

INTELLIGENT FINGERPRINT RECOGNITION SYSTEM

SY MOHD SYATHIR BIN SY ALI ZAINOL ABIDIN

UNIVERSITI MALAYSIA PAHANG

S
Y

 M
O

H
D

 S
Y

A
T

H
IR

 B
IN

 S
Y

 A
LI Z

A
IN

O
L A

B
ID

IN
 B

A
C

H
E

L
O

R
 O

F
 E

LE
C

T
R

IC
A

L E
N

G
IN

E
E

R
IN

G
 (P

O
W

E
R

 S
Y

S
T

E
M

S
)
 2007 U

M
P

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS♦♦♦♦

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

4-D TAMAN BAHAGIA NOR MANIHA ABDUL GHANI
06000 JITRA (Nama Penyelia)
KEDAH

Tarikh: 28 NOVEMBER 2007 Tarikh: : 28 NOVEMBER 2007

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2007/2008

 SY MOHD SYATHIR BIN SY ALI ZAINOL ABIDIN (850423-02-5105)

INTELLIGENT FINGERPRINT RECOGNITION SYSTEM

“I hereby acknowledge that the scope and quality of this thesis is qualified for the

award of the Bachelor Degree of Electrical Engineering (Electronics)”

Signature : _________________________________

 Name : NOR MANIHA BT ABDUL GHANI

 Date : 28 NOVEMBER 2007

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : SY MOHD SYATHIR BIN SY ALI ZAINOL

 ABIDIN

Date : 28 NOVEMBER 2007

DEDICATION

“To my beloved parents,

Mr Syed Ali Zainol Abidin and Mrs Sharifah Seha

And those who love me”

ACKNOWLEDGEMENT

 Alhamdulillah, His Willingness has made it possible for me to complete the

final year project in time. I would like to take this opportunity to express gratitude to

my dedicated supervisor, Mrs Nor Maniha binti Abdul Ghani for guiding me this

project at every stage with clarity and that priceless gift of getting things done by

sharing his valuable ideas as well as share his knowledge. I would also like to thank

to all UMP lecturers and electrical technicians whom had helped directly or

indirectly in what so ever manner thus making this project a reality.

 Not forgotten to my heartfelt thanks to my beloved parents, Mr Syed Ali

Zainol Abidin and Mrs Sharifah Seha and also the rest of my dearest family whom

always support and prays on me throughout this project. Also to my best colleagues

for their openhandedly and kindly guided, assisted, and supported and encouraged

me to make this project successful.

 Their blessing gave me the high-spirit and strength to face any problem

occurred and to overcome them rightly. The great cooperation, kindheartedness and

readiness to share worth experiences that have been shown by them will be always

appreciated and treasured by me, thank you.

ABSTRACT

 The purpose of this project is to design and develop a pattern recognition

system with using Artificial Neural Network (ANN) that can recognize the type of

image based on the features extracted from the choose image. This system which can

fully recognizing the types of the data had been add in the data storage or called as

training data. The Graphic User Interface in Neural Network toolbox is used. This is

the alternative way to change the common usage of the MATLAB which are use the

command insert at command window. From this kind of system, we just need to

insert the features data or training data. The recognition done after we insert the test

data. The system will recognize whether the output is match with the training data.

Then output will produce a kind of graph that describes the feature of the data which

is same as the training data.

ABSTRAK

 Tujuan projek ini dilakukan adalah untuk mereka dan menghasilkan sistem

pengesanan corak dengan menggunakan Artificial Neural Network (ANN) dimana ia

akan mengesan jenis gambar berpandukan ciri-ciri akstrak dari gambar yang dipilih.

Sistem ini sepenuhnya boleh mengesan jenis-jenis data yang telah disimpan dalam

memori atau dipanggil data latihan. Graphic User Interface dalam Neural Netwok

toolbox digunakan. Ini adalah cara alternatif untuk menggantikan cara biasa dalam

MATLAB iaitu hanya meletakkan arahan ke jendela arahan (command window).

Untuk sistem jenis ini, kita hanya meletakkan cirian data atau data latihan. Sistem in

akan mengesan dengan hasil keluaran sama dengan data ujian. Hasil keluaran graph

menerangkan cirian data adalah sama dengan data latihan.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION i

