
1 PrRi1S1Arr1 ur1 11
DESIGN OF JI.

0000080267
rKLUNG

ANIS HAZW ANA BT MOHA:'vl.AD W AZIR

Report submitted in partial fulfillment of the requirements for the award of Bachelor of

Mechatronics Engineering

Faculty of Manufacturing Engineering

UNIVERSITI MALAYSIA PAHANG

JUNE 2013

l PERPUSTAKAAN
o;UNIVERSITI MALAYSIA l'AHANG

No. Perolehan No. Panggllan

1~

0 8 NOV 2013

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESis•

.JUDUL: DESIGN OF MIDI DECODER FOR AUTO ANGKLUNG

SESI PENGAJIAN: 2012/2013

Sa ya ___ A_NIS HAZWANA BT MOHAMAD WAZIR (871227-0_8-5832)
(HURUF BESAR)

n1engaku membenarkan tesis (Sarjana Muda/Sa1;jaRa /Dekter falsafal:i)* ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

I.
0

3.

4.

Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
Perpustakaan dibenarkan me1nbuat salinan untuk tujuan pengajian sahaja.
Perpustakaan dibenarkan men1buat salinan tesis ini sebagai bahan pertukaran antara institusi
pengajian tinggi.
**Sila tandakan ('1)

[l S!;LIT
~---~

(I TERHAD
~---~

(Mengandungi maklumat yang berdarjah keselamatan
atau kepentingan ~,1alaysia seperti yang termaktub
di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERH.!\.D yang telah ditentukan
oleh organisasi/badan di nlana penyelidikan dijalankan)

(,/ l Tll>AK TERHAD
~---~

Disahkan oleh:

----9L
{ l 1\Nl)AT Ar-;(iAN PFNULJS)

I
--- . ANUATAN(VIN Pl NYU.lAl

Alamat Tetap:

24, JALA'.'I KERAP(.;
TAMA'.'ISERITENGGARA
34200 PARIT BUNT AR

PROF IR DR AHMAD FAIZAL
BIN MOHD ZAIN

PE RAK (Nama Penyelia)

Tarikh: 11 JULAI 2013 Tarikh: 11 JULAI 2013

CATA TAN: •
**

•

Potong yang tidak berkenaan .
Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan tnenyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.
Tesis dimaksudkan sebagai tesis bagi ljazah doktor Falsafah dan Sarjana secara
Penyelidikan. atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

ii

EXAMINER'S APPROVAL DOCUMENT

I certify that thesis entitled 'Design of MIDI Decoder for Auto Angklung Orchestra' is

written by Anis Hazwana Bt Mohamad Wazir with matric number FB09063. I have examined

the final copy of this thesis and in my opinion, it is fully adequate in terms of language

standard, and report formatting requirement for the award of the degree of Bachelor in

Mechatronic Engineering. I herewith recommend that it be accepted in fulfilment of the

requirements for the degree of Bachelor Engineering in Mechatronic Engineering.

Signature

Name of External Examiner : Mr Ismail bin Mohd Khairuddin

Institution : UNIVERSITI MALAYSIA P AHANG

II

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project report and in my opinion this project is

satisfactory in terms of scope and quality for the award of Bachelor of Mechatronics

Engineering.

Signaturt:

Name of Supervisor ad Faizal Bin Mohd Zain

Position : Professor

Date : 11 July 2013

iv

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own, except for quotations and summaries

which have been duly acknowledged. The thesis has not been accepted for any other degree

and is not concurrently submitted for award of other degree.

Signature

Name

ID Number

Date

: Anis Hazwana Bt Mohamad Wazir

: FB09063

Dedicated to my beloved father, Mohamad Wazir Bin Abu Bakar,

mother, NoorHayati bt Zaini, brothers and sisters, friends

and my supervisor, Prof Ir. Dr. Ahmad Faizal Mohd. Zain.

v

vi

ACKNOWLEDGEMENT

Alhamdulillah, praise to Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this

thesis. Special appreciation goes to my supervisor, Prof Ir. Dr Ahmad Faizal bin Mohd Zain,

for his germinal ideas, invaluable guidance, continuous encouragement and constant support

in making this project possible. He has always impressed me with his outstanding

professional conduct. I appreciate his consistent support from the start. I am truly grateful for

his tolerance of my naive mistakes, and his commitment to my future career.

I would like to express my appreciation to Dean, Faculty of Manufacturing

Engineering, Prof. Madya. Dr. Wan Azhar bin Wan Yusuff and all lecturers for their support

and help towards my Degree affairs. My acknowledgement also goes to all technicians and

office staff of Faculty of Manufacturing Engineering for their co-operations.

My sincere thanks go to my Innovate teams for Innovate Malaysia Competition and

friends, for their excellent co-operation, inspirations, supports and made my stay at UMP

pleasant and unforgettahle. Thanks for the friendship and memories.

Last but not least, my deepest gratitude goes to my beloved parents, Mr Mohamad

Wazir bin Abu Bakar and Mrs. NoorHayati bt Zaini and also to my brothers and sister for

their endless love, prayers and encouragement. Thank you very much.

vii

ABSTRACT

This project describes a controller device, called MIDI (Music Instrument Digital

interface) to control an Angklung (Traditional Music Instrument) with 2 Octaves diatonic

automatically. MIDI device or MIDI files will generate MIDI data which is decoded into

music synthesis commands to the electric motor (DC Motor). Angklung will be control from

MIDI Keyboard or Computer as interface. This project will show how far the accuracy of the

way to play Angklungs between human and autonomous technology.

viii

ABSTRAK

Projek ini menerangkan alat kawalan, yang dipanggil MIDI (Musical Instrument

Digital Interface) untuk mengawal Angklung (Alat Muzik Tradisional) dengan 2 Oktaf

diatonic secara automatik. Peranti MIDI atau fail MIDI akan menjana data MIDI yang

dinyahkod ke dalam arahan sintesis muzik kepada motor elektrik (DC Motor). Angklung

akan dikawal dari keyboard MIDI atau komputer sebagai antara muka. Projek ini akan

menunjukkan sejauh mana ketepatan cara untuk bermain angklung antara manusia dan

teknologi autonomi.

TABLE OF CONTENTS

EXAMINER'S APPROVAL DOCUMENT

SUPERVISOR'S DECLARATION

STUDENT'S DECLARATION

ACKNOWLEDGEMENTS

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

CHAPTER! INTRODUCTION

I.I Introduction

1.2 Project Background

1.3 Project Problem Statement

1.4 Objectives

1.5 Scope of Study

1.6 Expected Performance

L7 Flow chart

1.8 Layout of thesis

CHAPTER2 LITERATURE REVIEW

2.1

2.2

Introduction

Historical Development of MIDI

2.2.1 Musical Synthesizers : In the Beginning

ii

iii

iv

vi

vii

viii

ix

xiii

xiv

xv

xvi

1

1

5

6

7

7

8

9

10

10

10

ix

2.2.2 Digitally Controlled Synthesizers

2.2.3 MIDI is Born

2.3 MIDI Protocol

2.4 Standard MIDI Files

2.5 Data Acquisition from MIDI Files

2.6 Data Transmission Principle

2.6.1 Serial Peripheral Interface

2.6.2
Universal Asynchronous Receiver/Transmitter

(UART)

2.7 MIDI Circuit Interfacing

2.7.1 MIDI Shield

2.7.2 Opt-Isolator

2.8 Angklung

2.8.1 The Octave

2.8.2 The Chromatic Scale

2.9 Previous Automatic Angklung inventions

CHAPTER3
OPERATING PRINCIPLE AND

WORKING ALGORITHM

3.1 Introduction

3.2 Concept of Project

3.3 MIDI Keyboard

3.4 Personal Computer (PC)

3.4.l Graphical User Interface (GUI)

3.4.2 USB MIDI Cable

3.5 Microcontroller

3.5.1 Arduino Due

3.5.2 Serial Peripheral Interface {SPI)

3.6 C Language

3.7
The Universal Asynchronous Receiver/Transmitter

(UART)

3.8 MIDI Shield

x

12

13

14

17

18

18

19

19

21

22

23

23

24

24

25

27

27

30

31

32

33

34

34

36

37

38

39

3.8. I Operations

3.9 Flow chart of Circuit Testing Process

CHAPTER4
EXPERIMENT AL RESULT AND

PERFORMANCE ANALYSIS

4.1 Introduction

4.2 Development of Software Design

4.2.1 MAC System Flow chart

4.2.2 Button Check Flow chart Program

4.2.3 Led_ Show Flow chart Program

4.2.4 Job Selection Flow chart Program

4.2.5 Job 01 (MIDI Files read)

4.2.6 Job 02 (MIDI Message)

4.3 Development of Circuit Design

4.3.1 Components and Equipment

4.4 Result and Performance Analysis

4.4.1 Transmission Efficiency MIDI Signal

4.4.2 Latency in Opt-Isolator

4.4.3 Latency in Microcontroller

4.4.4 Total Latency for MAC

CHAPTERS
CONCLUSION AND

RECOMMENDATIONS

5.1

5.2

5.3

Introduction

Conclusion

Future Development

REFERENCES

APPENDICES

A MIDI Decoder Source Code

39

42

43

43

44

46

48

50

52

54

55

55

56

56

57

58

58

59

59

59

60

61

xi

B

c
MID I Shield Circuit

Expended MIDI message list

66

67

xii

xiii

LIST OF TABLES

Table No. Title Page

2.1 MIDI numbers produce by MIDI Keyboard 14

2.2 Example of MIDI Message 14

2.3 Example Diatonic Scale 22

3.1 Arduino DUE Microcontroller Board 33

4.1 MIDI Shield circuit component 47

xiv

LIST OF FIGURES

Figure No. Title Page

1.1 Angklung 2

1.2 Set of Angklung 2

1.3 Note-On to MIDI 3

1.4 Note-Off to MIDI 4

2.1 Telharmonium 10

2.2 A middle C key on a keyboard is push down 15

2.3 A middle C key on a keyboard is now releases 15

2.4 SP! bus: single master and single slave 17

2.5 Data sampling point by the UART receiver 18

2.6 UART communication between two devices 19

2.7 DIN 5-Pin 20

2.8 A schematic of a MIDI (IN and OUT) interface 20

2.9 Example single note of the Angklung tubes 21

2.10 User Interface for program a songs to Automatic Angklung 23

2.11 KlungBot 23

3.1 Block Diagram for MIDI decoder 26

3.2 Whole Block Diagram 27

3.3 MIDI Keyboard 28

3.4 MIDI to MIDI cable 28

35 Interfacing PC Based using USB to MIDI 29

3.6 VanBasco User Interface 29

3.7 MID !Piano User Interface 30

3.8 USB to MIDI cable 30

3.9 Arduino DUE Microcontroller Board 32

3.10 SP! OUT from Microcontroller 34

3.12 Arduino Programming Sketch Interface 34

xv

LIST OF SYMBOLS

xvi

LIST OF ABBREVIATIONS

MIDI Musical Instrument Digital Interface

SP! Serial Peripheral Interface

SSI Synchronous Serial Interface

PC Personal Computer

USB Universal Serial Bus

SCLK Serial Clock

MOS! Master Output Slave Input

MISO Master Input Slave Output

SS Slave Selects

TX Transmitter

RX Receiver

GUI Graphical User Interface

DAC Digital Analog Converter

PWM Pulse Width Modulation

1

CHAPTER!

