1 

6 2 1 2 

7 2 2 1 

8 2 2 2

Source: Glen Stuart Peace. 1993. Taguchi Methods. Addison Wesley 

2.5.2 3D Software CAD/CAM 

2.5.2.1 CATIAV5 

In this experiment conducted, 3D software design, CATIA V5 was used. The 

block of the annealed and hardened HTCS-150 was module in part operation. This 31) 

software design was compatible with CNC Makino KE-55 milling machine. The part 

was then simulated in advance machining program. The pocketing process was 

conducted in this experiment with nine different machining condition according to the 

L9 orthogonal array. 

2.5.2.2 Makino KE-55 CNC milling machine. 

3-axis milling machine was used for this machining operation. The origin was 

set on the upper left side of the block which the similar point set in the CATIA VS 

Software. This milling machine have ability to achieve spindle speed up to 4000 

rev/mm.
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2.6	 Signal/Noise ratios (SIN) 

2.6.1 Noise 

Factors that influence the performance of a system or product, but are not under 

control during the intended use of the product. The objective in robust parameter design 

is to minimize the variability of the product's performance in response to the noise 

factors. The noise factor levels selected should reflect the range of conditions under 

which the response should remain robust and must be able to be controlled during the 

experiment. [9] 

An example of a noise factor is the weight of items in a consumer's car, which 

affects the car's speed (response), but is outside the control of the car manufacturer. [9] 

2.6.2 Signal 

A factor, with a range of settings, which is controlled by the user of the product 

to make use of its intended function. Signal factors are used in dynamic experiments, in 

which the response is measured at each level of the signal. The objective is to improve 

the relationship between the signal factor and the response. [9] 

An example of a signal factor is gas pedal position. The response, the car's 

speed, should have a consistent relationship with the amount of pressure applied to gas 

pedal. [9] 

2.6.3 Equation for S/N ratios 

S/N equation are classified into three categories which are nominal is the best, 

bigger is better and smaller is better. [9] 

The signal-to-noise ratio is a metric designed by Taguchi to optimize the 

robustness of a product or process. In dynamic designs there is one SIN ratio, while in 

static designs, you can select from four signal-to-noise (S/N) ratios, depending on the 

goal of your design based on Table 2.4. Engineering knowledge, understanding of the
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process, and experience to choose the appropriate S/N ratio is needed to apply this 

procedure. [9] 

The S/N ratios for static designs are: 

Table 2.4: S/N formula 

Choose... And your data are... Use when the goal is S/N ratio formulas 
to... 

Larger is better Positive Maximize the response S/N = -lO(log((1IY )/n)) 

Nominal is best Positive, zero, or negative Target the response and S/N = -1 O(log(o) 
you want to base the S/N 
ratio on standard 
deviations only 

Nominal is best on-negative with an Target the response and S/N = 1 O(log((Y-bar )/o)) 
(default) "absolute zero" in which you want to base the S/N 

the standard deviation is ratio on means and Adjusted formula: S/N = 
zero when the mean is standard deviations i O(log((Y-bar -	 In)! 
zero 

Smaller is better on-negative with a Minimize the response S/N = -1 O(log(Y In)) 
target value of zero

Source: Minitab software 15 

The S/N ratio for dynamic designs is based on the Nominal-is-best S/N ratio. 
The formula is: 

10 log (Slope /MSE), where MSE is the mean square error, which is the average of the 
square of the distances from the measured responses to the best fit line. [9] 
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