 DEDICATION iv

 ACKNOWLEDGEMENT v

 ABSTRACT vi

 ABSTRAK vii

 TABLE OF CONTENTS viii

 LIST OF TABLE xi

 LIST OF FIGURES xii

 LIST OF SYMBOLS xiv

 LIST OF ABBREVIATIONS xv

 LIST OF APPENDICES xvi

 1 INTRODUCTION 1

 1.1 Fingerprint 1

 1.2 Artificial Intelligent (AI) 2

 1.3 Neural Network 2

 1.4 Graphical User Interface (GUI) 4

 1.5 Problem Statement 4

 1.6 Objectives 5

 1.7 Scope of Project 5

 1.8 Literature review 6

 1.8.1 Fingerprint 6

 1.8.2 Artificial Intelligent (AI) 7

 1.8.3 Neural Network Toolbox 9

 1.8.4 Pattern Recognition 15

 1.8.5 Graphical User Interface (GUI) in GUIDE 16

 1.9 Methodology 17

 1.9.1 Introduction 17

 1.9.2 Methodology 18

 1.9.3 Software Design 18

 1.9.4 Software Procedure 19

 1.9.5 Result and Analysis 20

 1.9.6 Conclusion 20

 2 SYSTEM MODEL 21

 2.1 Introduction 21

 2.2 System Model 21

 3 SOFTWARE 24

 3.1 Introduction 24

 3.2 Training Data Table 24

 3.3 Neural Network Toolbox 25

 3.3.1 Open Neural Network Toolbox (NNTool) 25

 3.3.2 Create Input, Target and Network 26

 3.3.3 Train Network 29

 3.4 GUI in GUIDE 30

 3.4.1 Open GUIDE 30

 3.4.2 Develop a GUI 31

 3.4.3 Programming the GUI 35

 4 RESULTS 38

 4.1 Introduction 38

 4.2 GUIDE Main Page Display 38

 4.3 Recognition Results 39

 4.3.1 Fingerprint Type A 39

 4.3.2 Fingerprint Type B 41

 4.3.3 Fingerprint Type C 42

 4.3.4 Fingerprint Type D 44

 4.3.5 Fingerprint Type E 45

 4.3.6 Unrecognized Fingerprint 47

 4.4 Close System 48

 4.5 Discussion 49

 5 CONCLUSION AND RECOMMENDATION 50

 5.1 Introduction 50

 5.2 Conclusion 50

 5.3 Recommendation 51

REFERENCES 52

Appendices A-C 53-79

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Features extract 1 24

3.2 Features extract 2 25

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Types of Fingerprint 7

1.2 Parents Disciplines of AI 9

1.3 Simple Perceptron Layer 10

1.4 3 Perceptron Layers 11

1.5 Multilayer Perceptron 12

1.6 Project Operation Flowchart 18

1.7 Flowchart of System Procedure 19

2.1 Modeling Box for Neural Network 21

2.2 Neural Network Layers 22

2.3 Neural Network Concepts 22

3.1 Starting the NNTool 25

3.2 Network/Data Manager Explorer Window 26

3.3 Create the Data 27

3.4 Create the Network 28

3.5 Network/Data Manager after Setting the Data 28

3.6 Training the Data 29

3.7 Open the GUIDE 30

3.8 GUIDE Quick Start 31

3.9 Insert Push Button 32

3.10 Change Name of Push Button 33

3.11 Creating Axes 33

3.12 Saving Project GUI 34

3.13 Directory Save File Name 34

3.14 Function of Callback 35

3.15 Link to NNTool 36

3.16 Produce an Output with Defining the Variable Outputs 36

3.17 Import Image to the Axes 37

3.18 Creating an Exit Button 37

4.1 GUIDE Main Page 39

4.2 Performance of Type A 40

4.3 Output Display for Type A 40

4.4 Performance of Type B 41

4.5 Output Display for Type B 41

4.6 Performance of Type C 42

4.7 Output Display for Type C 43

4.8 Performance of Type D 44

4.9 Output Display for Type D 44

4.10 Performance of Type E 45

4.11 Output Display for Type E 46

4.12 Performance of Unrecognized Type 47

4.13 Output Display for Unrecognized Type 47

4.14 Exit Button Display 48

LIST OF SYMBOLS

pR - Input data

Wp - Weight

b - Bias

a n - Output

Sn - Size of matrix

LIST OF ABBREVIATIONS

AI - Artificial Intelligent

ANN - Artificial Neural Network

GUI - Graphical User Interface

GUIDE - Graphical User Interface Develop Environment

NNTool - Neural Network Toolbox

MLP - Multilayer Perceptron

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Flowchart of the GUI and Neural Network

 Toolbox 53

B Image of GUI Application 56

C Programming of Graphical User Interface (GUI) 63

CHAPTER 1

INTRODUCTION

1.1 Fingerprint

 In the 90 years since fingerprinting was generally introduced, out of the

millions of sets of prints that have been taken, no two individuals have been found to

have the same fingerprints. It is not the shape of the print that is individual, but rather

the number, location and shape of specific ridge characteristics (also known as

minutiae).

 A fingerprint is an impression of the friction ridges of all or any part of the

finger. A friction ridge is a raised portion of the epidermis on the palmar (palm and

fingers) or plantar (sole and toes) skin, consisting of one or more connected ridge

units of friction ridge skin. These ridges are sometimes known as "dermal ridges" or

"dermal papillae”.

 Fingerprints may be deposited in natural secretions from the eccrine glands

present in friction ridge skin (secretions consisting primarily of water) or they may

be made by ink or other contaminants transferred from the peaks of friction skin

ridges to a relatively smooth surface such as a fingerprint card. The term fingerprint

normally refers to impressions transferred from the pad on the last joint of fingers

and thumbs, though fingerprint cards also typically record portions of lower joint

areas of the fingers (which are also used to make identifications).

http://en.wikipedia.org/wiki/Epidermis_%28skin%29
http://en.wikipedia.org/wiki/Papilla

1.2 Artificial Intelligent (AI)

 The modern definition of artificial intelligence (or AI) is "the study and

design of intelligent agents" where an intelligent agent is a system that perceives its

environment and takes actions which maximizes its chances of success. John

McCarthy, who coined the term in 1956, defines it as "the science and engineering of

making intelligent machines." Other names for the field have been proposed, such as

computational intelligence, synthetic intelligence or computational rationality. The

term artificial intelligence is also used to describe a property of machines or

programs: the intelligence that the system demonstrates.

1.3 Neural Network

 A neural network, also known as a parallel distributed processing network, is

a computing solution that is loosely modeled after cortical structures of the brain. It

consists of interconnected processing elements called nodes or neurons that work

together to produce an output function. The output of a neural network relies on the

cooperation of the individual neurons within the network to operate. Processing of

information by neural networks is characteristically done in parallel rather than in

series (or sequentially) as in earlier binary computers or Von Neumann machines.

 Neural network theory is sometimes used to refer to a branch of

computational science that uses neural networks as models to simulate or analyze

complex phenomena and/or study the principles of operation of neural networks

analytically. It addresses problems similar to artificial intelligence (AI) except that

AI uses traditional computational algorithms to solve problems whereas neural

networks use 'networks of agents' (software or hardware entities linked together) as

the computational architecture to solve problems. Neural networks are trainable

systems that can "learn" to solve complex problems from a set of exemplars and

generalize the "acquired knowledge" to solve unforeseen problems as in stock market

http://en.wikipedia.org/wiki/Intelligent_agents
http://en.wikipedia.org/wiki/John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/wiki/John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/wiki/Computational_intelligence
http://en.wikipedia.org/wiki/Synthetic_intelligence
http://en.wikipedia.org/wiki/Intelligence_%28trait%29
http://en.wikipedia.org/wiki/Distributed_representation
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Computers
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Learn
http://en.wikipedia.org/wiki/Exemplar
http://en.wikipedia.org/wiki/Stock_market_prediction

and environmental prediction. I.e., they are self-adaptive systems. The term 'Neural

Network' has two distinct connotations:

i. Biological neural networks are made up of real biological neurons that

are connected or functionally-related in the peripheral nervous system

or the central nervous system. In the field of neuroscience, they are

often identified as groups of neurons that perform a specific

physiological function in laboratory analysis.

ii. Artificial neural networks are made up of interconnecting artificial

neurons (usually simplified neurons) designed to model (or mimic)

some properties of biological neural networks. Artificial neural

networks can be used to model the modes of operation of biological

neural networks, whereas cognitive models are theoretical models that

mimic cognitive brain functions without necessarily using neural

networks while artificial intelligence are well-crafted algorithms that

solve specific intelligent problems (such as chess playing, pattern

recognition, etc.) without using neural network as the computational

architecture.

 An artificial neural network (ANN) or commonly just neural network (NN) is

an interconnected group of artificial neurons that uses a mathematical model or

computational model for information processing based on a connectionist approach

to computation. In most cases an ANN is an adaptive system that changes its

structure based on external or internal information that flows through the network.

 Conventional approaches have been proposed for solving these problems.

Although successful applications can be found in certain well-constrained

environments, none is flexible enough to perform well outside its domain. ANNs

provide exciting alternatives, and many applications could benefit from using them.

http://en.wikipedia.org/wiki/Adaptive_system
http://en.wikipedia.org/wiki/Biological_neural_network
http://en.wikipedia.org/wiki/Biological_neural_network
http://en.wikipedia.org/wiki/Biological_neural_network
http://en.wikipedia.org/wiki/Peripheral_nervous_system
http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Neuroscience
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Cognitive_model
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Information_processing
http://en.wikipedia.org/wiki/Connectionism
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Adaptive_system

1.4 Graphical User Interface (GUI)

 A graphical user interface (GUI) is a graphical display that contains devices,

or components, that enable a user to perform interactive tasks. To perform these

tasks, the user of the GUI does not have to create a script or type commands at the

command line. Often, the user does not have to know the details of the task at hand.

