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ABSTRACT 

The Powered Exoskeleton is an electromechanical structure worn by an operator, matching 

the shape and functions of the human body. Exoskeletons supplements the function of the 

human limb by augmenting its strength, agility and endurance or at least by supplying the 

activation energy required to initiate the limb's movements. This project provides the 

detailed steps on the design of powered exoskeleton structures and considerations involved 

when designing it. Considerations such as ergonomics, loadings and actuator capabilities, 

costs and manufacturability were taken into consideration during the early steps. To be 

kinematically compatible with human walking motion, gait analysis or the study of human 

walking have been performed. Kinovea which is a video motion analysis was used to 

capture all the walking data. For actuation, two actuators; Pneumatic Muscle Actuator and 

Pneumatic Cylinders were tested for compliant actuation. Solidworks is used to design the 

frame and to perform Finite Element Analysis as well as a motion simulator to check 

compatibility with human motion. All data were compared taking actual gait data as 

benchmark.
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ABSTRAK 

Exoskeleton berkuasa adalah sejenis struktur elektromekanikal yang di pakai oleh seorang 

operator. la mempunyai ciri-ciri yang mirip bentuk dan fungsi badan manusia. Exoskeleton 

membantu pergerakan manusia dengan meningkatkan kekuatan, kelajuan dan ketangkasan 

atau dengan sekurang-kurangñya menyumbangkan tenaga pengaktifan bagi satu gerakan. 

Projek mi membentangkan fasa-fasa secara terperinci mengenai proses reka bentuk struktur 

exoskeleton berkuasa dan pertimbangan yang di buat ketika proses tersebut di buat. 

Pertimbangan seperti ergonomika, bebanan kebolehan actuator, kos serta kebolehrnesinan 

di ambil kira pada peringkat pengkonsepan. Untuk menjadi serasi dari segi kinematic 

dengan pergerakan manusia, analisa gait atau analisa pergerakan kaki manusia ketika 

berjalan di buat. Kinovea di gunakan untuk merekod segala data daripada video. Dari segi 

aktuator, dua aktuator telah di kaji iaitu Aktuator Otot Pneumatik dan Omboh Pneurnatik. 

Solidworks di gunakan untuk mereka bentuk rangka exoskeleton dan juga untuk 

menjalankan Analisa Unsur Terhingga serta untuk simulasi pergerakan untuk 

membandingkan keserasian dengan gerak geri berjalan manusia. Kesemua data yang di 

peroleh daripada simulasi pergerakan dibandingkan dengan data sebenar gerakan j alan kaki 

sebenar.
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CHAPTER 1 

INTRODUCTION 

1.1	 Background 

The powered exoskeleton is an electromechanical structure worn by an operator, matching the shape 

and functions of human body (Anam, K., & Al-Jumaily, A. A., 2012). Exoskeletons supplements the 

function of the human limbs by augmenting its strength, agility and endurance or at least by supplying the 

activation energy required to initiate the limb's movements. Different from conventional robotics, there is 

a close physical interaction between the exoskeleton and the human wearer. Close interaction means the 

wearer controls the exoskeleton via physical contact with sensors. This is the reverse of master-slave 

configurations, where there is no physical contact between the slave and the human operator, which are 

remote from one another (Pons, J. L., 2008). According to this concept, the exoskeleton functions as both 

an input device (by obtaining signals from wearer and moving to desired location) as well as a force 

feedback device (by providing haptic interactions between the exoskeleton and its environment). 

The application of exoskeleton ranges from military use to rehabilitative use. In military applications, 

Matthias, H., (2007) states that exoskeletons increases the performance of soldiers through: 

Increasing payload: ability to carry or fire power, supplies, ammunition and heavier armour 

increasing the survival chance of a soldier after a direct hit or explosion 

Increasing speed and range: enhance ground reconnaissance and battle space coverage 

Increasing strength: ability to operate larger calibre weapons and withstand recoil as well as better 

obstacle clearance
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Exoskeletons in this field are built with high power and efficiency as focus. Notable exoskeletons which are 

built for military applications are Berkeley's Lower Extremity Exoskeleton (BLEEX), Lockheed's Human 

Universal Load Carrier (HULC) and Raytheon XOS exoskeleton. 