INTRODUCTION AND GENERAL INFORMATION

1.1 INTRODUCTION

This chapter will briefly explain about the introduction of this project task.

The introduction is general information regarding to the topic that will be discuss in

this project. This chapter consist of project background, problem statement,

objectives, scope and significant of the project.

1.2 BACKGROUND

Many traditional musical instruments have been modified according to the

latest trends from an instrument which automatically controlled. For this project,

Angklung will be implemented to produce an automatic control via MIDI (Musical

Instrument Digital Interface) Sequencer.

Angklung is a musical instrument from Indonesia. This musical instrument is

made from bamboo tube in which the sound is generated from air resonance due to

the vibration at the intemode of bamboo tube. It consists of two bamboo tube in a

bamboo frame like shown in figure 1.1. Angklung sound is produced with a

frequency that represent a particular tone by the size of intemode of bamboo tube.

Therefore, an Angklung musical instrument usually is a series of several section of

bamboo intemode to produce a variety of tones that covers the notes in a song.

n
I
I

Figure 1.1: Angklung

2

n

An Angklung that represent a note usually consist of two section of bamboo

intemode of different size in length but have the same kind of tone. The length is

designed to determine the high and low tones. Thus, in general, an Angklung can

produce sound of a note with a combination of high and low tone frequencies.

Angklung tones usually correspond to either pentatonic or diatonic musical

scales. The pentatonic scale consists of five notes per octaves, whereas the diatonic

scale consists of seven notes in one octave. Therefore, the number of Angklung

corresponds to the number of notes, both in diatonic and pentatonic scales, which are

required to play a song. Generally the notes required are more than one octave. The

set of angklung use in this project is shown in figure 1.2.

3

Figure 1.2: Set of Angklung [2]

The notes sound will be produced when shaken or vibrated. When shake the

Angklung, the vibration of the bamboo against the base produces a pitch. Each

instrument makes only one pitch, to make complete melody it takes many single

Angklungs to be use. In this project, Angklung 2 and half octaves will be use, means

needs 18 bamboos. Unfortunately, playing Angklung by a single player cannot

produce musical sound perfectly, especially to play three notes at the same time

(chord). In order to play a song perfectly, more than a person or a group of Angklung

players are required. Therefore, it is required to invent a device for playing an

Angklung musical instrument automatically.

The Angklung Vllill be automatically controlled via MIDI Sequencer. A MIDI

sequencer is in essence a MIDI music player program.

4

The sequencer created for this project is a program that runs on a Windows

operating system and piano keyboard. Its function is to read Standard MIDI Files and

parse the relevant information for sending to the MIDI decoder.

MIDI is a protocol which sends a series of message like "note on", "note off',

"note/pitch" and many more.

The key is pushed down as shown in figure 1.3 and it produces sound in

musical note (which continues to sound while the musician continues holding down

the key). This single gesture is known as a Note-On in MIDI terminology. In figure

1.4, the key is release. This stops the musical note from sounding. This single gesture

is known as a Note Off to MIDI.

Figure 1.3: The key is pushes down (and hold dov.n) on a keyboard. [3]

5

Figure 1.4: The key is releases (holding down) on a keyboard. [3]

In MIDI message contains a start bit, 8 data bits (1 Byte). This message

comprised of two components that is "commands" and "data" bytes. The command

byte tells what types of message are being send to the MIDI instrument and data

bytes functions to store the actual data. Note on message consist of two piece

information which is called "note" and "velocity".

This project, Design a MIDI decoder for auto Angklung is to develop 2 and

half octave Angklungs that can play automatically without controlled by humans.

MIDI sequencer will be decoded to send series data consist of channel message and

velocity message. After decoding this message, it will be send to motor driver to

control the DC motor to shake the Angklung follows from the MIDI messages. This

project also will show how far the accuracy of the way to play Angklungs between

human and autonomous technology.

1.3 PROBLEM STATEMENT

The idea of using automatic control for musical instruments it not new.

Nowadays, many musical instruments have implemented to control automatically,

for example, automatic playing violin, anonymous playing guitar and etc.

6

For this project, Angklung will be used to be control automatically. Actually,

Angklung also have already implemented in automatically control, for example in

Indonesia, their student have develop angklung-playing system under the names

"KlungBot" and "Klungto Mobi". Innovation of these two instruments is just being

preinstalled to the system using parallel communication and the songs that Angklung

want to play automatically needs to be programmed in the memory of the

microcontroller.

In this project, the difference between the previous inventions is using MIDI

protocol to control the automatic Angklung. There are some problems need to be

addressed to ensure that the objective is achieved successfully. The problems that

need to be taken into account are as, extracting the MIDI message from a MIDI file,

controlling an Angklung automatically using MIDI message and control it in real

time.

1.4 OBJECTIVES

The objective of this project is to design and develop a MIDI decoder to

automatically control an Angklung. Some of the specific aims ofthis project are:

I. To decode MIDI message

Decode raw MIDI message from MIDI Keyboard or PC Based interface to

microcontroller.

11. To analyze transmission efficiency MIDI signal

111. To analyze latency of human ear with produced sound

MIDI Signal out from microcontroller will be measured, and analysis the

delay whether this delay affect human ear latency.

7

1.5 SCOPE OF STUDY

This project will comprise of several stages such as:

1. Leaming and interfacing MIDI message Input and Output

ll. Program to decode a MIDI message

111. Design MIDI sequence in graphical method

1v. Design extra interface circuitry

v. Performance evaluation

1.6 EXPECTED PERFORMANCE

Expected performance is to overcome the human limitation in playing

Angklung musical instruments. MIDI message is decoded and signal data will be

sending to motor driver to generate DC motor to shake the Angklung. Angklung is

controlled from MIDI keyboard, Computer or Android as interface.

1.7 PROJECT FLOW CHART

+
Designing

MIDI Decoder
programming

Build
MIDI Decoder
programming

No

----Start

Introduction

Literature Review

Operating Principle

Yes

+
Designing

MID I Shield circuit

No

Build
MIDI Shield Circuit

No

Result and Discussion

Conclusion and Recommendation

8

9

1.8 THESIS OUTLINE

Chapter I outline briefly explains about the introduction of the project task.

This chapter consists of Design a MIDI Decoder for auto angklung. Chapter 2 outline

previous method of automatic Angklung controller, focusing on the use of MIDI

sequencer, as well as the fundamental of MIDI, decoding MIDI, programming

method and the Angklung. Chapter 3 discusses the method that use in this project

and the entire working algorithm to the MIDI controller. Chapter 4 talks about the

experimental result and performance analysis from decoding the MIDI sequencer. A

summary of this project presented herein and along with of possible future work

contained in Chapter 5. Finally, Appendix A contains the sketch of designing this

project.

10

CHAPTER2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter will briefly explain about related to MIDI message, serial

communication and musical instrument Angklung. The sources are taking from the

journals, articles and books. Literature reviews helping in order to provide important

information regarding previous researches which related to this project.

2.2 HISTORICAL DEVELOPMENT OF MIDI

MIDI is short for Musical Instrument Digital Interface. The creation of MIDI

in 1983 is closely tied to development of music synthesizers, but it has spawned the

whole industries of interactivity far beyond the dream of 1983.(MIDI Manufacturer,

1995)

2.2. l Musical Synthesizers: In the Beginning

Electronic musical instruments had been around in some form since the late

nineteenth century. The Te/harmonium and the Singing Telegraph date back to the

beginnings of electricity itself while throughout the first half of the twentieth century,

electronic musical contraptions were quite the rage in Europe, from the

French Ondes-Afartenot to the German Pianorad, to the Russian Therernin. In figure

11

2.1, show that the telhannonium, the first electronic musical instrument develop in

1897. (MIDI Manufacturer, 1995)

The word 'Synthesizer' didn't arrive on the scene until the 1950s with the

RCA Synthesizer I and II, but it wasn't long before these room-sized pieces of

engineering had been, themselves, 'synthesized' down into more acceptable

components and indeed 'modules' thanks to the pioneering work of visionaries like

Dr Robert Moog, Don Buchla, Haorld Bode, Pete Zinovieff, and Dave Cockerell.

(MIDI Manufacturer, 1995)

Moog is generally, and appropriately, credited for taking the synthesizer out

of the university laboratory and putting it in the hands of musicians. Certainly from

the time of Walter Carlos' ground-breaking Switched on Bach recording (1968) to the

release of the Mini Moog (1970) both musicians and the music-buying public became

enamored - if not frankly dazzled - by the sonic possibilities now seemingly on the

musical horizon.

Figure 2.1: Te/harmonium {3]

12

As it turned out it was a false davvn. The synthesizers of the 1970s might have

been unrestricted sonically but in terms of playability, stability, polyphony, and

compatibility they were still very limited indeed.

Early integrated circuits-based synthesizers from Moog, ARP, and EMS

opened the door but it was the arrival of Japanese companies like Korg, Roland, and

Yamaha in the middle 1970s that converted potential into popularity. (Nagle, Paul,

1995)

2.2.2 Digitally Controlled Synthesizers

The popularity of synthesizers got a maJor boost in 1978 when

microprocessor-based instruments began to appear, spearheaded by a new California

company Sequential Circuits. The Prophet-5, though still hugely limited by today's

standards, offered reasonable levels of playability, stability, and polyphony, albeit at

a hefty price at the time (around $4000). Soon Korg, Roland, and Yamaha's

microprocessor-based offerings would slash prices in half, and by the turn of the

decade the polyphonic synthesizer was firmly on the map for every self-respecting

keyboard player from hobbyists to touring professionals. The days of

the Hammond organ, the Fender Rhodes piano, and latterly the Hohner

Clavinet were coming to an end.

Stability, playability, and polyphony continued to evolve in the early 1980s

but compatibility remained a thorn in the side of manufacturers. The multifarious

nature of synthesizer design meant that each manufacturer had been defining pitch

and timing (Control Voltage and Gate) data in their own way. Once polyphonic,

digital technology became available manufacturers they began to design unique

digital interfaces that would, at the very least, allow to connect several Korg, or

Roland, or Yamaha synths together. Roland developed its DCB (Digital

Communication Bus), Yamaha its Key Code Interface etc.

Visionaries like Dave Smith from Sequential Circuits, and lkutaru Kakehashi

from Roland began to worry that this lack of compatibility between manufacturers

13

would restrict people's use of synthesizers, which would ultimately inhibit sales

growth. Talk of a 'universal' digital communication system thus began circulating in

1981. Dave Smith and Chet Wood presented a paper that year at AES proposing a

concept for a Universal Synthesizer Interface running at 19 .2 kBaud, using regular

114" phone jacks. At the following NAMM show in January 1982 a meeting took

place between the leading American and Japanese synthesizer manufacturers where

certain improvements were made to the specification: increasing the Baud rate to

31.25 and adding the opt-isolation circuit.