The GUI components can be menus, toolbars, push buttons, radio buttons, list boxes,

and sliders.

 In MATLAB, a GUI can also display data in tabular form or as plots, and can

group related components. The applications that provide GUIs are generally easier to

learn and use since the person using the application does not need to know what

commands are available or how they work.

1.5 Problem Statement

 In a common style, this will be a difficulty to know and differentiate the types

of fingerprint. In this world, there are many types of marble and have a little different

among them in the decorative design. We could not able to know the type of

fingerprint which have the feature had been needed.

 By using ANN toolbox, we able to assign an input pattern or train the

network. This ability of the network is to recognize the data features that were

extracted from the image with a little differentiate. Adding with using Graphical User

Interface (GUI) almost inside the MATLAB is to be user friendly when using this

system.

1.6 Objectives

The aim of this project is to design and implement a pattern recognition

system that can recognize the type of fingerprint using MATLAB.

The main objectives of this project are:

i. To recognize fingerprint image from the features extracted data for

the recognition analysis using Artificial Neural Network (ANN).

ii. To design and implement a pattern recognition system that can

recognize the type of fingerprint based on the features extracted from

the image.

1.7 Scope of Project

 This project is to design and implement a pattern recognition system by using

a graphical user interface (GUI) called NNTOOL. In this project, there is main target

to achieve at the end of this project:

i. To design and train the network in learning algorithm and weight

initialization.

ii. To study about using graphical user interface (GUI) include inside

Neural Network toolbox.

iii. To adapt of using the features extracted from the image which

compare and produce a description about the image.

iv. To use Graphical User Interface Develop Environment (GUIDE) to

create the Graphical User Interface (GUI).

1.8 Literature review

1.8.1 Fingerprint

 Fingerprint identification (sometimes referred to as dactyloscopy) or

palmprint identification is the process of comparing questioned and known friction

skin ridge impressions (see Minutiae) from fingers or palms to determine if the

impressions are from the same finger or palm. The flexibility of friction ridge skin

means that no two finger or palm prints are ever exactly alike (never identical in

every detail), even two impressions recorded immediately after each other.

Fingerprint identification (also referred to as individualization) occurs when an

expert (or an expert computer system operating under threshold scoring rules)

determines that two friction ridge impressions originated from the same finger or

palm (or toe, sole) to the exclusion of all others. [1]

 Fingerprint matching techniques can be placed into two categories: minutae-

based and correlation based. Minutiae-based techniques first find minutiae points and

then map their relative placement on the finger. However, there are some difficulties

when using this approach. It is difficult to extract the minutiae points accurately

when the fingerprint is of low quality. Also this method does not take into account

the global pattern of ridges and furrows. The correlation-based method is able to

overcome some of the difficulties of the minutiae-based approach. However, it has

some of its own shortcomings. Correlation-based techniques require the precise

location of a registration point and are affected by image translation and rotation. [2]

http://en.wikipedia.org/wiki/Minutiae
http://en.wikipedia.org/wiki/Expert_system
http://en.wikipedia.org/wiki/Adaptive_thresholding

Arch Right loop Whorl

Tended Arch Twin Loop

Figure 1.1 Types of Fingerprint [3]

1.8.2 Artificial Intelligent (AI)

 Conventional AI mostly involves methods now classified as machine

learning, characterized by formalism and statistical analysis. This is also known as

symbolic AI, logical AI, neat AI and Good Old Fashioned Artificial Intelligence

(GOFAI). Methods include:

i. Expert systems: apply reasoning capabilities to reach a conclusion. An

expert system can process large amounts of known information and

provide conclusions based on them.

ii. Case based reasoning: stores a set of problems and answers in an

organized data structure called cases. A case based reasoning system

upon being presented with a problem finds a case in its knowledge

base that is most closely related to the new problem and presents its

solutions as an output with suitable modifications.

http://en.wikipedia.org/wiki/Image:Arch.jpg
http://en.wikipedia.org/wiki/Image:Loop.jpg
http://en.wikipedia.org/wiki/Image:Whorl.jpg
http://en.wikipedia.org/wiki/Image:Tented_arch.jpg
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Formalism
http://en.wikipedia.org/wiki/Statistical_analysis
http://en.wikipedia.org/wiki/Neats
http://en.wikipedia.org/wiki/GOFAI
http://en.wikipedia.org/wiki/GOFAI
http://en.wikipedia.org/wiki/Expert_system
http://en.wikipedia.org/wiki/Case_based_reasoning
http://en.wikipedia.org/wiki/Case_based_reasoning
http://en.wikipedia.org/wiki/Case_based_reasoning

iii. Bayesian networks

iv. Behavior based AI: a modular method of building AI systems by

hand.

 Conventional AI research focuses on attempts to mimic human intelligence

through symbol manipulation and symbolically structured knowledge bases. This

approach limits the situations to which conventional AI can be applied. Lotfi Zadeh

stated that "we are also in possession of computational tools which are far more

effective in the conception and design of intelligent systems than the predicate-logic-

based methods which form the core of traditional AI." These techniques, which

include fuzzy logic, have become known as soft computing. These often biologically

inspired methods stand in contrast to conventional AI and compensate for the

shortcomings of symbolicism. These two methodologies have also been labeled as

neats vs. scruffies, with neats emphasizing the use of logic and formal representation

of knowledge while scruffies take an application-oriented heuristic bottom-up

approach. [4]

 The subject of AI spans a wide horizon. It deals with the various kinds of

knowledge representation schemes, different techniques of intelligent search, various

methods for resolving uncertainty of data and knowledge, different schemes for

automated machine learning and many others. Among the application areas of AI, we

have Expert systems, Game-playing, and Theorem-proving, Natural language

processing, Image recognition, Robotics and many others. The subject of AI has been

enriched with a wide discipline of knowledge from Philosophy, Psychology,

Cognitive Science, Computer Science, Mathematics and Engineering. Thus in Figure

1.2, they have been referred to as the parent disciplines of AI. An at-a-glance look at

Figure 1.2 also reveals the subject area of AI and its application areas. [5]

http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Behavior_based_AI
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Neats_vs._scruffies
http://en.wikipedia.org/wiki/Neats_vs._scruffies

Figure 1.2 Parent Disciplines of AI [5]

1.8.3 Neural Network Toolbox

The first important part is using Neural Network toolbox. The Neural

Network toolbox is a collection of function built in MATLAB which allows you to

create and edit fuzzy inference system within the framework of MATLAB

environment and integrate into simulations using SIMULINK. [1]

 A neuron with a single R-element input vector is shown below. Here the

individual element inputs

 p1, p2,... pR

are multiplied by weights

 w1,1, w1,2, ... w1, R

and the weighted values are fed to the summing junction. Their sum is simply Wp,

the dot product of the (single row) matrix W and the vector p.