In the rehabilitative and assistive field, the exoskeleton provides muscular augmentation as well as structural 

support as functional replacements for weak limbs. The functional requirements in this field differs from 

military use as exoskeletons in this field places safety and ergonomic in the highest priority. 

The most notable exoskeleton in the rehabilitative and assistive field is the Hybrid Assistive Limb (HAL) 

developed by Japan's Tsukuba University and the robotics company Cyberdyne. 

HAL is a full-body exoskeleton designed to aid people who have degenerated muscles or paralyzed due to 

brain or spinal injuries (Guizzo and Goldstein, 2005). In HAL-5, the structure consist of nickel molybdenum 

and aluminium alloy which is further strengthened by plastic casing. Power assistance is provided by electric 

motors which helps aid the wearer in standing up, walking, climbing stairs and perform a range of other leg 

movements. 

Regardless of application focus of exoskeleton, the limitations and problems of this technology remains the 

same, which are: 

• Need for lighter, longer lasting and faster recharging portable power 

• High complexity, technology, cost and size of system limits the ability to mass manufacture 

exoskeletons 

• Requirement of high strength to weight materials to support the wearer as well as the exoskeleton 

components
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1.2	 Aims and Objectives 

The objective of this project is to design and fabricate efficient, cost-effective, ergonomic and 

reproducible hardware components for a walking exoskeleton which functions as a walking assistive device 

for individuals with walking impairments. 

	

1.3	 Problem Statement 

In the 195 0s, only 4.9% of the world's population was over the age of 65. In the present date, almost 20% 

is over the age of 65 due to increase in quality of living and better healthcare. In Malaysia, the number of 

population above the age of 65 is steadily increasing from 3.99% in 2002 to 4.92% in 2012 (Trading 

Economics, 2012). This trend shift in population demographics demands more care towards health risk 

associated with aging. Among the common health risk is loss of muscle strength which leads to walking 

impairments. 

The elderly with walking impairments have troubles moving about in their daily life. Often, they 

rely on using wheelchairs as a mean of locomotion. Although the performance of wheeled assistive devices 

is acceptable for a large portion of daily activities, the user of these devices will face difficulty in traversing 

through uneven terrain and manoeuvring through obstacles. 

In terms of rehabilitation, overdependence on wheelchairs will cause the following: 

i. Causes secondary problems; formation of contractures in the lower limbs, pressure sores, bowl 

infections, lower limb spasticity, osteoporosis and kidney/urinary tract infections. 

ii. Reduces cardiopulmonary functions 

iii. Negative psychological effects
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1.4	 Project Scopes 

This project is focused on the design and fabrication of a wearable exoskeleton mechanical components as 

well as hardware selection based on human biomechanics data. The project scope is broken down into the 

following:

a. Clinical Gait Analysis 

b. Design and motion simulation of exoskeleton frame 

c. Selection and assembly of mechanical elements 

d. Fabrication of frame and mechanical elements 

e. Live test run of exoskeleton 

E Performance evaluation
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CHAPTER 2 

LITERATURE REVIEW 

2.1	 Introduction 

In this chapter, general concepts and terminology of walking will be introduced. This includes 

discussion on previous works comprising the analysis, mechanics and description of stages involved in 

walking. Methods employed during the design phase of various previous works on exoskeleton will be 

reviewed and adapted to this project. In the analysis part of this chapter, torque, power, velocity and angle 

of normal walking, walking with load and walking with exoskeletons designed by previous papers will be 

reviewed and be used as a benchmark to this project's findings. 

2.2	 Human Gait Analysis 

Human gait analysis is defined as the systematic study of human walking. Understanding the human 

gait is not just important for deciding the kinematic and dynamic architecture but also for the proper 

selection of powered joints and exoskeleton ergonomics as well as specification for actuation components 

and its placement. It is important that the design of the exoskeleton mimics the kinematics and dynamics of 

walking so that it does not cause the walker to alter their gait. This is because gait changes have been shown 

to increase energy expended during locomotion (T. A. McMahon, G. Valiant, E. C. Frederick, 1987). 