2.2.3 MIDI is born

MIDI (an acronym for "musical instrument digital interface") as its name was

ultimately chosen, was first announced to the public in 1982. and by as early as

January 1983 actually appeared on an instrument; the Sequential Prophet-600.

Roland's JX3P followed hot on its heels, was 'connected' successfully, and a new

chapter in the history of electronic musical instruments was born. (MIDI

Manufacturer, 1995)

In 1983, the MIDI Specification was only about 8 pages long and defined

only the most basic instructions one might want to send between two synthesizers'

things like how to play notes and how to control the output volume, etc. Very

quickly, the arrival of this 'common (digital) language' created demand for new

MIDI messages that enabled greater control of synthesizers but also for control of

other recording gear and even stage lighting. MIDI also enabled computers to be

applied to the music-making process. Although the way that MIDI works has not

changed since 1983 (also almost preposterously inconceivable), the MIDI protocol

has grown to encompass such additional concepts as: standardized MIDI song files

(General A1!Dl 1991); new connection mechanisms such as USB, Fire Wire, and Wi­

Fi; new markets such as mobile phones and video games; and a whole world of

'alternative' and 'performance' based MIDI products.

The agreement to adopt a standard (and royalty-free) technology was an

incredible achievement in itself - and substantially unmatched to this day - but it

14

was also remarkable for what it then enabled. Sequencers, sampling, digital drum

machines, dedicated computer control, ultimately a complete revolution within the

recording industry. It is hard to imagine that any of these technologies or

developments would have occurred, or certainly have been as wide-reaching, without

the glue of MIDI. (General lvf!Dl, 1991)

2.4 MIDI Protocol

MIDI is a serial protocol that enables electronics musical instruments,

computers and other equipment to communicate, control and synchronize with each

other. (William Llord and Paul Terry,1996). The MIDI protocol is made up of

messages. A message consists of string (ie, series) of 8-bit bytes. MIDI has many

such defined messages. Some messages consist only 1 byte, two or three bytes in

length, although some may be longer.

"Each MIDI message, regardless of its length contains a single status byte

and zero or more data bytes. The numerical value of a status byte is always between

128 and 255 (Ox80 to OXff). All data bytes fall between 0 and 127 (OxOO to Ox7F).

This provides easy identification of status data, but limits the range of a single data

value to seven bits." (Paul Messick, 1998)

MIDI message consist two basic types: Channel message and system

message. Channel message are directed at a particular destination and are subdivided

into channel note and channel mode message. (Paul Messick, 1998) System message

come in three flavors: system common message, system Real-Time message and

System Exclusive messages.

MIDI data bytes are organized into two major classification, Status bytes and

Data bytes. Any Byte that has the MSB (Most Significant Bit) equal to 1 is a status

Byte. Any Byte with the MSB equal to 0 is a data byte. Any given MIDI message

consists of a Status Byte followed by any number of Data bytes, normally zero, one

or two, but this is virtually unlimited.

15

What are status and data bytes? MIDI bytes fall into one of 2 categories. (Paul White,

2000)

L Status bytes always start with a 1 and define the type of message being sent.

This is an example status byte, 10010011, which means Note On I Channel 2

IL Data bytes start with a 0 and simply give a value between 0 and 127.

Here is an example data byte, 01000001, which means 65

MIDI Keyboard produced a MIDI message signal in each notes. (Paul White,

1996) It shows in table 2. l. In this table, each MIDI notes produce a message signal

in HEX or binary numbers.

Table 2.1: MIDI numbers produce by MIDI Keyboard [4]

Midi Note Midi COJlllUter
IJ111li>er llilft! KeJboard Keyboard .

l 2 24 25 Cl
26 n DI 34
28 El 5
29 Fl 67 Select Video.

30
31 32 Gl 89
33 34 Al 0
35 Bl '
36 37 C2 Ow
38 39 D2 ' ER
40 E2 ' T
41 F2 Yu Start video
43 42 G2 I 0 at selected

44 45 46 A2 PA point.
47 B2 ' 5
48 4-9 C3 DF
50 51 D3 GH
52 E3

.
' 53 F3 ' 54-55 56 G3

57 58 A3
59 fil I

oD C4 ' KL 61 62 D4 Zx] '"Vol~ 63 64- E4 I c of video.
65 F4 ' v
67

66 G4- B
) play/stop/pause. 68

6'11 70 A4 M
71 B4- ' N

16

MIDI is an asynchronous serial interface. The baud rate is 31.25 Kbaud (+/-1 %).

There is l start bit, 8 data bits, and l stop bit (ie, 10 bits total), for a period of 320

microseconds per serial byte. (Paul White, 2000)

In table 2.2 show the example of simple MIDI message contains status byte

and 2 data bytes. This message is telling a sound module set to respond on MIDI

channel I to start playing a note (C3) at a velocity of 101

Table 2.2: Example of MIDI Message [5]

Statm Byt~ Dua Byte J Data Byu 2

Note ON ~fiDI Channel Note number (0) Velodty(!Ol)

Many electronic instruments not only respond to MIDI messages that they

receive (at their MIDI IN jack), they also automatically generate MIDI messages

while plays the instrument (and send those message out their MIDI OUT jacks).

(Paul Messick, 1998)

In figure 2.2, show that MIDI keyboard is pushed down. Not only does this

sounding musical note, it also causes a MIDI Note-on message to be sent out of the

keyboard's MIDI OUT jack. This message consists of three numeric values as shov.m

below;

?o.iidi Out

Figure 2.2: A middle C key on a keyboard is push down. [6]

17

Figure 2.3 show a keyboard is now release. Not only does this stop sounding

the musical note, it also causes another message. A MIDI Note-Off message to be

sent out of the keyboard's using MIDI OUT jack. This message consists of three

numeric values as shown below. Note that one of the values is different than the note

message.

Q ~ :286064

~fidl Out

Figure 2.3: A middle C key on a keyboard is now releases. [7]

2.5 STANDARD MIDI FILES

Standard MIDI Files designed to allow exchange of sequence data between

devices. These files represent data as events belonging to individual sequencer

tracks, plus info such as track or instrument names and time signatures. There are 3

types of MIDI files for representing: single-track data (type 0), synchronous multi­

track data (type 1) and asynchronous multi-track data (type 2). Data is organized as

bytes grouped into header and track chunks. (William Llord and Paul Terry, 1996).

4-byt~ ASCII 4-byte

1)·ix
Mil!l: header
MI!k: track

Length at Data
ll!<lmnk
(in try·tes)

Header chunk is a format that defines the MIDI file type (0, 1 or 2), ntrks

defines the number of track chunks and division defines the timing format. The

timing format is defined by MSB of the 2-byte division word. 0 indicates a division

18

of tricks per quarter note, while I indicates a division of ticks per time code frame.

(William Llord and Paul Terry,1996)

Fermat Dh-isioa

Truck chunks contains string of MIDI events, MIDI events can be channel

messages, SysEx and meta-events (containing labels and internal data). (William

Llord and Paul Terry,1996).

time j eYent I
···-~.-- '

Type Length event ~rm

2.6 DATA ACQUISITIONS FROM MIDI FILES

MIDI File is a data from original binary, making it possible to achieve and

manipulate in the data frames on computer. (Howard Massey, 1988) There are two

solutions for acquiring the data. The first method is "software-based', extracting

MIDI data from MIDI Files. The "hardware-based" method utilized part of an actual

MIDI system, interfaced with a PC, to transfer music data to the computer.

2.6 DATA TRANSMISSION PRINCIPLE

Data transmission use in this project is Serial Peripheral Interface (SPI) and

Universal Asynchronous Receiver/Transmitter (UART)

19

2.6.1 Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is a synchronous serial data protocol used by

microcontrollers for communicating with one or more peripheral devices quickly

over short distances. (John Catsouiies, 2002)

Devices communicate in master/slave mode where the master device initiates

the data frame. Multiple slave devices are allowed with individual slave select (chip

select) lines. (John Catsoulies, 2002) In figure 2.4, there are 4 wires serial from

Master to Slave. SPI is called a/our-wire serial bus, contrasting with three, two and

one wire serial buses. SPI is often referred to as SS! (Synchronous Serial Interface).

SCLK
SPI MOSI

Master MISC
55

Figure 2.4: SPI bus: single master and single slave [8]

The SP! bus specifies four logic signals:

i. SCLK: serial clock (output from master)

ii. MOS!: master output, slave input (output from master)

iii. MISO: master input, slave output (output from slave)

iv. SS: slave selects (active low, output from master)

2.6.2 Universal Asynchronous Receiverffransmitter (UART)

The Universal As)11chronous Receiver/Transmitter (UART) controller is the

key component of the serial communications subsystem of a computer. UART is also

a common integrated feature in most microcontrollers. The UART takes bytes of data

and transmits the individual bits in a sequential fashion. At the destination, a second

VA.RT re-assembles the bits into complete bytes. Serial transmission of digital

information (bits) through a single wire or other medium is much more cost effective

than parallel transmission through multiple wires. Communication can be "full

20

duplex" (both send and receive at the same time) or "half duplex" (devices take turns

transmitting and receiving). (RH2T Magazine Vol.3, Dec 2010)

T ~ 11Baud Rate b~-ced r.,,,.,~

Tu~ - T.'16 OWrt~m~led M-cel• pe1iod
SLI •;: fo~ V\/o•o~ c~n ~yc.ch<o~12er

LIMCO<!a1"1Y

- __ ;~ - ---- ____ f, ___ . __ . __ _n _____ JL --- _ll

... ·- •-, I ~,,
d9\~c! '-..._,
5t~rt bn t·f ~~ .. ~·~9
u • .r,~~'"" from lc•'l•·C

~~

,l ______ n

,~m~I~ 1'.co""'g o .. ,~
'°111.~ b•J•CPll ,.~(P<

·-], _________ ~; -- __ ;i

•
"-'"'l"'e
'ilLI~ bl!

Figure 2.5: Data sampling point by the UART receiver [9]

Every operation of the UART hardware is controlled by a clock signal which

runs at much faster rate than the baud rate. (RH2T Magazine Vol.3, Dec 2010) For

example, in figure 2.5, UART with 16450 has an internal clock that runs 16 times

faster than the baud rate. This allows the UART receiver to sample the incoming data

with granularity of 1/16 the baud-rate period and has greater immunity towards baud

rate error.

The receiver detects the Start bit by detecting the voltage transition from

logic 1 to logic 0 on the transmission line. In the case of 16450 UART, once the Start

bit is detected, the next data bit's "center" can be assured to be 24 ticks minus 2

(worse case synchronizer uncertainty) later. From then on, every next data bit center

is 16 clock ticks later. (RH2T Magazine Vol.3, Dec 2010). UART communication

between two device are shown in figure 2.6, which are from TX (Transmitter) to RX

(Receiver)

1)<1-----.

x·
/

RJ<!o-----

----<Tx

~---R.~

Figure 2.6: UART communication between two devices [10]

2.7 MIDI CIRCUIT INTERFACE

21

The MIDI circuit is current loop, 5rnA. Logic 0 is current ON. One output

drivers (and only one) input. According to lvfadame Butter/ace (1990), "To avoid

grounding loops and subsequent data errors, the input is opt-isolated. It requires less

than 5rnA to turn on. Rise and fall time for the opt-isolator should be less than 2

microseconds".