Figure 1.3 Simple Perceptron Layer

 The neuron has a bias b, which is summed with the weighted inputs to form

the net input n. This sum, n, is the argument of the transfer function f.

 n=w1,1p1+w1,2p2+... + w1, RpR + b

This expression can, of course, be written in MATLAB code as

 n = W*p + b

 However, you will seldom be writing code at this level, for such code is

already built into functions to define and simulate entire networks.

 Two or more of the neurons shown earlier can be combined in a layer, and a

particular network could contain one or more such layers. First consider a single

layer of neurons. A one-layer network with R input elements and S neurons follows.

Figure 1.4 3 Perceptron Layers

 In this network, each element of the input vector p is connected to each

neuron input through the weight matrix W. The ith neuron has a summer that gathers

its weighted inputs and bias to form its own scalar output n(i). The various n(i) taken

together form an S-element net input vector n. Finally, the neuron layer outputs form

a column vector a. The expression for a is shown at the bottom of the figure.

 Note that it is common for the number of inputs to a layer to be different from

the number of neurons (i.e., R is not necessarily equal to S). A layer is not

constrained to have the number of its inputs equal to the number of its neurons.

 You can create a single (composite) layer of neurons having different transfer

functions simply by putting two of the networks shown earlier in parallel. Both

networks would have the same inputs, and each network would create some of the

outputs. The input vector elements enter the network through the weight matrix W.

 Note that the row indices on the elements of matrix W indicate the

destination neuron of the weight, and the column indices indicate which source is the

input for that weight. Thus, the indices in w1,2 say that the strength of the signal

from the second input element to the first (and only) neuron is w1,2. The S neuron R

input one-layer network also can be drawn in abbreviated notation.

 A network can have several layers. Each layer has a weight matrix W, a bias

vector b, and an output vector a. To distinguish between the weight matrices, output

vectors, etc., for each of these layers in the figures, the number of the layer is

appended as a superscript to the variable of interest. You can see the use of this layer

notation in the three-layer network shown below, and in the equations at the bottom

of the figure.

Figure 1.5 Multilayer Perceptron

 The network shown above has R1 inputs, S1 neurons in the first layer, S2

neurons in the second layer, etc. It is common for different layers to have different

numbers of neurons. A constant input 1 is fed to the bias for each neuron.

 Note that the outputs of each intermediate layer are the inputs to the

following layer. Thus layer 2 can be analyzed as a one-layer network with S1 inputs,

S2 neurons, and an S2xS1 weight matrix W2. The input to layer 2 is a1; the output is

a2. Now that all the vectors and matrices of layer 2 have been identified, it can be

treated as a single-layer network on its own. This approach can be taken with any

layer of the network. The layers of a multilayer network play different roles. A layer

that produces the network output is called an output layer. All other layers are called

hidden layers. The three-layer network shown earlier has one output layer (layer 3)

and two hidden layers (layer 1 and layer 2). Some authors refer to the inputs as a

fourth layer. This toolbox does not use that designation. [6]

 The principles behind the toolbox are more important than simply compiling

lists of algorithms. Data analysis and modeling methods should not be used in

isolation; all parts of the toolbox interact in a coherent way, and implementations of

standard pattern recognition techniques (such as linear regression and K-nearest-

neighbour classifiers) are provided so that they can be used as benchmarks against

which more complex algorithms can be evaluated. This interaction allows

researchers to develop new techniques by building on and reusing existing software,

thus reducing the effort required and increasing the robustness and usability of the

new tools.

 Supervised neural networks are trained to produce desired outputs in response

to sample inputs, making them particularly well suited to modeling and controlling

dynamic systems, classifying noisy data, and predicting future events.

i. Feedforward networks have one-way connections from input to output

layers. They are most commonly used for prediction, pattern

recognition, and nonlinear function fitting. Supported Feedforward

networks include Feedforward Backpropagation, Cascade-forward

Backpropagation, Feedforward Input-delay Backpropagation, Linear,

and Perceptron networks.

ii. Radial Basis networks provide an alternative, fast method for

designing nonlinear Feedforward networks. Supported variations

include generalized regression and probabilistic Neural Networks.

iii. Dynamic networks use memory and recurrent feedback connections to

recognize spatial and temporal patterns in data. They are commonly

used for time-series prediction, nonlinear dynamic system modeling,

and control system applications. Prebuilt dynamic networks in the

toolbox include focused and distributed time-delay, nonlinear

autoregressive (NARX), layer-recurrent, Elman, and Hopfield

networks. The toolbox also supports dynamic training of custom

networks with arbitrary connections.

 Unsupervised neural networks are trained by letting the network continually

adjust itself to new inputs. They find relationships within data and can automatically

define classification schemes.

 The Neural Network Toolbox supports two types of self-organizing,

unsupervised networks: competitive layers and self-organizing maps. Competitive

layers recognize and group similar input vectors. By using these groups, the network

automatically sorts the inputs into categories.

 Self-organizing maps learn to classify input vectors according to similarity.

Unlike competitive layers they also preserve the topology of the input vectors,

assigning nearby inputs to nearby categories. [7]

1.8.4 Pattern Recognition

 Pattern recognition is a sub-topic of machine learning. It can be defined as

"The act of taking in raw data and taking an action based on the category of the data"

 Most research in pattern recognition is about methods for supervised learning

and unsupervised learning.

 Pattern recognition aims to classify data (patterns) based on either a priori

knowledge or on statistical information extracted from the patterns. The patterns to

be classified are usually groups of measurements or observations, defining points in

an appropriate multidimensional space.

 A complete pattern recognition system consists of a sensor that gathers the

observations to be classified or described; a feature extraction mechanism that

computes numeric or symbolic information from the observations; and a

classification or description scheme that does the actual job of classifying or

describing observations, relying on the extracted features.

 The classification or description scheme is usually based on the availability of

a set of patterns that have already been classified or described. This set of patterns is

termed the training set and the resulting learning strategy is characterized as

supervised learning. Learning can also be unsupervised, in the sense that the system

is not given an a priori labeling of patterns, instead it establishes the classes itself

based on the statistical regularities of the patterns.

 The classification or description scheme usually uses one of the following

approaches: statistical (or decision theoretic), syntactic (or structural). Statistical

pattern recognition is based on statistical characterizations of patterns, assuming that

the patterns are generated by a probabilistic system. Structural pattern recognition is

based on the structural interrelationships of features. A wide range of algorithms can

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Category
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Pattern
http://en.wikipedia.org/wiki/A_priori_and_a_posteriori_%28philosophy%29
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Space_%28mathematics%29
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Feature_extraction
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Training_set
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Syntactic_pattern_recognition
http://en.wikipedia.org/wiki/Probabilistic

be applied for pattern recognition, from very simple Bayesian classifiers to much

more powerful neural networks.

 Pattern recognition is more complex when templates are used to generate

variants. For example, in English, sentences often follow the "N-VP" (noun - verb

phrase) pattern, but some knowledge of the English language is required to detect the

pattern. Pattern recognition is studied in many fields, including psychology,

ethology, and computer science. [8]

1.8.5 Graphical User Interface (GUI) in GUIDE

 GUI design is an important adjunct to application programming. Its goal is to

enhance the usability of the underlying logical design of a stored program. The

visible graphical interface features of an application are sometimes referred to as

"chrome". They include graphical elements (widgets) that may be used to interact

with the program. Common widgets are: windows, buttons, menus, and scroll bars.