By definition, walking is an alternating repetitive sequence of limb motion to move forward while 

simultaneously maintaining stance stability (C.J Walsh, 2003). The cyclical process of events during gait is 

known as the gait cycle. It starts and ends the moment when one foot comes into contact with the ground,



lane 

usually termed heel strike (Perry, 1992). The analysis of walking is three dimensional but in this final year 

project, the focus is on the sagittal plane as the largest motions, torques and powers are in this plane. (H. 

Kazeeroni, 2005)

Figure 2.1: Reference planes of body in standard anatomic position (Michael, W. Whittle., 2007) 

Since the key focus is on the Sagittal Plane, the motions that will be discussed throughout this thesis are 

Extension (positive direction) and Flexion (negative direction). 

Figure 2.2: Description of direction of joint motions (Michael, W. Whittle., 2007).
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For motion of ankles, the nomenclature varies slightly. Dorsiflexion is named for the upwards flexion while 

Planar flexion is for the downward extension of the ankle. 

Ankle Toes 

Extension 

Plantarfienon 
(Extension) Fledon 

Hindfoot
Sipinstion 

inversion 
+ plantarfiexion 
+ adduction 

Eversion	 Inversion 
gus)
	 "'r us uction)	 (Addudion)

Pro nation 
aversion 

+ dorsifiexion 
+ abduction 

Forefoot 

Abduction	 Adduction
 

Forefoot

L 
EOfl  
(Valgus) ) ç 

Inversion 
(Varus)

Figure 2.3: Nomenclature for Movements of the ankle, toes, hindfoot and forefoot (Michael, W. 

Whittle., 2007). 

The sign convention for joint angle measured is referenced as positive counter clockwise displacement of 

the distal link from the proximal link (set to zero degrees in standing position) with the person oriented as 

shown in Figure 2.2. In the figure shown, the hip angle is positive whereas both knee and ankle angles are 

negative.

Figure 2.4: Sign convention used for joint angles (Chu et al., 2005). 
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The following terms are used to identify major events in the gait cycle; initial Contact, Opposite Toe Off, 

Heel rise, Opposite Initial Contact, Toe off, Feet Adjacent and Tibia Vertical. 

Initial contact 

Tibia ti/'/ Terminal Loading 
swing	 response 

g Swing Stanc^ stance 

phase phase 

Initial	 Terminal 

sMng	

Pre-	

stance 

Feet adjaoe t	
swing 

Toe off 

Figure 2.5: Phases and position of legs in Gait Cycle (Michael, W. Whittle., 2007) 

These events are divided into two phases; the stance phase and the swing phase. During the stance phase 

muscles at the hip, knee and ankle functions as stabilizers of the body by decelerating forward motion. At 

the end of stance phase, the ankle is powered by planar flexion movement providing forward thrust. During 

the swing phase, the foot moves forward through air with no ground contact or support. The hip during this 

phase provides energy to raise the leg and swing it forward.
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Right le 
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Left	 Left initial	 Left 
toe off	 contact	 Timn	 toe off 

Right initial 	 Right	 Right initial 
contact	 toe off	 contact 

Figure 2.6: Timings of double and single support during gait cycle (Michael, W. Whittle., 2007) 

During each gait cycle, there are two single support and two double support periods. The stance phase at 

average takes up 60% of the total cycle while the swing phase takes about 40%. The double support phase 

only takes up 10% each during gait cycle. This diagram is only valid for slow walking and is inaccurate at 

higher walking speeds. As velocity is increased, stance phase duration is reduced, whereas swing phase 

duration increases. (Sheila A. Dugan, Krishna P. Bhat, 2005) 

2.3	 Power Requirements during Walking 

In the human body, muscles contracts to provide locomotion or force. Voluntary muscular 

contractions can be categorized into the followings based on their length changes or force level: 

1. Concentric Contractions 

Force generated by muscle is sufficient to overcome resistance, and muscle shortens as it contracts. 