The standard connector used for MIDI is a 5 pin DIN. Separate jacks (and

cable runs) are used for input and output, clearly marked on a given device. Cables

are shielded twisted pair, with the shield connecting pin 2 at both ends. The pair is

pin 4 and 5. Pin 1 and 3 are not used, and should be left unconnected. (David Miles

Huber, 2000)

A 5-pin "DIN" connector is used as shown in figure 2. 7. It used to be that

connecting a MIDI device to a computer meant installing a "sound card" or "MIDI

interface" in order to have a MIDI DIN connector on the computer.

22

Figure 2.7: MIDI devices use DIN 5-pin at 180° connector for cables and

connectors. The connectors on instruments are female, cables are

male. [11]

MIDI messages are transferred between devices using UART. This means

that the MIDI sequencer is connected to the MIDI decoder with a DIN 5-pin cable

and the MIDI is transmitted using UART.

2.7.1 MIDI Shield

The MIDI Shield provides an opt-isolated IvlIDI-IN port as well as a MIDI­

OUT port. A schematic of a MIDI (IN and OUT) interface sho\.Vn in figure 2.8. The

MIDI Shield can be mounted directly on top of an Arduino, connecting the MIDI-IN

to the Arduino's hardware RX pin and the MIDI-OUT to TX. This MIDI Shield was

specially design that can choose two jobs and have a button reset. The jobs are:

1. Play MIDI from MIDI Keyboard

11. Play MIDI file from PC based

' '
' ' ' '

,. ____ J_

'JPTiC;NAL .. i

L - - - - - - - - - - - - - ''__:_:: - - -- _J

: ' '--.-­' '

·_::;:,.:._;'

NC-TES
1. Gptn-isc.lotor 1s Sharp
p(:-~oo. ~HP 5~138 or <:ti'!"'r
::c'l t-e used -;,.1th .;:ppc-:;pricit'!
chJng~ . ..,)

f-· Go.re,:, "A" ')r~ l(or
rror.s;:s;tcr.

3. Resi~to~s ore 5%.

Figure 2.8: A schematic of a MIDI (IN and OUT) interface [12]

2. 7.2 Opt-Isolator

23

In electronics, an opt-isolator, also called an opt-coupler, photo-coupler,

or optical isolator, is a component that transfers electrical signals between two

isolated circuits by using light. Opt-isolators are usually used for transmission of

digital (on/off) signals, but some techniques allow use with analog (proportional)

signals.

2.8 ANGKLUNG

Angklung is a music instrument made from joint pieces of bamboo. It

consists of two to four bamboo tubes mounted together within a bamboo frame, as

sho-wn in figure 2.9, a bound with rattan cords. The angklung produce certain notes

when the bamboo frame is shaken or tapped. Each angklung produces a single note

or chord, so several players must collaborate in order to play melodies. The

instrument has been known since ancient times in some parts oflndonesia, especially

in West Java, Central Java, East Java, and Bali in Indonesia. (Professor Kuo-Huang

Han)

i r
'j

;

I J

i
iL

·.- ~ ;::i

Figure 2.9: Example single note of the Angklung [13]

24

The interval between the differently-sized bamboo tubes on each Angklung is

one octave. Most Angklung sets today are tuned to the western chromatic and

diatonic scales. (Professor Kuo-Huang Han)

2.8.l The Octave

In music, an octave or perfect octave is the interval between one musical

pitch and another with half or double its frequency. The octave relationship is a

natural phenomenon that has been referred to as the "basic miracle of music", the use

of which is "common in most musical systems". It may be derived from the harmonic

series as the interval between the first and second harmonics.

2.8.2 The Chromatic Scale

In music theory, a diatonic scale is commonly defined as a seven-note,

octave-repeating musical scale comprising five whole steps and two half steps for

each octave, in which the two half steps are separated from each other by either two

25

or three whole steps. This pattern ensures that, in a diatonic scale spanning more than

one octave, all the half steps are maximally separated from each other. (Adam Koss)

Any sequence of seven successive natural notes, such as C-D-E-F-G-A-B,

and any transposition thereof, is a diatonic scale. Piano keyboards are designed to

play natural notes, and hence diatonic scales, with their white keys. It is made up of

seven distinct notes, plus an eighth which duplicates the first an octave

higherlnsolfege, the syllables used to name each degree of the scale are "Do-Re-Mi­

Fa-Sol-La-Ti-Do". Table 2.3 below is an example of Diatonic scale. (Adam Koss)

Table 2.3: Example Diatonic Scale

Notes in C c D E F G A B c
major

Degrees in
Do Re Mi Fa Sol La Ti Do

solfege

2.9 PREVIOUS AUTOMATIC ANGKLUNG INVENTIONS

Actually, Angklung also have already implemented in automatically control,

for example in Indonesia, their student have develop angklung-playing system under

the names "KlungBot" and "Klungto Mobi". Innovation of these two instruments is

just being preinstalled to the system using parallel communication and the songs that

Angklung want to play automatically needs to be programmed in the memory of the

microcontroller. In figure 2.10, show the interface for program a song before send to

the microcontroller.

KLUN GB
r.::;: 11.ly ... I}]

lir~ A 1 • .-.1w1a••·•"
,..,......" .,...,., .. ,.,., .. ,n

§'""""''-'" !>ON(, Jll
nq.MI I ft"'4eh l I ll
nQOn fe"""1h llJ

bt Pel.an9L 171
M.>nulcD.M•W(1><nd okl Ill
M.>nutD.M ... 111
Mk<Jon i.po.awo C<...,1.111
Mk\IOO <ll>l• l)l
..._.hM•••Mt>'f'tMJl•'-ty U)
-...1.ttinto llJ "",,......,llJ
•1cw•ortt l>ll<1<tl.UJ
NewYotk.IJJ
Pel.w P•IMt S olf~ W . 12l
P•Liill Pel.vt .SO.j4.Ul
,.,., ... 111

Sff"'-"'"l"""'I U l

1 .J • ~ l"I"" o 1, fl • • 1. .1000
1 . 1(17,• 1• 1:-- o ~. 1··· . • 1 .• . 10 o

.1 o o 0 '>. • o i. I 1. , • 1 • .1 o o o

f s~ .. ea!,., c~:, • .o~ l~e1h.•".1 f»< · ;r1t.o.'t/
YI: :•-:" Y I ~,. . 1"17 . 1"1,. .. 11" .,.. 3"l 't" 7 . l't" :-1' Y l
n : o . . 1 t •• 17 . •• I•; .. • I~ . • . 1~. . .17. . . 1

Figure 2.10: User Interface for program a songs to Automatic Angklung [14]

26

..:.

One of the Automatic Angklung make from automatic control system show below in
figure 2.11 named KlungBot. KlungBot, is invented by Indonesia Student.

Figure 2.11: KlungBot [15]

27

CHAPTER3

OPERATING PRINCIPLE AND WORKING ALGORITHM

3.1 INTRODUCTION

This chapter will be discussed the method that use to decode MIDI message

in accordance to the objectives of the study. Methodology is like a strategy or plan

for achieving some goal; methods that can be used to service the goals at the

methodology. In essence, methodology provides the blueprints that prescribe how the

process or tools should be used.

3.2 CONCEPT OF PROJECT

This project consists of two interfaces to control an Angklung which is MIDI

keyboard or PC. This interface will send MIDI message to microcontroller and

decode it to the output. The output consist 18 DC Motor to shake the Angklungs (2

and half octave) to produce the sound.

MIDI keyboard generates MIDI message when the keys is press. This

message then sends to the computer. MIDI message send two piece of information

that is which key was pressed and how fast it pressed. If the MIDI send message with

higher velocity, the DC motor will generate speed according to the message.

Second method to generate MIDI message is directly from Computer using

USB-MIDI or Android with Bluetooth protocol. This interface, stored various MIDI

28

files. User can choose what type of MIDI file they want to play. The block diagram

for this project is shown in figure 3. I.

- ·······•
''~'''~---------

MIDI Piano
Keyboard

I MIDI Files I
____ J ____ _

Computer :

GUI I:
·- ____ I

USBtoMIDI

r-----------1

1 Microcontroller 1
I

Decoder
~----~· : I I : f

1

oclt Serial 1 Out

: Controller :) : ~::; ~;
1 ___________ .. Larches

Figure 3.1: Block Diagram for MIDI decoder

However, this project is not using MIDI exactly as it is supposed to be used.

Instead of connecting the MIDI sequencer to an Electronic piano's MIDI-In port, this

project do the playing in a roundabout way by connecting the MIDI sequencer to a

device, which translates the MIDI messages to movement of the motor driver which

in term play the Angklung from the actual keys.

To produce the octaves sound, DC Motor is attaching to the Angklung. The

DC Motor will shake the Angklung with a variant speed. For Example, the MIDI

message sent very fast, and then DC motor will extract the message and produce

higher speed (Velocity) to the Angklung.

[Mlr>I file:.] ~

' --··· ' ' l:UM~UltH ' ' ' : '
' ' ' ~ I :· I MIDI out
; GUI USfl to MIDI 1

' ' •---------- --·· _,

I KEYBOARD
I M IOI out
I

I I.
M 1()1 Sh ie Id I I

MIDI in
r·-------------------- -------
' ' I

MICROCONTF:OLLCR ' '
' ' ., OECOOER

J,
Se rial! Out

CONTROLLER ::le rial 2 Out

Se rial 3 Out

'
I-~---~ ----------~-------•••

Serial In

t:.er 1iitl Loop
' i
L___,

!:>enal 1n

serial In

~rlAll nnn ,
' _____,,

«\.priril In

I 5cri~I Loop

' i .
Ser idl 111

MOTOR
ORNER 01

'
MOTOR

ORNER ll

MUIUK
DRIVER 01

.
'

MOTOR
nRll/FR 17

MnTClR

DRIVER 01
,
'

MOTClR
DRIVCR 12

Figure 3.2: Whole Block Diagram

i----. oc
MOTOROl

'

1---1 DC
MOTOR 12

f------> ui.:
MOTOROl

!

• DC
MOTOR 12

nr 1---o
MOTOR01

-,
-

nr.
MOTOR 12

r-------------~

: Al'Jt;k'.I IJN~
I 1.st Octov~
'
' ' ' Not~ CJ

' lDoj
' ' I ' I
I

' Note 83

' [Tl]
' ' I:...-:.-:.-::.~':..":.":.':.-:.-::.-_:

..

..
' '

!
' ' ' '
' ' ' '
' '

ANGKLUNG
2nd Octave

Note L4
[Do]

!

Note 64
[T~

ANbKLUNb
3rd Octa.re

NntP rG
[Ou]

'
NntP Rt;

[Ti]

~.

...... .,.

30

3.3 MIDI KEYBOARD

MIDI Keyboard as shown in figure 3.3 are used in this project is to send the

MIDI signal to the microcontroller, decode it and sent it to the motor driver

according to the address. A MIDI keyboard is typically a piano-style user interface

keyboard device used to sending MIDI signals or commands over a USB or MIDI

cable to other device connected and operating on the same MIDI protocol interface.