Larger widgets, such as windows, usually provide a frame or container for the main

presentation content such as a web page, email message or drawing. Smaller ones

usually act as a user-input tool.

 The widgets of a well-designed system are functionally independent from and

indirectly linked to program functionality, so the GUI can be easily customized,

allowing the user to select or design a different skin at will. [9]

 A major advantage of GUIs is that they make computer operation more

intuitive, and thus easier to learn and use. For example, it is much easier for a new

user to move a file from one directory to another by dragging its icon with the mouse

than by having to remember and type seemingly arcane commands to accomplish the

same task.

http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Psychology
http://en.wikipedia.org/wiki/Ethology
http://en.wikipedia.org/wiki/Ethology
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Widget_%28computing%29
http://en.wikipedia.org/wiki/Skin_%28computing%29

 Adding to this intuitiveness of operation is the fact that GUIs generally

provide users with immediate, visual feedback about the effect of each action. For

example, when a user deletes an icon representing a file, the icon immediately

disappears, confirming that the file has been deleted (or at least sent to the trash can).

This contrast with the situation for a CLI, in which the user types a delete command

(inclusive of the name of the file to be deleted) but receives no automatic feedback

indicating that the file has actually been removed.

 In addition, GUIs allow users to take full advantage of the powerful

multitasking (the ability for multiple programs and/or multiple instances of single

programs to run simultaneously) capabilities of modern operating systems by

allowing such multiple programs and/or instances to be displayed simultaneously.

The result is a large increase in the flexibility of computer use and a consequent rise

in user productivity.

 But the GUI has become much more than a mere convenience. It has also

become the standard in human-computer interaction, and it has influenced the work

of a generation of computer users. Moreover, it has led to the development of new

types of applications and entire new industries. An example is desktop publishing,

which has revolutionized (and partly wiped out) the traditional printing and

typesetting industry. [10]

1.9 Methodology

1.9.1 Introduction

 In doing a successful project, a methodology is one of the important

elements. Methodology is the set of procedure of the project flow which includes the

theories, concepts or ideas, comparative study of different approaches and critique of

the individual methods will make sure that the project will run smoothly according to

plan and to make sure that we can get the expected result.

http://www.bellevuelinux.org/multitasking.html
http://www.bellevuelinux.org/operating_systems_list.html

1.9.2 Methodology

Figure 1.6 Project Operation Flowchart

1.9.3 Software Design

 To be done this project, the Neural Network Toolbox is used to accomplish

the scope of the project. The additional software is used such as Graphical User

Interface (GUI) in GUIDE for make a system is well designed and easy to use. This

also called as “user friendly”.

1.9.4 Software Procedure

Figure 1.7 Flowchart of System Procedure

 After developing the Neural Network Toolbox which is the main part of this

system, the Graphical User Interface (GUI) in GUIDE is used to make the system is

more systematic and user easy to evaluate the result just only insert data and clicking

the buttons. The output result will appear after simulating the system application.

Comparison

Training Dataset in
NNTOOL

Stop

YES

Start

GUI main page

Test Data needed

Fingerprint Description

Message box display

NO

1.9.5 Result and Analysis

 From the result of the system, data and output will be compared. M-file

which is constructed inside GUI is used to define the output in the statement that

easy to understand.

1.9.6 Conclusion

 After the system is developed, and description of the fingerprint is carried

out, a conclusion is made in order to see the successfulness of this project based on

the objectives that were set earlier. Thus, a recommendation is made for future

progress for enhancement of this system.

CHAPTER 2

SYSTEM MODEL

2.1 Introduction

 In order to design this project, a system modeling is necessary to provide

method for the control system. By this, a descriptive model of the system as a

hypothesis of how the system could work is built. For the neural network, the system

is able to be constructing by weight and bias. This is the most important thing.

2.2 System Model

Figure 2.1 Modeling Box for Neural Network

 From the Black-Box above, there is no previous knowledge, but there are

measurements, observations, records, and data.

Figure 2.2 Neural Network Layers

 As we know, inside a single box from the Figure 2.1 above, there stands the

idea of learning from the data behind the Neural Network. If there do not have any

prior knowledge AND there do not have any measurements (by all accounts very

hopeless situation indeed) it may be hard to expect or believe that the problem at

hand may be approached and solved easily.

Figure 2.3 Neural Network Concepts

 From the Figure 2.3 above, there are equation are construct inside the Neural

Network. The bias and weight are affecting the output of the data. Error of the output

data will be reanalyzing until get the needed data. In reaching that, the weight and

bias must be reinitializing by supervised learning or unsupervised learning.

i. Data can be modeled by a set of linear in parameter functions; this is a

foundation of a parametric paradigm in learning from experimental data.

ii. In the most of real-life problems, a stochastic component of data is the

normal probability distribution law, i.e., the underlying joint probability

distribution is Gaussian.

iii. Due to the second assumption, the induction paradigm for parameter

estimation is the maximum likelihood method that is reduced to the

minimization of the sum-of-errors-squares cost function in most engineering

applications.

CHAPTER 3

SOFTWARE

3.1 Introduction

 The Graphical User Interface (GUI) is designed to be simple and user

friendly. A simple example will get you started. Inside the Neural Network Toolbox

also have the GUI which called “NNTool”. This application still same as the

previous Neural Network, but it is a simplification of using the command.

3.2 Training Data Table

Table 3.1 : Features extract 1

 Fore
ground

Total
Min

Min
06

Min
065

Min
075

Min
08

Min
09

Normed
Match

Type A 0.101 0.189 0.290 0.302 0.516 0.302 0.302 0.287

Type B 0.054 0.102 0.038 0.382 0.448 0.160 0.159 0.276

Type C 0.604 0.485 0.504 0.506 0.513 0.449 0.448 0.298

Type D 0.072 0.310 0.558 0.561 0.560 0.478 0.478 0.323

Type E 0.120 0.071 0.385 0.686 0.608 0.240 0.239 0.436

Table 3.2 : Features extract 2

 Fore
ground

Total
Min

Min
06

Min
065

Min
075

Min
08

Min 09 Normed
Match

Type A 0.166 0.330 0.403 0.597 0.274 0.424 0.424 0.411
Type B 0.042 0.089 0.028 0.333 0.412 0.156 0.155 0.272
Type C 0.452 0.333 0.376 0.562 0.520 0.425 0.424 0.274
Type D 0.081 0.321 0.565 0.542 0.562 0.451 0.451 0.296
Type E 0.127 0.078 0.292 0.718 0.589 0.303 0.302 0.499

3.3 Neural Network Toolbox

3.3.1 Open Neural Network Toolbox (NNTool)

 In GUI, to create a perceptron network is to perform the AND function. It has

an input vector ‘p’ and a target vector‘t’. Just call the network as Network.