Positive work is performed during this type of motion movement which provides limb acceleration 

and powers such as hip flexion during pre-swing.
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2. Eccentric Contractions 

Force generated is insufficient to overcome external load and muscle fibres lengthens as they 

contract. Eccentric movements are generally for decelerating limbs for movements. Negative work 

is performed during this type of contraction. Energy is stored by the limb while resisting pull of 

gravity. 

3. Isometric Contractions 

Muscle remains the same length as before contraction. The muscle force exactly matches the 

external load. This type of contractions occur during movements that involve holding a position 

without moving. In walking, many muscles contract isometrically to maintain upright posture 

against gravity.

Positive Power .	 Negative Power• 
Figure 2.7 Significant regions of positive and negative work in walking (C.J. Walsh et aL, 

2006). 

Figure 2.7 shows significant regions of positive and negative power during human gait. The red and 

blue circle indicates region of positive power and negative power at hip, knee and ankle during phases



in the gait cycle. A large portion of positive power during gait were generated from HI and H3 at the 

hip and A2 at the ankle. The knee dissipate large amounts of energy during gait except at K2 region as 

the body's center of mass is raised. During Al at ankle and H2 at hip, negative power is generated to 

control the body's forward movement against gravity. 

Power profiles of the .hip, ankle and knee in the sagittal plane were plotted (C.J. Walsh et al., 

2006) against data obtained from previously done Clinical Gait Analysis (A.J Van den Bogert, 2004; C. 

Kirtley, 1998; J. Linskell, 1997). In their research (C.J. Walsh et al., 2006), they estimated that the 

weight of the exoskeleton and the load it carries to be 60 kg and the human wearer to be of 75 kg. In 

estimating torque and power requirements at hip joint of the exoskeleton, the normative data were scaled 

to a 135 kg person. The torque vs. angle plots they used are obtained from CGA data (J. Linskell, 2006) 

and is for walking speed of 0.8 m/s. The assumptions that were made in applying biomechanical gait 

data to the exoskeleton design are: 

I. The exoskeleton carries its own weight, power supply and payload. 

2. Joint torques and joint powers scale linearly with mass. This assumption seems reasonable as 

previous research shown that increase in load being carried is proportional to increase in 

ground reaction forces (R. Lloyd, & C. B. Cooke, 2000) 

3. Exoskeleton will not greatly affect the gait of the wearer. 

I. Hip 

Throughout normal gait, the human hip joint follows a roughly sinusoidal pattern with the thigh 

flexed forward on heel strike and the hip moves through extension during the stance as body is 

Pivoted at the ground, over the stance leg in a reverse pendulum-like motion. Positive power is 

required on heel strike to raise the center of mass of the human over the stance leg.

11 
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Figure 2.8: Hip joint power profile scaled for a 135kg person as a function of the gait cycle (C.J. 

Walsh et al., 2006). 

HI is a small region of positive powers which corresponds to backward movement of the leg (concentric 

hip extension) during loading response. H2 is a region of negative power which corresponds to eccentric 

hip flexion during mid-stance and H3 is a region of positive power, corresponding to concentric hip flexion 

during pre-swing and initial swing.
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Figure 2.9: Hip angle versus hip torque for walking speed of 0.8m/s (C.J. Walsh et A. 2006). 

Assistive power could be added in the Hi and H3 regions by using actuators. Energy storing passive 

elements such as springs can be placed at hip joints to absorb negative energy and H2 and release it during 

H3 to assist in swinging the leg forward. In Figure 2.9, a linear relationship can be observed between hip 

joint angle and torque. CJ Walsh et al. (2006) estimated that the required spring constant as ii 5m/rad. 

Range of Motion -20 deg to 45 deg 

Max Joint Velocity 4 rad/s 

Max Joint Torque 130 Nm 

Max Joint Power 150 Watts 

Extension Spring Constant 115 Nm/rad

Table 2.1: Specification for the hip joint of the exoskeleton that were extracted from gait data (C.J.

Walsh el aL, 2006) 
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