MIDI to MIDI cable is used to send MIDI message to microcontroller. This MIDI to

MIDI cable use in this project is shown in figure 3.4.

Figure 3.3: MIDI Keyboard [13]

Figure 3.4: MIDI to MIDI cable [14]

31

3.4 PERSONAL COMPUTER (PC)

Computer also use as user interface to control an Angklung via MIDI. A

Graphical User Interface that can plays, read and send MIDI message can be used to

interface it with microcontroller. Computer has a sound card that can read MIDI. In

figure 3.5, show how to interfacing from a PC using USB to MIDI cable.

Figure 3.5: Interfacing PC Based using USB to MIDI [11]

32

3.4.1 Graphical User Interface (GUI)

GliI (Graphical user interface) used in this project is "Vanbasco's and MIDI

Piano" as shown in figure 3.6 and 3.7. This user interface will generate midi message

or midi files and send it to microcontroller to decode it. Furthermore, any GUI that

can play, send and read MIDI message can be used with this microcontroller thru

MIDI Shield.

1~

Figure 3.6: VanBasco User Interface [J 5]

Q-.Rii'

Figure 3.7: MIDIPiano User Interface (16]

33

3.4.2 USB MIDI Cable

USB to MIDI interface will be used to connect a computer with MIDI shield

to microcontroller. This MIDI interface cable is self-powered and can be

conveniently attached to computer's USB port, v.ithout the need for tools or

computer disassembly. This MIDI interface cable use in this project shown in figure

3.8 is the simplest and most convenient way to connect a keyboard or controller to a

computer via a USB port. This cable is plug and play's and will send the MIDI

message in real time to microcontroller thru MIDI Shield.

Figure 3.8: USB to MIDI cable [17]

34

3.5 MICROCONTROLLER

A microcontroller is used to decode the MIDI message. In this project, the

Arduino DUE is used because it has a high speed clock that can send MIDI message

with small delays.

3.5.1 Arduino DUE

The Arduino Due is a microcontroller board as shown in figure 3.9.It is based

on the Atmel SAM3X8E ARM Cortex-M3 CPU. It is the first Arduino board based

on a 32-bit ARM core microcontroller. It has 54 digital input/output pins (of which

12 can be used as P\VM outputs). 12 analog inputs, 4 UARTs (hardware serial ports),

a 84 MHz clock, an USB OTG capable connection, 2 DAC (digital to analog). 2

TWI, a power jack, an SPI header, a JT AG header, a reset button and an erase button.

The Atmel SAM3X8E ARM Cortex-M3 microcontroller is set to operate at 8

MHz which was more than enough to handle the MIDI decoder. The reason for using

an 8 MHz clock was to get the right baud rate to receive the MIDI signal, as the

UART receiver is dependent on the clock rate of the device it is part of. Therefore a

clock rate has to be used which is compatible with a baud rate of 31250 baud.

\Vhen powered on the MIDI message continuously sends SPI messages to all

the motor driver board. These messages contain information on which DC motor

should be tum on. Table 3.1 below shows the specification for Arduino Due.

Table 3.1: Arduino DUE Specification

IMicrocontroller l~I AT91SAM3X8E
j

!Operating Voltage l~I 3.3V I
llnput Voltage (recommended) l~I 7-12V

I
lllnput Voltage (limits) l~I 6-20V I
llDigital 1/0 Pins l~I 54 (of which 12 provide PWM output)

I

35

Analog Input Pins ~ 12

!Analog Outputs Pins l~I 2 (DAC)

Total DC Output Current on all 1/0

I ii
130mA

lines

jnc Current for 3.3V Pin ~I 800mA

IDC Current for 5V Pin ~I 800mA

IFlash Memory I~
512 KB all available for the user

applications

ISRAM l~I 96 KB (two banks: 64KB and 32KB)

'Clock Speed l~I 84MHz

Figure 3.9: Arduino DUE microcontroller Board [18]

MIDI Decoder programming was developed to run on an Arduino DUE,

Atmel SAM3X8E AR.c\1 Cortex-M3 microcontroller. The microcontroller unit was

chosen because:

1. It is sufficiently powerful for handling MIDI Decoder

11. It has UART capabilities

{Used to receive MIDI Message)

Ill. It has SP! Header

1v. This microcontroller was already have MIDI library

i

I

I
I
I

I

I

36

3.5.2 Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SP!) is a synchronous serial data protocol used by

microcontrollers for communicating with one or more peripheral devices quickly

over short distances. SPI is used to control the Motor Driver Boards.

With an SPI connection there is always one master device (usually a

microcontroller) which controls the peripheral devices. Typically there are three lines

common to all the devices:

I. MISO (Master In Slave Out) - The Slave line for sending data to the

master,

IL MOSI (Master Out Slave In) - The Master line for sending data to the

peripherals,

Ill. SCK (Serial Clock) - The clock pulses which synchronize data

transmission generated by the master

The Arduino Due's SPI interface works differently than any other Arduino

boards. The library can be used on the Due with the same methods available to other

Arduino boards or using the extended methods. The extended method exploits

the SAM3X hardware and allows some interesting features like:

1. Automatic handling of the device slave selection.

n. Automatic handling of different device configurations (clock speed,

data mode, etc.) so every device can have its own configuration

automatically selected.

Describing SPI is easier when it is cut down into separate parts. These

separate parts are physical design, hardware protocol and software protocol.

Clock
Serial Data

CONTROLLER Latch 1

Latch 2
Latch 3

.
' -' . ' .
' . '
' .

·'
' ' .
' ..
' ' .

•I

I

. ' -
I -· . I

Serial 1 Out

1st Octave

Serial 2 Out

2nd Octave

Serial 3 Out

3rd Octave

l ________________ l

Figure 3.10: SPI OUT from microcontroller

3.6 C LANGGUAGE

37

The Arduino runs a simplified version of the C programming language, with

some extensions for accessing the hardware. Program written using Arduino is called

sketches as shown in figure 3 .11. These sketches are written in the text editor.

Sketches are saved \Vith the file extension .ino. It has features for cutting/pasting and

for searching/replacing text. The message area gives feedback while saving and

exporting and also displays errors. The console displays text output by the Arduino

environment including complete error messages and other information. In this

project, MIDI Decoder has been written in this language. (Programming code; see

Appendix)

G Analysis_l6_0ue_MIDI I~~ 1.52

t §include <S;:·r~h>
i #include <HILI .h>

in': latch;

i~t baseNote = 60;

!:•yte playNoteAri::ay[] = {l,.2,3,4,.5,6, 7 ,8,9,10,11,12,1,.2,.3,.4,S, 6, 7 ,.8

. byce playLatchArray[] {10,lO,l0,10,10,10,.10,.10,lO,l0,10,l0,4,4,4
cvn::;t inr:. LED = 5; r:1:.-:: nurfil.-,e!: ,:.:_ ~_J,c_ LEI' ~lh

: int noteDown = O;
i ~··:- -•------• --•--~;,~--~~c ____ i I ~-----· ----------~
I : :

Figure 3.11: Arduino Programming Sketch interface

3.7 The Universal Asynchronous Receiverffransmitter (UART)

38

The Universal Asynchronous Receiverffransmitter (UART) controller is the

key component of the serial communications subsystem of a computer. The UART

takes bytes of data and transmits the individual bits in a sequential fashion. At the

destination, a second UART re-assembles the bits into complete bytes.

The MIDI device use UART in a configuration that has one start bit, 8 data

bits and one stop bit with the baud rate of 31250 baud. Thus MIDI sequencers

sending the MIDI message and the MIDI decoder receiving the MIDI message have

both been configured v.i.th these parameters.

39

3.8 MIDI SHIELD

The MIDI Shield provides an opt-isolated MIDI-IN port as well as a MIDI­

OUT port. The MIDI Shield can be mounted directly on top of an Arduino,

connecting the MIDI-IN to the Arduino's hardware RX pin and the MIDI-OUT to

TX. This MIDI Shield was specially design that can choose two jobs and have a

button reset. The jobs are:

m. Play MIDI from MIDI Keyboard

1v. Play MIDI file from PC based

3.8.1 Operations

Opt-isolator use in this MIDI Shield is 6n138. The schematic is quite straight

forward as shown in figure 3.12, on the transmit side the serial output is fed through

a resistor to the base of a PNP transistor. These are sometimes called "upside do'.'.TI"

transistors because a high voltage into it makes it stop conducting and a low voltage

makes the collector I emitter conduct.

Signal----,
input

220Q

Signal
GND

•
I VCC----.--
1
I
I

IOkQ

Output
toAVR

lnten1al
GND

Figure 3.12: Opt-Isolator Schematic [19]

40

The output is then channeled through the MIDI receiving device through two 220R

resistors. In effect this is a current output as opposed to the more normal voltage

output. On the receive side the signal from the MID I transmitting device is passed

through a 6N138 opt isolator. This is basically a LED and a photo transistor in the

one package the only connection between the sending device and the arduino is a

light path. There is a resistor to protect the input from too much current and a diode

to protect against reverse voltage if wired the MIDI leads up incorrectly. The photo

transistor output is simply pulled up and fed into the receive pin of the arduino. The

MID I shield schematic for this project is shown in figure 3 .13.

' ··t;t···· .---.--- j '
j

1-1:':--=- I

' f>f - c:::J----

I] '

'

' -
'

..

+- ' ''
< ' -­
<·---·-

0
<-- ..

II
'

-
'

'

'

~··

o-~·

:-i

I
' :-- --· -1,'

~

6~l
L66

--·

42

3.9 FLOW CHART OF CIRCUIT TESTING PROCESS

Flow chart circuit testing is important to ensure the system is perfectly done

before combining with User interface and motor driver to avoid difficulties if the

system does not work. It helps make the process easier to check connection of the

component like opt-isolator, Arduino, and MIDI Shield.

Start

Identify the
problem. objective

and project scope

Literature

review

Design MIDI

Shield circuit

Design MIDI
Decoder using C
Programming in

Arduino

Finalized

circuit

Figure 3.14: Process of testing MIDI Shield Circuit

End

43

CHAPTER4

EXPERIJ\-1ENT AL RESULT AND PERFORMANCE ANALYSIS

4.1 Introduction

The chapter will brief every experiment on the methodology or the flow of

work is come out with the result and analysis. The result of this project will include

the MIDI decoder program using microcontroller and output signals that have being

handled by MIDI Shield to microcontroller. This chapter will discuss mainly about

the problems encountered during the whole project was been carried out.

4.2 Development of MIDI Angklung Controller (MAC)

This project, MIDI decoder for Auto Angklung is using programming and

circuit interfacing method. Programming part is the most important, which it use to

decode the MIDI Sequencer and make sure the decoded MIDI can be read at the

motor driver address.

44

4.2.1 MAC System Program

When powered on the board goes through the initialization phase. During the

initialization, all the variables are initialized as well as UART.

The UART receiver is set for a baud rate 312500 baud with 8 word data bits without

a parity bit. As covered before, this is the right configuration for receiving MIDI

message bytes from the MIDI sequencer.

A controller will initialize MIDI library and SP! library. In MIDI setting, controller

will define whether MIDI message is receive. If it receive correct MIDI message, the

velocity in MIDI message will be set follow by velocity setting. Microcontroller now

is ready.