 To start, type ‘nntool’ at the command window after open the MATLAB

software. Other way to get the GUI of the Neural Network as follow the instruction

(Start in MATLAB menu > Toolboxes > NNTool) or shown as the figure 8 below;

Figure 3.1 Starting the NNTool

The Network/Data Manager window will appear as shown in Figure 3.2;

Figure 3.2 Network/Data Manager Explorer Window

3.3.2 Create Input, Target and Network

 First, define the network input, called ‘Input’. To define this data, from the

Network/Data Manager as shown on Figure 3.2, click New, and a new window,

Create Network or Data, appears. Select the Data tab. Set the Name to Input, the

Value refer to the training data table, and make sure that Data Type is set to Inputs.

Also the same type if we need to add target ‘t1’ and we need to make sure the Data

Type is set to Targets.

Figure 3.3 Create the Data

 Create a new network and call it Fingerprint. Select the Network tab. Enter

Network under Name. Set the Network Type to Perceptron, for that is the kind of

network you want to create.

 Set the input ranges by entering numbers in that field, but it is easier to get

them from the particular input data that you want to use. To do this, click the down

arrow at the right side of Input Range. This pull-down menu shows that you can get

the input ranges from the file Input. That is what you want to do, so click Input.

 You need to use a hardlim transfer function and a learnp learning function, so

set those values using the arrows for Transfer function and Learning function,

respectively. By now your Create Network or Data window should look like the

Figure 3.4;

State the data name

Value of the extracted data
from the table

Set the
type

Figure 3.4 Create the Network

After setting the data, target and Network, at least will show as Figure 3.5 below;

Figure 3.5 Network/Data Manager after Setting the Data

Set name
Fingerprint as

Network.

Take Perceptron as the
network type. Others

also can.

State the range

3.3.3 Train Network

 To train the network, click Fingerprint to highlight it. Then click Open. This

leads to a new window, labeled Network: Fingerprint. At this point you can see the

network again by clicking the View tab. You can also check on the initialization by

clicking the Initialize tab. Now click the Train tab. specify the inputs and output by

clicking the Training Info tab and selecting “Input” from the list of inputs and “t1”

from the list of targets.

Figure 3.6 Training the Data

Set the Data that you
need to test

Train use for produce the
output

3.4 GUI in GUIDE

3.4.1 Open GUIDE

 From MATLAB File menu, click New > GUI. From the MATLAB explorer,

click the button at the menu bar as shown as Figure 3.7;

Figure 3.7 Open the GUIDE

 The displays the GUIDE Quick Start dialog box shown in the following

Figure 3.8. The GUIDE Quick Start dialog box contains two tabs:

i. Create New GUI – Asks you to start creating your new GUI by

choosing a template for it. You can also specify the name by which

the GUI is saved.

ii. Open Existing GUI – Enables you to open an existing GUI in GUIDE.

You can choose a GUI from your current directory or browse other

directories.

 At GUIDE templates, chose the Blank GUI (Default), and click OK to

display the blank templates. This is for user first time of making the GUI.

Click here to open the GUIDE. The function of GUIDE is provide
a set of tools for creating graphical user interfaces (GUIs).

Figure 3.8 GUIDE Quick Start

3.4.2 Develop a GUI

 After click OK to display the blank GUI in the Layout Editor, the Fig-file will

appear as shown in the following Figure 3.9. Set the size of the GUI by resizing the

grid area in the Layout Editor. Click the lower-right corner and drag it until fit to the

size that the user needed. To create the push button, select the push button from the

component palette at the left of the Layout Editor and drag it into the layout area as

shown in the Figure 3.9;

Chose this templates of the
user using it at the first time

for the beginner function

Click OK to create the blank
GUI, new windows explorer

will appear

Figure 3.9 Insert Push Button

 To change the name at the Push Button, right click and choose property

inspector. The explorer will appear as shown as Figure 3.10. Then change the name

at String from ‘Push Button’ to ‘Introduction’ as shown as Figure 3.10. For the

others push button, use the same step which every tab have their own function.

Drag Push Button
into 6 or others

depend on the user
needed

Resize the grid
area

Figure 3.10 Change Name of Push Button

 To insert a picture in GUI, click Axes and drag as shown as Figure 3.11.

Axes are also function to display plotting graph from the operation had given.

Figure 3.11 Creating Axes

To change the name of
Push Button

At String, this is for the
Display on the Push Button

 When you save a GUI, GUIDE creates two files, a FIG-file and an M-file.

The FIG-file, with extension .fig, is a binary file that contains a description of the

layout. The M-file, with extension .m, contains the code that controls the GUI.

i. Save and activate your GUI by selecting Run from the Tools menu.

ii. GUIDE displays the following dialog box. Click Yes to continue.

Figure 3.12 Saving Project GUI

iii. GUIDE opens a Save As dialog box in your current directory and

prompts you for a FIG-file name.

Figure 3.13 Directory Save File Name

iv. Browse to any directory for which you have write privileges, and then

enter the filename Print for the FIG-file. GUIDE saves both the FIG-

file and the M-file using this name.

3.4.3 Programming the GUI

 From the push button at the layout area, right click view callback > callback

which is connect to the M-file that had been construct by saving the project as

explain as before. Figure 3.14 shows prove of the function callback. With the

command “figure (introduction)” means that this button is connect or link with other

GUI template called ‘introduction’. These are the function of callback;

i. Routine that executes whenever you activate the uicontrol object .

ii. Define this routine as a string that is a valid MATLAB expression or

the name of an M-file.

iii. The expression executes in the MATLAB workspace.

Figure 3.14 Function of Callback

 For the link this GUI template with other application such as Neural Network

Toolbox (NNTool), the command is shown as Figure 3.15.

-Callback will bring the user to M-file which has specific command for
 the push button ‘Introduction’
-This button was declared as shown picture above.

Figure 3.15 Link to NNTool

 Every system has their own result whenever shown in graph, statement at

command window or others. So, just creating a push button which is to simplify the

user just click the button and result will appear. Example is this fingerprint

recognition system. Figure 3.16 shows the command at the M-file also the function

of the defining the output.

Figure 3.16 Produce an Output with Defining the Variable Outputs

Just type NNTool which is to connect the
Neural Network toolbox with the push button.

 a=evalin (‘*’ , ’*’)
-‘base’ is to import data from
 workspace into function.
-‘Fingerprint_outputs’ is the
 result which was imported by
 the function above

‘a’ is the defining for the equation.
The value inside is one of the

result.

 For the axes that want to insert picture, this apart of making GUI more

valuable. Just copy the picture needed and insert at folder MATLAB which is the

main path of reference to be search in. The Figure 3.17 shows that how to import

image from the path and put it into axes.

Figure 3.17 Import Image to the Axes

 Creating an exit button with message box is the function of quit of the whole

system. This is a part of completing the system. At the end in making GUIDE, save

the entire project. After that run GUI template and see the result of each function.

Figure 3.18 Creating an Exit Button

[x,map]=imread (‘*’,’jpg’) is to
import image to the axes. ‘jejari is
the image file name in format jpeg.