There are 4 job selections in this project. First job is job I the task is to decode MIDI

Files. Second job is to decode MIDI message and job reset is to reset all the data

received.

45

START

J,
<SPLh> library

<MIDI.h> librarv

J,

MIDI setting

J,

Velocity Setting

' ,

Startup
Microcontroller

Loop
...,

- Button check

LED show

-
Job selection

•
Job selection case

-

... • -
Job I I Job 2 I None I I Job Reset I

"' Delay
(1000)

I

Figure 4.1: MAC System

46

4.2.2 Button Check Program

START

No

Yes

No

Button State_Array [set]= 0

Button State_ Array [pin] ~ I

END

Figure 4.2: Process flow for Button Check Program

4.2.2.1 Program in Arduino for Button Check

Button_Check();

ff show the result of butt.on check using led.

void Button_Check()

{

for (int Pin = O; Pin < Tota!Pin; Pin++)

{

if(digita!Read(button_Pin_Array [Pin])== HIGH)

{

{

}

}

}

}

for (int set= O; set< Tota!Pin; set++)

buttonState_Array [set] = O;

buttonState_Array [Pin]= I;

47

48

4.2.3 Led_ Show Program

START

No

Yes

No

Yes

Digital Write (Led_Pin_Array [pin), HIGH)

Digital Write (Led_pin_Array [pin], LOW)

Pin-o--c-

El\D

Figure 4.3: Process flow for Led Show Program

4.2.3.1 Program in Arduino for LED_show

LED_Show();

void LED_Show()

{

for (int Pin= O; Pin< Tota!Pin; Pin++)

{

if (buttonState_Array [Pin] == l)

{

II turn LED on:

digita!Write(led_Pin_Array [Pin], HIGH);

}

else

{
II turn LED off:

digita!Write(led_Pin_Array tpin], LOW);

}

49

50

4.2.4 Job Selector Flow Chart

Pin=O

No

No

Job Se;ection =Pin + I

Pin++

END

Figure 4.4: Process flow for Job Selector Program

4.2.4.1 Program in Arduino for Job Selector

J ob_Selector();

{

}

switch (Job_Selection)

case 1:

Job_Ol();

break:

case 2:

Job_02();

break;

case 3:

//do something when variable equals 2

break;

case 4:

Job_Reset();

delay(IOOO);

break;

51

4.2.S Job 01 (MIDI Files)

Yes

Note down = l 5

State~ I

Note do\vn = 0

State~ I

Yes

~ote=

incomingByte

State= 2

State= 0

END

No

No

Yes

play Note(note,

incomingByte, note Down)

State~ 0

Figure 4.S: Job 01 - Read and decode MIDI Files

52

No

4.2.5.1 Program inArduino for Job Ol(MIDI Files)

void Joh_Ol()

{

{

{

}

{

}

{

}

{

}

{

}

if (Seriall .availahle() > 0)

incomingByte = Seriall .read();

switch (state){

case 0:

if (incomingByte== (l 44 I channel))

noteDown = 1.5;

state=l;

if (incomingByte== (128 I channel))

noteDown = O;

state= I:

break;

case 1:

if(incomingByte < 128)

note=incomingByte;

state=2;

Else

state= O;

break;

case 2:

if(incomingByte < 128)

playNote(note. incomingByte, noteDown);

53

4.2.6 Job 02 (MIDI Message)

START

'

MID I.read ()

' '
END

Figure 4.6: Job 02 - Read and decode MIDI Message

4.2.6.1 Program in Arduino for Job 02 (MIDI Message)

void Joh_02()

{

MIDI.read();

}

void playNote(hyte note, byte velocity, int down)

{
if ((down== 15) && (velocity== 0))

{

}

{

}

}

down= O;

if(note>=haseNote && note<(haseNote + 36))

hyte now_note=playN oteArray[note-haseN ote];

byte now_latch=play LatchArray[note-haseN ote];

write_serial(now_note, down, now_latch);

digita!Write(LED, HIGH);

54

55

4.3 DEVELOPMENT OF CIRCUIT DESIGN

CadSoft EAGLE PCB Design Software is used to design the MIDI Shield

circuit for this project. The MIDI Shield circuit provides an opt-isolated MIDI-IN

port as well as a MIDI-OUT port. The MIDI Shield circuit can be mounted directly

on top of an Arduino, connecting the MIDI-IN to the Arduino's hardware RX

(Receiver) pin and the MIDI-OUT to TX (Transmitter). This MIDI Shield circuit was

specially design that can choose two jobs and have a button reset.

4.3.l COMPONENT AND EQUIPMENT

MIDI Shield circuit in figure 4.1 is used to communicate between devices

with Arduino microcontroller. The MIDI Shield provides an opt-isolated MIDI-IN

port as well as a MIDI-OUT port. The MIDI Shield can be mounted directly on top

of an Arduino, connecting the MIDI-IN to the Arduino's hardware RX pin and the

MIDI-OUT to TX. In table 4.1 shows the listing of the component used in this circuit

Component Quantity

Opt-isolator 6n 13 8 I

Diode ln4001 I

5 PIN DIN (Female) I

Resistor 200 Q 4

7404 3

Push Button 4

Fi us I

Light Emitting Diode (LED) 3

Voltage regulator LI\7805 I

Table 4.1: MIDI Shield circuit component

Job I
Button

Job 2
Button

MIDI
Pin (In)

Reset button

Figure 4.1 : MIDI Shield circuit

4.4 RESULT AND PERFORMANCE ANALYSIS

4.4.1 Transmission Efficiency MIDI Signal

56

Decoded
MIDI out

(Octave I)

Decoded
MIDI out

(Octave 2)

Decoded
MIDI out

(Octave 3)

The output signal of the MIDI Decoder is read by the motor driver circuit.

The signal is sent out to the correct motor driver through proper address decoding.

This proved when sending a MIDI note for example note C3 to the microcontroller

thru MIDI Shield. Then microcontroller will decode the MlDI note and send to the

motor driver follow by the MIDI note send. For note C3, the motor driver address is

0001 , so motor driver with 0001 will be running. Figure 4.2 below show the Motor

Driver circuit use in this project.

Figure 4.2: Motor Driver

4.4.2 Latency in Opt-Isolator

Otamel Qmri MaxiTun Mmun Averaoe Reset Remove

CHANNEL 1 8.735µs 8. 735µs 8. 735µs 8. 735µs I Reset 11 Delete r

Motor
driver

Address

Figure 4.3: Latency after flow thru Opt-isolator is about 8.735µs.

57

Figure 4.3 above show the latency for MIDI message after flow in MIDI shield

thru Opt-isolator from MIDI Keyboard or PC Based. The latency is about 8.735 µs .

4.4.3 Latency in microcontroller

Madcm >cJ.o o

Uncn

I Owne! I : OwlrTiel 2

o XClnors
¢JQ X1c Os

¢J Q X2: 1.3121111

Ooh)(1 312 ml

YClnors

¢JQY1 3312V

¢JQ Y2: ov
Deb Y ·3312V

Meauemeris

Q} ~012

58

Figure 4.4: Latency in microcontroller after decodes the MIDI signal is 1.3 l 2ms

After decode MIDI in microcontroller, the latency MIDI signal is 1.312ms as
shown in figure 4.4. This latency tells that to decode the MIDI signal in
microcontroller is take less than 2ms.

4.4.4 Total Latency for MAC

L latency = Latency Opto + Latency microcontroller

I latency= 8.735µs + 1.312 ms

L latency= 1.320735 ms

In the audio world, "latency" is another word for ''delay". It's the time it

takes for midi into the device, for the decoded the midi, for the motor drive to shake

the angklung, and for the sound to reach your ear.

Our brain is wired so that it doesn't notice if sounds are delayed 3 to 10

milliseconds (ms). This device produces latency at 1.320735 milliseconds (ms). This

make the system fast enough to decode the midi signal from music instrument and

play the angklung music instrument in real time processing.

59

CHAPTERS

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This final chapter represents about conclusion and recommendation for the

project. In this chapter will discuss mainly about the conclusion of the project,

concluding all the process that involved. Besides that this chapter also contains

recommendation about the project. So for this recommendation it can make

improvement about the project in the next semester.

5.2 Conclusion

One could come to the conclusion that the MIDI Decoder in its entirety was a

success. The problem of controlling the Angklung with MIDI messages was solved

by creating a simple system to receive MIDI messages, decode them, and control the

Motor driver according to them in real time.

5.3 Future Development

For future improvement, it is suggested to use Android to be a user interface

to send a MIDI message to MIDI Decoder to decode. Besides controlling using

Computer and MIDI Piano as user interface, develop a controller using android via

Bluetooth transmission. With this additional, it can control an Angklung wirelessly.

60

REFERENCES

Professor Kuo-Huang Han. Can You Shake ft? The Angklung of Southeast Asia

Location: Northern Illinois University.

Floyd. Digital Fundamental 1 o•h edition. Published by Person International Edition

Adam Koss. A Comparison Of The Graphs Of The Chromatic And Diatonic Scale

Cadance. (2000). PSpice User's Guide. Published by Cadence Design Systems, Inc.

Music in Sequence: Complete guide to MIDI by William Lloyd and Paul

Terry (Jan 1, 1996)

MIDI Technical Brainwashing Center 2009c. Note-On. Read 30.8.2009.

http://home.roadrunner.com/-jgglatt/tech/midispec/noteon.htm

MIDI Technical Brainwashing Center 2009d. Note-Off. Read 30.8.2009.

http://home.roadrunner.com/-jgglatt/tech/midispec/noteoff.htm

Computer music in C I Phil Winsor & Gene DeLisa. Published by Blue Ridge

Summit, PA : TAB Books (Windcrest label), c 1991.

MIDI Decoder Source Code

#include <SPI.h>

#include <MIDI.h>

int latch;

byte incomingByte;

byte note;

byte velocity;

int noteDo'\<\7Il = O;

int state=O:

II setting for Angklung

int baseNote = 60;

APPENDIX A

byte playNoteArray[]

{ l ,2,3,4,5,6, 7 ,8,9,l O,l l ,12,1,2,3,4,5,6, 7 ,8,9,l O,l l,12,1,2,3,4,5,6,7,8,9,10,11,12};

byte playLatchArray[]

61

{I 0, I 0,10,10,10,10, 10, l 0,10, l 0,10, 10,4,4,4,4,4,4,4,4,4,4,4,4,52,52,52,52,52,52,52,5

2,52,52,52,52};

int channel = I;

int channel_selection = l;

II constants won't change. They're used here to

II set pin numbers:

const int button_Pin_Array [] = {22,25,29,33}:

pushbutton pin.

II the nurnher of the

const int led_Pin_Array [] = {23,27,31,35}; II the number of the LED pin.

const int TotalPin = 4;

const int LED = 5;

II variables will change:

int buttonState_Array [] = { 1,0,0,0};

status.