CHAPTER 4

RESULTS

4.1 Introduction

 As the results, this system is able to recognize the type of the fingerprint and

produce and output at the matrix form. In this system, it is able to define the five

types of the fingerprint and will display others if the data is not equal to the training

data. With using GUIDE of making GUI, it is able to make user easy to use the

system. With creating define function inside M-file, it able to produce a display

about the fingerprint recognizing.

4.2 GUIDE Main Page Display

 The GUI of GUIDE is used as the main page of the whole system. Every

button has its own link to other application and description. To further this

recognition system, click the button ‘Go to NNTool’ and insert data as explain in

past chapter.

Figure 4.1 GUIDE Main Page

4.3 Recognition Results

4.3.1 Fingerprint Type A

 After using and implement the Neural Network toolbox, the output will be

produce and the matrix form is defined by the M-file. So, the result will produce a

message box.

Figure 4.2 Performance of Type A

 Graph above shows that the value of the performance to the data type A. The

value of performance is 0.091825.

Figure 4.3 Output Display for Type A

 After export the output result from the data manager of the NNTool, refer to

the main page of the GUI and click the ‘Output’ push button to display the result.

The message box will show as Figure 4.3 above.

4.3.2 Fingerprint Type B

Figure 4.4 Performance of Type B

 Graph above shows that the value of the performance to the data type B. The

value of performance is 0.0664.

Figure 4.5 Output Display for Type B

 After export the output result from the data manager of the NNTool, refer to

the main page of the GUI and click the ‘Output’ push button to display the result.

The message box will show as Figure 4.5 above.

4.3.3 Fingerprint Type C

Figure 4.6 Performance of Type C

 Graph above shows that the value of the performance to the data type C. The

value of performance is 0.09565.

Figure 4.7 Output Display for Type C

 After export the output result from the data manager of the NNTool, refer to

the main page of the GUI and click the ‘Output’ push button to display the result.

The message box will show as Figure 4.7 above.

4.3.4 Fingerprint Type D

Figure 4.8 Performance of Type D

 Graph above shows that the value of the performance to the data type D. The

value of performance is 0.079075

.

Figure 4.9 Output Display for Type D

 After export the output result from the data manager of the NNTool, refer to

the main page of the GUI and click the ‘Output’ push button to display the result.

The message box will show as Figure 4.9 above.

4.3.5 Fingerprint Type E

Figure 4.10 Performance of Type E

 Graph above shows that the value of the performance to the data type E. The

value of performance is 0.09115.

Figure 4.11 Output Display for Type E

 After export the output result from the data manager of the NNTool, refer to

the main page of the GUI and click the ‘Output’ push button to display the result.

The message box will show as Figure 4.11 above.

4.3.6 Unrecognized Fingerprint

Figure 4.12 Performance of Unrecognized Type

 Graph above shows that the value of the performance to the random data. The

value of performance is 0.09275.

Figure 4.13 Output Display for Unrecognized Type

 After export the output result from the data manager of the NNTool, refer to

the main page of the GUI and click the ‘Output’ push button to display the result.

The message box will show as Figure 4.13 above.

4.4 Close System

 At the end of using the system, it needs to be close and from that the exit

button is created. This exit button will close all application.

Figure 4.14 Exit Button Display

4.5 Discussion

 From this project, there are many element must be consider and focus in

training the data until it produce maintain and static value. The problem using this

application is difficult to understand and implement. Since the GUI and M-file are

constructed to state the difficulty output value in the easy statement to understand.

There are many difficulties in searching the training data. This data also can be

extract from the image by our own. But, it is need other system application such as

data mining and image processing.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Introduction

 Conclusion and recommendation are made after the analyses of the result are

done. The conclusion involve of the summary of the project taken. Then,

recommendations are prepared for future progress and improvement of the projects

done.

5.2 Conclusion

 Finally the project is successfully done with recognizing the fingerprint data

by using Neural Network toolbox. Almost using the Perceptron is not a complete

system of using Neural Network which is need more than one application in Neural

Network toolbox such as Feedfoward, Backpropagation, Hopfield and others, the

outputs were display.

 Neural Network normally could be constructing by more five hundreds data.

It is difficult to develop that much of data which need to train more than 10 times for

each data. Perceptron is a sub-application of the main applications such as

Feedfoward and Backpropagation. But user also can construct by making a

Multilayer Perceptron (MLP).

 The usage of GUIDE in making Graphical User Interface (GUI) is making of

any system inside or outside the MATLAB software more easy to use. That is called

User-friendly. In this Fingerprint Recognition System, it successful of interface the

NNTool and produce the output display by import the output result from the

workspace of the MATLAB software.

5.3 Recommendation

 For a future development of this project, the Neural Network Toolbox can be

design to recognize above 500 data and variety types of image such as face

expression, footprints, cornea, ear print and others. This project is most perfectly if

we combine all the applications in Neural Network Toolbox such as Feedforward,

Backpropgation and others. This Neural Network toolbox must be interface with

Graphical User Interface (GUI) in GUIDE. Furthermore, the output result must be

display just a single click after choosing or insert the raw data.

REFERENCES

1. Ashbaugh, David R. Ridgeology. Journal of Forensic Identification Vol 41,

1995, ISSN: 0895-l 73X

2. 16 May 2007, Citing Internet Source URL. Definition of Fingerprint.

http://en.wikipedia.org/wiki/Fingerprint

3. 16 May 2007, Citing Internet Source URL. Types of Fingerprint.

http://biometrics.cse.msu.edu/fingerprint.html

4. NRC (1999), “Developments in Artificial Intelligence”, Funding a Revolution:

Government Support for Computing Research, National Academy Press.

5. Charniak, E. and McDermott, D., Introduction to Artificial Intelligence, Addison-

Wesley, Reading, MA, 1985.

6. 24 March 2007, Citing Internet Source URL. Neural Networks.

http://www.mathtools.net/MATLAB/Neural_Networks

7. 12 April 2007, Citing Internet Source URL. Neural Network in MATLAB.

http://en.wikipedia.org/wiki/Neural_network_software

8. 17 March 2007, Citing Internet Source URL. Pattern Recognition.

http://en.wikipedia.org/wiki/Pattern_recognition

9. 1 October 2007, Citing Internet Source URL. Graphical User Interface (GUI).