II variahle for reading the pushbutton

int Job_Selection =I; II variable for job to do.

void setup() {

}

state = O;
Seriall .begin(31250);

II Initiate MID I communications

MID I.begin(channel_ selection);

SPI.begin(lO);

SP I.begin(4);

SPl.begin(52);

SPI.setDataMode(I O,SPI_M OD EO);

SPI.setDataMode(4,SP I_M 0 D EO);

SPl.setDataMode(52,SPI_MODEO);

SPl.setBitOrder(lO,MSBFIRST);

SPl.setBitOrder(4,MSBFIRST);

SPl.setBitOrder(52,MSBFIRST);

SPI.setClockDivider(I 0,2 l);

SPI.setClockDivider(4,21);

S PI.setClockDivider(52,21);

pinMode(latch,OUTPUT);

MID I.setHandleN oteOn(HandleN oteOn);

MIDI.setHandleNoteOff(HandleNoteOff);

for (int Pin = O; Pin < TotalPin; Pin++) {

}

II initialize the LED pin as an output:

pinMode(led_Pin_Array [Pin], OUTPUT);

II initialize the pushbutton pin as an input:

pinMode(button_Pin_Array [Pin], INPUT);

pinMode(LED, OUTPUT);

digitalWrite(LED,LOW);

void loop(){

II read the state of the pushbutton value:

II check if the pushbutton is pressed.

Button_ Check();

II show the result of button check using led.

62

LED_Show();

Job_Selector();

}

switch (Job_Selection) {

case 1:

}

Job_Ol();

break;

case 2:

Job_02();

break;

case 3:

//do something when var equals 2

break;

case 4:

Job_Reset();

delay(lOOO);

break;

void Button_Check(){

}

for (int Pin= O; Pin< Tota!Pin; Pin++) {

if (digita!Read(button_Pin_Array [Pin])== HIGH){

for (int set= O; set< Tota!Pin; set++) {

buttonState_Array [set] = O;

}

l

}

buttonState_Array [Pin]= l;

void LED_Show(){

}

for (int Pin= O; Pin< Tota!Pin; Pin++) {

if (buttonState_Array [Pin] == l) {

}

II turn LED on:

digita!Write(led_Pin_Array [Pin], HIGH);

else {

II turn LED off:

digitalWrite(led_Pin_Array [Pin], LOW);

63

}

}

void Job_Selector(){

for (int Pin= O; Pin< Tota!Pin; Pin++) {

if(buttonState_Array [Pin)== 1) {

Joh_Selection =Pin+ l;

}

}

}

void Job_Ol(){

if (Seriall.availahle() > 0)

{

incomingByte = Seriall.read();

switch (state){

case 0:

if (incomingByte== (144 I channel)){

noteDown = 15;

state= I;

}

if (incomingByte== (128 I channel)){

noteDown = O;

state= I;

}

break;

case l:

if(incorningByte < 128){

note=incomi11gByte~

state=2;

}

else{

state= O;

}
break;

case 2:

if(incomingByte < 128){

playNote(note, incomingByte, noteDown);

}
else{

state= O;

}
break;

64

}

}

}

void Joh_02(){

MIDI.read():

}

void playNote(hyte note, hyte velocity, int down){

if ((down== 15) && (velocity== O)){

down= O;

}
if(note>=haseNote && note<(haseNote + 36)){

byte now _note=playNoteArray[note-haseNote];

byte now _latch=play LatchArray[note-baseNote];

write_serial(now_note, down, now_latcb):

digitalWrite(LED, HIGH);

}

}
void write_serial(int value, int speeed, int latch){

byte serial = value* 16+speeed;

SPI. transfer(latch,O);

SP I. transfer(latch,serial);

}

void HandleNoteOn(byte channel, byte note, byte velocity) {

noteDown = 15;

}

playNote(note, velocity, noteDown);

digitalWrite(LED, LOW);

void HandleNoteOff(byte channel, byte note, hyte velocity) {

noteDown = O;

}

playNote(note, velocity, noteDown);

digitalWrite(LED, LOW);

void Joh_Reset(){

}

}

}

for (byte note_reset = baseNote; note_reset < (haseNotc + 36); note_reset++) {

playNote(note_reset, 0, O);

for (int set = O; set < TotalPin; set++) {

buttonState_Array [set] = O;

buttonState_Array [O] = 1;

65

MIDI Shield Circuit

- , y
·.:__, 4 I ? 1 ·: I·: !

I v
I ~, · __ J

--

-·· hn ' v

APPENDIXB

I-

>

~

0 0
0 0

66866660
Y'~, r)(' y

f I
".'

f- -=:;-f :rr T >

m

I -=-·r St= T '>

m

=
f

)1 T >

~

I- =
f

1rr->

,-----------

I 0
D-
D
0
0 ~ -0

[.>;

"

f-- -- --0>

f >
J -- --- >

I-=-*-'

=-
c::l---

~~- !
Kl - .

" I Kl-

0

66

0

'' ---0
0
0

-{)

0

67

APPENDIXC

Expended MIDI message list

Expanded Messages List (Status Bytes)

The following table lists Status Bytes in binary numerical order (adapted from "MIDI by the Numbers" by D. Valenti, Electronic
Musician 2/88, and updated 1995 By the MIDI Manufacturers Association.)

Table 2: Expanded Status Bytes List

STATUS BYTE DATA BYTES
.-----------------· --, --

1st Byte Value Function 2nd Byte 3rd Byte

Binary IHexl Dec

10000000= 80= 128 Chan 1 Note off i Note Number (0-127) Note Velocity (0-127)
............ "----··

Chan 2 Note off Note Number (0-127) Note Velocity (0-127)
~~--~~~~--i--------·----------·--,-······ -----·-------------·--··-···'

10000101- 85= 133

IO= 86= 134

10000111- 87= 135

10001000= 88= 136

10001001= 89= 137

10001010= 8A= 138

10001011= SB= 139

Chan 3 Note off Note Number (0-127) Note Velocity (0-127)

Chan 4 Note off Note Number (0-127) Note Velocity (0-127)

Chan 5 Note off Note Number (0-127) Note Velocity (0-127)
---<-------·-···---------------------;-----------------+--·~~-

Chan 6 Note off

Chan 7 Note off

Chan 8 Note off

Chan 9 Note off

Chan 10 Note off

Chan 11 Note off

Note Number (0-127) Note Velocity (0-127)

Number (0-127)

Number (0-127)

Note Number (0-127)

Note Number (0-127)

Note Number (0-127)

Note Velocity (0-127)

Note Velocity (0-127)

Note Velocity (0-127)

Note Velocity (0-127)

···············---------------------·-.. r·
Note Velocity (0-127)

Note Velocity (0-127) Chan 12 Note off i Note Number (0-127)
~--------·-··-·--·----------···········-- ·--······----------·········--~------------ - --- --------------------·---- _ _.]

10001100= BC= 140 Chan 13 Note off

10001101=80= 141 Chan 14 Note off

Note Number (0-127)

Note Number (0-127)

Note Velocity (0-127)

Note Velocity (0-127)
.. ------ ,, .. ,, ------~~'""-'"'""'--""'_' __ ·- ,_ --

10001110= 8E=

10001111= SF= 143

1001 0000= 90= 144

10010001= 91= 145

10010010= 92= 146

10010011= 93= 147

Chan 15 Note off

Chan 16 Note off

Chan 1 Note on

Note Number (0-127)

: Note Number (0-127)

Note Velocity (0-127)

Note Velocity (0-127)
......... -r"--

Chan 2 Note on Note Number (0-127) Note Velocity (0-127)
,------~~

Chan 3 Note on Note Number (0-127) I Note Velocity (0-127)

Chan 4 Note on
----·i _, __ _

Note Number (0-127) : Note Velocity (0-127)

68

r------------··--------.---.--r·-------- ------------- ---r------

10010100~ 94~ 148 Chan 5 Note on I Note Number (0-127) Note Velocity (0-127)
' __________________________]

IOOIOIOI~9s~ 149 Chan6Noteon I NoteNumber(0-127) I NoteVelocity(0-127)
r- . -t-----------------------·--------1-------------·-·-----------r-------------_j

10010110~ 96~ 150 I Chan 7 Note on I Note Number (0-127)] Note Velocity (0-127)
r

10010111~ 97~ 151

100 I !OOO~ 98~ 152

10011001~ 99~ 153

IOOl IOIO~ 9A~ 154

10011011~ 9B~ 155

10011100~ 9c~ 156

----------T-------------------------------------·---· r-

Chan 8 Note on I Note Number (0-127) I
-----------------------------------, -------------------------------;---- ----

Note Velocity (0-127)
____ !

Chan 9 Note on Note Number (0-127) Note Velocity (0-12 7)

I Note N~~b~;(0-127) I
------- ----

Chan I 0 Note on Note Velocity (0-127)
---C--------------------.,---------------------------·---

----,-·-
Note Number (0-127) I Note Velocity (0-127)

------,--------L-----------------~·
Chan 11 Note on

Chan 12 Note on : Note Number (0-127) Note Velocity (0-127)
r-·-----··----------------------------------

Chan 13 Note on
------.---------------- -------------,---------------·------·

I NoteNumber(0-127) : NoteVelocity(0-127)
,------------~--- --------1··----------------------------,--- - -- ------------·

10011101~ 9D~ 157 Chan 14 Note on Note Number (0-127) Note Velocity (0-127)
i --------.,----------------·-------------------------------,------------- --- ------------~•-------------------__J

I Chan 15 Note on i Note Number (0-127) Note Velocity (0-127)
------------ -·-------------r------------------ -·-----·------ !-- - -·------------------------------__)

Chan 16 Note on i Note Number (0-127) Note Velocity (0-127)

10011110~ 9E~ 158

10011111~ 9F~ 159
r-----·--------·

10100000~ AO~ 160 I Chan I Polyphonic Aftertouch Note Number(0-127) Pressure (0-127)

r IO 100001 ~A I~~ Ch-;;~-lPol;h~~~Aft~~~~;h i Note Number (0-l-Z; ,------Pres~~re (O-ll7) ____ _
------,----------------- -------------- -.--------------------------------_:

10100010~ A2~ 162 i Chan 3 Polyphonic Aftertouch I Note Number (0-127 , Pressure (0-127) •

I 0I00011 ~ A3~ 16_i-~4p;;;;;;;;;;;;\fte~;;-~h1-;;.;;~Nu-;be~-(0:1;7-T----P~ssure (o-=un--1
'IOIOOIOO~A4~I641 Chan5PolyphonicAftertouch I NoteNumber(0-127 T Pres~ure(0-127) -

10100101~ AS~ 165 I Chan 6 Polyphonic Aftertouch -[N~te Number (0-127 I Pressure (0-127)

WIOOl JO~ A6~ 166 I Chan 7 Polyphonic Aftertouch TNote Nu;;;ber (o-127 -T Pressure (0-127)
- -----~. ------ _______ J

10100111~ A7~ 167 Chan 8 Polyphonic Aftertouch I Note Number (0-127 I Pressure (0-127)
,------- . --,----------------·

10101000~ AS~ 168 Chan 9 Polyphonic Aftertouch ; Note Number (0-127 I Pressure (0-127)

r-10101001~ A9~ 169 I Cha~-IO Polyphonic Aftertouch fNote N~;;;;;-;.:-(0:;;7--r- Pressure (0-127) --'
: - ---: -----------------:--------------------------r------------------------_J
IOIOIOIO~ AA~ 170 ! Chan 11 Polyphonic Aftertouch : Note Number (0-127 I Pressure (0-127) ' ·-[------ ----·-------------------------,_'----------- ------+
101010ll~AB~I71 I Chanl2PolyphonicAftertouch; NoteNumber(0-127 1

i ' .

Pressure (0-127)
' -----i-------- -----------·--·----·-,---- -------------------·-·.

I 0IO1100~ AC= 172 I Chan 13 Polyphonic Aftertouch I Note Number (0-127 i
r---- - --~------ ---- __________ __,. ··----------------------'

Pressure (0-127)

I 0101101 ~AD~ 173 Chan 14 Polyphonic Aftertouch Note Number (0-127 Pressure (0-127)
' ---------------------------------------·-------~--- -- ---------------------··----- --··---·-·------------------

10101110~ AE~ 174 Chan 15 Polyphonic Aftertouch i Note Number (0-127 Pressure (0-127)

I 011 OOOO~ BO~ 176 J Chan I Control/Mode Change
---1 ----------,------------

] 011000 I~ BI~ 177 I Chan 2 Control/Mode Change
1 ,------ ----------r ·-------- --,----

] 011001 o~ B2~ 178 I Chan 3 Control/Mode Change
------------------·----~

,--------- HT-
10 l10011~ BJ~ 179 I Chan 4 Control/Mode Change

' ---,--
101101oo~B4~ 1so Chan 5 Control/Mode Change

,--------r-------------------------
lOl lOlOl~ BS~ 181

10110110~ B6~ 182

10110111~ B7~ 183

Chan 6 Control/Mode Change

Chan 7 Control/Mode Change

Chan 8 Control/Mode Change

69

,- ' ------------T--

10111ooo~B8~ 184 I

Chan 9 Control/Mode Change
' ---·------··---···--~ ···- . ·------- .. ·-·-··---------- . -~-- -----------------------------·-------<

I 011100 I~ B9~ 185 ! Chan I 0 Control/Mode Change
-------------··-·-r-------------·---------------- ------------------
- lO!llOJO~BA~ 186 I Chan 11 Control/Mode Change

1-·------------------------------
10111011 ~ BB~ 187 I Chan 12 Control/Mode Change

i----·-- ----· --.,.--· --- . ., '"]"""

I 01111 OO~ BC~ 188 Chan 13 Control/Mode Change
,--------------;---

10111101 ~ BD~ 189 Chan 14 Control/Mode Change
,----------- ----------~

10111110~ BE~ 190 Chan 15 Control/Mode Change

lOllllll~BF~ 191 Chan 16 Control/Mode Change
,--------

11000000~ co~ 192 Chan I Program Change Program# (0-127) none

11000001~c1~ 193 Chan 2 Program Change Program# (0-127) none

Chan 3 Program Change Program# (0-127)
-, ---- ----~---------------------------------·;--- ·- ·-··---------·----·---- . _ _J_ __________________________________ ;

1100001o~c2~ 194 none

11000011~ C3~ 195 I Chan 4 Program Change Program# (0-127)
,--------~'--- r ----------- ----T -·-·-·- -----·---------------------___)

none

,_1_1_0_00_1_oo_~_c_4_~_1_96_-r---__ chan 5 Progra~~1'."~~-+ Pr~!'.'_'11~_(0~12_7) ____ +----none

11000101~ cs~ 197 Chan 6 Program Change I Program# (0-127) ' none
-,---- ----------~

Chan 7 Program Change J Program# (0-127) I
.------

11000110~ c6~ 198 none

1-1 O_O_O_l_l _I =-C-7-~-19-9~--Chan 8 Program Change r --p;~gr~#(o-127)1 none
I --~'-----

,--l-lQOlOoQ::CS= 2ooj ___ Ch~~ 9 Program Change ---!Progr~ # (0-127) I none .
1--- --------------,------------------~

11001001~ C9= 201 I Chan lO Program Change [Program# (0-127) I none
~------------- --------- --------··-·---· ····---·--------- -------,------·---·--------·-----------~----·---------------

11001010~ cA~ 202 Chan 11 Program Change I Program#(0-127) I none
----------------------- - ---· · -r--- --- --- .. -------- ----------. ---- ---- --------,------------------·--------·· ---

11001011~ CB~ 203 Chan 12 Program Change i Program# (0-127) i none
r-·---------------+---------·-·--------------- -c------------- --- --------------- --·-----

110011 oo~ cc~ 204 I Chan 13 Program Change Program # (0-127) none

11001101~ co~ 205 i-- Ch~~;4i;;;~~;;;;-e:;;;n~~ - , Program# (o-127)-,- ---~-;~~---------
,-- r----·- ··- ------------------------ ---------·-------------- ---- --------------

110011 IO~ CE~ 206 I Chan 15 Program Change Program# (0-127) none

' r----------------, - ----------------------------

11001111 ~ CF~ 207 I Chan 16 Program Change Program # (0-127)
,-----------~---·---------·--·;--------···---------··-·---------------------;

I : '
11010000~ DO= 208 i Chan 1 Channel Aftertouch • Pressure (0-127) :

r---------------r' ------------------------------- ' ---------------------'

none

none

11010001 ~ DI= 209 J Chan 2 Channel Aftertouch Pressure (0-_]22l_

11010010~ 02= 210 I Cha~ 3 Chann~l Aftertouch Pressure (0-127)

none

none
.----·- ----'------·--·--------·-------------------------- ---- -

. I I 0I0011 ~ D3~ 211 f Chan 4 Channel Aftertouch ,
.. - -------!-------------------------------

Pressure (0-127) none
r-·------------------. ---- ---------------- -----·--

11010100~ D4~ 212 Chan 5 Channel Aftertouch Pressure (0-127) none
-,-------

Chan 6 Channel Aftertouch Pressure (0-127) none

,-----------.-.--,......------·----------------------------
110 I 0 I IO~ D6~ 214 / Chan 7 Channel Aftertouch Pressure (0-127)

,--------------·---·--------- ----- ---
11010111~D7~215 I Chan 8 Channel Aftertouch Pressure (0-127)

r----------+---------------··----------·-f------·---------------------
1101 IOOO~ D8~ 216 I Chan 9 Channel Aftertouch Pressure (0-127)

1101100 I~ D9~ 217 ! Chan IO Channel Aftertouch
,----------·-·----+-----·---.------------------------------------
11011010~ DA~ 218 Chan 11 Channel Aftertouch

,-- ~---

11011011~ DB~ 219 Chan 12 Channel Aftertouch
' .----------r----·-·---------·----·--·--------

11011100~ Dc~ 220 Chan 13 Channel Aftertouch
,-------------,- ----------------- --

1101110 I~ DD~ 221 Chan 14 Channel Aftertouch
----,------- ------------------------------------

I IOI I I IO~ DE~ 222 Chan 15 Channel Aftertouch

11011111~ DF~ 223 Chan 16 Channel Aftertouch

I I I OOOOO~ EO~ 224 Chan I Pitch Wheel Control

lllOOOOI~EJ~225 Chan 2 Pitch Wheel Control

Chan 3 Pitch Wheel Control

,----------------------------- -i--------------• - -----•-••---•-•--------T• •

Pressure (0-127)

Pressure (0-127)

Pressure (0-127)

Pressure (0-127)

Pressure (0-127)

Pitch Wheel LSB (0-
127)

Pitch Wheel LSB (0-
127)

Pitch Wheel LSB (0-
127)

11 100011 ~ E3~ 227 . Chan 4 Pitch Wheel Control 1 Pitch Wheel LSB (0-
127)

70

none

none

none

none

none

none

none

none

none
-- - - ------------ ---- - ---

none

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

r--------- +------------- ----------
Chan 5 Pitch Wheel Control fl Pitch Wheel LSB (0-

127)
11100100~ E4~ 228 Pitch Wheel MSB (0-127)

,----- -,------ -----+--- -----i---

11100 I 0 I~ ES~ 229 / Chan 6 Pitch Wheel Control I Pitch Wheel LSB (0- Pitch Wheel MSB (0-127)

'I I 127)
. I

:
--'

r----- --------,--- ---T----------------------1-------------------------
J J J 00 J JO~ E6~ 230 I Chan 7 Pitch Wheel Control I Pitch Wheel LSB (0- / Pitch Wheel MSB (0-127) '

! 127) '
' I -----------· .L----------------------------- . .---~--·-··-----------c---1---------

11100111 ~ E7~ 231 Chan 8 Pitch Wheel Control

11101000~ ES~ 232 Chan 9 Pitch Wheel Control

llIOIOOI~E9~233 Chan I 0 Pitch Wheel Control

,---------~:.-------- --- ---- - -------

11101010~ EA~ 234 i Chan 11 Pitch Wheel Control

11 !01011~ EB~ 235 Chan 12 Pitch Wheel Control

11101100~ EC~ 236 Chan 13 Pitch Wheel Control

11101101~ E~ 237 Chan 14 Pitch Wheel Control

1-------·-------·-1------------------------

11101110~ EE~ 238 ! Chan 15 Pitch Wheel Control -------------------··---------

Pitch Wheel LSB (0-
127)

Pitch Wheel LSB (0-
127)

Pitch Wheel LSB (0-
127)

Pitch Wheel LSB (0-
127)

Pitch Wheel LSB (0-
127)

Pitch Wheel LSB (0-
127)

Pitch Wheel LSB (0-
127)

Pitch Wheel L,SB (0~

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

-- ~---·-"~--- '-~--.,--~--··---·-···-·-··----'

Pitch Wheel MSB (0-127)

Pitch Wheel MSB (0-127)

71

127)

1 I I 01 I 11 ~ EF~ 239 Chan 16 Pitch Wheel Control Pitch Wheel LSB (0-
127)

Pitch Wheel MSB (0-127)

1111 OOOO~ FO~ 240

11110001~ FI~ 241

11110010~ F2~ 242

11110011~ F3~ 243

11110101~ F5~ 245

11110110~ F6~ 246

11110111~ F7~ 247

11111000~ F8~ 248

11111001~ F9~ 249

11111010~ FA~ 250

i

System Exclusive

MIDI Time Code Qtr. Frame

Song Position Pointer

Song Select (Song #)

Undefined (Reserved)

Undefined (Reserved)

Tune request

End of SysEx (EOX)

Timing clock

Undefined (Reserved)

Start

11111011~ FB~ 251
r-----------~-----

Continue

11111100~ FC~ 252 Stop

** **

LSB MSB

(0-127) none

none none

none none

none none

none none

none none
--,---

none ' none
-- - ---------------------~·-------------

,-1 l-l~ FD~ 2SJ--I --Undefi~ed (Re~~;~;dl-
r-- --,-------·-~----------------,--- -----------------------r·-------------·-

1111111 o~ FE~ 254 I Active Sensing ; none ! none
,-------------------,-------------- -1----· ----------··-·------- ---

11111111 ~Ff~ 255 j System Reset I none none
r- ·- ---~-------~------

**Note: System Exclusive (data dump) 2nd byte~ Vendor ID (or Universal Exclusive) followed by more data bytes '
and ending with EOX.
-----------·