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/buildgui.pdf

10. 3 October 2007, Citing Internet Source URL. Advantage of GUI.

http://www.ncd.gov/newsroom/publications/pdf/gui.pdf

http://en.wikipedia.org/wiki/Fingerprint
http://en.wikipedia.org/wiki/Fingerprint
http://biometrics.cse.msu.edu/fingerprint.html
http://www.mathtools.net/MATLAB/Neural_Networks
http://en.wikipedia.org/wiki/Neural_network_software
http://en.wikipedia.org/wiki/Pattern_recognition
http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/buildgui.pdf
http://www.ncd.gov/newsroom/publications/pdf/gui.pdf

APPENDIX A

FLOWCHART OF THE GUI AND NEURAL NETWORK
TOOLBOX

1) FLOWCHART OF THE GRAPHICAL USER INTERFACE (GUI) IN
GUIDE

Main page

Introduction

Help

Output Exit

Credit

About
Fingerprint

Defining Output

About me

Message
box

Declare

Compare Export to
Workspace

Display

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Stop

No
1

Yes

Neural Network
Toolbox

Application

Start

2) FLOWCHART OF NEURAL NETWORK TOOLBOX

Start

Data Manager

Perceptron

Create Data Test Data

Input Target

Training

Store Data

Compare

Output

Stop

P1

P2

P3

P4

P5

T1

T2

T3

T4

T5

Y1 Y2 Y3

Y4 Y5

Either One

Reinitialize
weight &

bias

YES

NO

APPENDIX B

IMAGES OF GUI APPLICATION

1) MAIN PAGE

2) INTRODUCTION

3) HELP

4) CREDIT

APPENDIX C

PROGRAMMING OF GRAPHICAL USER INTERFACE (GUI)

1) MAIN PAGE

function varargout = Design(varargin)

% DESIGN M-file for Design.fig

% DESIGN, by itself, creates a new DESIGN or raises the existing

% singleton*.

%

% H = DESIGN returns the handle to a new DESIGN or the handle to

% the existing singleton*.

%

% DESIGN('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in DESIGN.M with the given input arguments.

%

% DESIGN('Property','Value',...) creates a new DESIGN or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before Design_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to Design_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Design

% Last Modified by GUIDE v2.5 28-Oct-2007 21:28:47

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @Design_OpeningFcn, ...

 'gui_OutputFcn', @Design_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Design is made visible.

function Design_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Design (see VARARGIN)

% Choose default command line output for Design

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes Design wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% to make a background just only use axes by resize fit to the work size

[x,map]=imread('jejari','jpg');

image(x)

set(gca,'visible','off')

% --- Outputs from this function are returned to the command line.

function varargout = Design_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton2.

% link the button with the new GUI figure. just the introduction

function varargaout=pushbutton2_Callback(h, eventdata, handles, varargin)

figure (introduction)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA

% --- Executes on button press in pushbutton4.

% link the button with the new GUI figure. show the procedure in using

% NNtoool

function varargaout=pushbutton4_Callback(h, eventdata, handles, varargin)

figure (help1)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton5.

% link the button with the other GUI concept in neural network toolbox. new

% windows of the GUI will appear. otherwise it also can be display with

% manually called.

function varargaout=pushbutton5_Callback(h, eventdata, handles, varargin)

NNTool

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton6.

% link the button with the figure out the same function in window command.

function pushbutton6_Callback(hObject, eventdata, handles)

a=evalin ('base','Fingerprint_outputs')

if a>=[0 1 0 0 1 0 1 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0]

 message=strcat('The Fingerprint is type A');

 msgbox(message);

elseif a>=[0 0 0 0 0 0 0 0;0 0 0 1 0 0 1 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0

0]

 message=strcat('The Fingerprint is type B');

 msgbox(message);

elseif a>=[0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;1 0 1 0 1 0 1 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0

0]

 message=strcat('The Fingerprint is type C');

 msgbox(message);

elseif a>=[0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 1 1 0 0 1 0;0 0 0 0 0 0 0

0]

 message=strcat('The Fingerprint is type D');

 msgbox(message);

elseif a>=[0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0; 0 0 0 1 0 1 0

1]

 message=strcat('The Fingerprint is type E');

 msgbox(message);

else

 message=strcat('Unrecognized the Fingerprint type');

 msgbox(message);

end

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton7.

% link the button with the new GUI figure. show the profile of the designer

% and his supervisor

function varargaout=pushbutton7_Callback(h, eventdata, handles, varargin)

figure (credit)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

 % --- Executes on button press in pushbutton8.

% function to quit the system.

function pushbutton8_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

button = questdlg(' Are you sure to exit?','Fingerprint Recognition','Yes','No','No');

switch button

 case 'Yes',

 close all

 case 'No',

 quit cancel;

end

clc

 disp('Thank You for using this System');

2) INTRODUCTION

function varargout = introduction(varargin)

% INTRODUCTION M-file for introduction.fig

% INTRODUCTION, by itself, creates a new INTRODUCTION or raises the

existing

% singleton*.

%

% H = INTRODUCTION returns the handle to a new INTRODUCTION or the

handle to

% the existing singleton*.

%

% INTRODUCTION('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in INTRODUCTION.M with the given input

arguments.

%

% INTRODUCTION('Property','Value',...) creates a new INTRODUCTION or

raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before introduction_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to introduction_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help introduction

% Last Modified by GUIDE v2.5 28-Oct-2007 22:51:00

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @introduction_OpeningFcn, ...

 'gui_OutputFcn', @introduction_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before introduction is made visible.

function introduction_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to introduction (see VARARGIN)

% Choose default command line output for introduction

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes introduction wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = introduction_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

3) HELP

function varargout = introduction(varargin)

% INTRODUCTION M-file for introduction.fig

% INTRODUCTION, by itself, creates a new INTRODUCTION or raises the

existing

% singleton*.

%

% H = INTRODUCTION returns the handle to a new INTRODUCTION or the

handle to

% the existing singleton*.

%

% INTRODUCTION('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in INTRODUCTION.M with the given input

arguments.

%

% INTRODUCTION('Property','Value',...) creates a new INTRODUCTION or

raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before introduction_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to introduction_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help introduction

% Last Modified by GUIDE v2.5 28-Oct-2007 22:51:00

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @introduction_OpeningFcn, ...

 'gui_OutputFcn', @introduction_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before introduction is made visible.

function introduction_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to introduction (see VARARGIN)

% Choose default command line output for introduction

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes introduction wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = introduction_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

4) CREDIT

function varargout = credit(varargin)

% CREDIT M-file for credit.fig

% CREDIT, by itself, creates a new CREDIT or raises the existing

% singleton*.

%

% H = CREDIT returns the handle to a new CREDIT or the handle to

% the existing singleton*.

%

% CREDIT('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in CREDIT.M with the given input arguments.

%

% CREDIT('Property','Value',...) creates a new CREDIT or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before credit_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to credit_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help credit

% Last Modified by GUIDE v2.5 29-Oct-2007 01:12:39

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @credit_OpeningFcn, ...

 'gui_OutputFcn', @credit_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before credit is made visible.

function credit_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to credit (see VARARGIN)

% Choose default command line output for credit

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes credit wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% import image to be display the pic

s = imread('aku','jpg');

axes(handles.axes1);

imshow(s);

handles.s=s;

guidata(hObject,handles);

s = imread('nieha','jpg');

axes(handles.axes2);

imshow(s);

handles.s=s;

guidata(hObject,handles);

% --- Outputs from this function are returned to the command line.

function varargout = credit_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on slider movement.

function slider1_Callback(hObject, eventdata, handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider

% get(hObject,'Min') and get(hObject,'Max') to determine range of slider

% --- Executes during object creation, after setting all properties.

function slider1_CreateFcn(hObject, eventdata, handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor',[.9 .9 .9]);

end

