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ABSTRACT 

 
 
 The purpose of this project is to design and develop a pattern recognition 

system with using Artificial Neural Network (ANN) that can recognize the type of 

image based on the features extracted from the choose image. This system which can 

fully recognizing the types of the data had been add in the data storage or called as 

training data. The Graphic User Interface in Neural Network toolbox is used. This is 

the alternative way to change the common usage of the MATLAB which are use the 

command insert at command window. From this kind of system, we just need to 

insert the features data or training data. The recognition done after we insert the test 

data. The system will recognize whether the output is match with the training data. 

Then output will produce a kind of graph that describes the feature of the data which 

is same as the training data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

ABSTRAK 

 
 
 Tujuan projek ini dilakukan adalah untuk mereka dan menghasilkan sistem 

pengesanan corak dengan menggunakan Artificial Neural Network (ANN) dimana ia 

akan mengesan jenis gambar berpandukan ciri-ciri akstrak dari gambar yang dipilih. 

Sistem ini sepenuhnya boleh mengesan jenis-jenis data yang telah disimpan dalam 

memori atau dipanggil data latihan. Graphic User Interface dalam Neural Netwok 

toolbox digunakan. Ini adalah cara alternatif untuk menggantikan cara biasa dalam 

MATLAB iaitu hanya meletakkan arahan ke jendela arahan (command window). 

Untuk sistem jenis ini, kita hanya meletakkan cirian data atau data latihan. Sistem in 

akan mengesan dengan hasil keluaran sama dengan data ujian. Hasil keluaran graph 

menerangkan cirian data adalah sama dengan data latihan. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Fingerprint 

 
 
 In the 90 years since fingerprinting was generally introduced, out of the 

millions of sets of prints that have been taken, no two individuals have been found to 

have the same fingerprints. It is not the shape of the print that is individual, but rather 

the number, location and shape of specific ridge characteristics (also known as 

minutiae).  

 
 
 A fingerprint is an impression of the friction ridges of all or any part of the 

finger. A friction ridge is a raised portion of the epidermis on the palmar (palm and 

fingers) or plantar (sole and toes) skin, consisting of one or more connected ridge 

units of friction ridge skin. These ridges are sometimes known as "dermal ridges" or 

"dermal papillae”. 

 
 
 Fingerprints may be deposited in natural secretions from the eccrine glands 

present in friction ridge skin (secretions consisting primarily of water) or they may 

be made by ink or other contaminants transferred from the peaks of friction skin 

ridges to a relatively smooth surface such as a fingerprint card. The term fingerprint 

normally refers to impressions transferred from the pad on the last joint of fingers 

and thumbs, though fingerprint cards also typically record portions of lower joint 

areas of the fingers (which are also used to make identifications). 

http://en.wikipedia.org/wiki/Epidermis_%28skin%29
http://en.wikipedia.org/wiki/Papilla


 
 

1.2 Artificial Intelligent (AI) 

 
 
 The modern definition of artificial intelligence (or AI) is "the study and 

design of intelligent agents" where an intelligent agent is a system that perceives its 

environment and takes actions which maximizes its chances of success. John 

McCarthy, who coined the term in 1956, defines it as "the science and engineering of 

making intelligent machines." Other names for the field have been proposed, such as 

computational intelligence, synthetic intelligence or computational rationality. The 

term artificial intelligence is also used to describe a property of machines or 

programs: the intelligence that the system demonstrates. 

 
 
 
 
1.3 Neural Network 

 
 
 A neural network, also known as a parallel distributed processing network, is 

a computing solution that is loosely modeled after cortical structures of the brain. It 

consists of interconnected processing elements called nodes or neurons that work 

together to produce an output function. The output of a neural network relies on the 

cooperation of the individual neurons within the network to operate. Processing of 

information by neural networks is characteristically done in parallel rather than in 

series (or sequentially) as in earlier binary computers or Von Neumann machines.  

 

 Neural network theory is sometimes used to refer to a branch of 

computational science that uses neural networks as models to simulate or analyze 

complex phenomena and/or study the principles of operation of neural networks 

analytically. It addresses problems similar to artificial intelligence (AI) except that 

AI uses traditional computational algorithms to solve problems whereas neural 

networks use 'networks of agents' (software or hardware entities linked together) as 

the computational architecture to solve problems. Neural networks are trainable 

systems that can "learn" to solve complex problems from a set of exemplars and 

generalize the "acquired knowledge" to solve unforeseen problems as in stock market 

http://en.wikipedia.org/wiki/Intelligent_agents
http://en.wikipedia.org/wiki/John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/wiki/John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/wiki/Computational_intelligence
http://en.wikipedia.org/wiki/Synthetic_intelligence
http://en.wikipedia.org/wiki/Intelligence_%28trait%29
http://en.wikipedia.org/wiki/Distributed_representation
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Computers
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Learn
http://en.wikipedia.org/wiki/Exemplar
http://en.wikipedia.org/wiki/Stock_market_prediction


 
 

and environmental prediction. I.e., they are self-adaptive systems. The term 'Neural 

Network' has two distinct connotations: 

 
 

i. Biological neural networks are made up of real biological neurons that 

are connected or functionally-related in the peripheral nervous system 

or the central nervous system. In the field of neuroscience, they are 

often identified as groups of neurons that perform a specific 

physiological function in laboratory analysis. 

 
ii. Artificial neural networks are made up of interconnecting artificial 

neurons (usually simplified neurons) designed to model (or mimic) 

some properties of biological neural networks. Artificial neural 

networks can be used to model the modes of operation of biological 

neural networks, whereas cognitive models are theoretical models that 

mimic cognitive brain functions without necessarily using neural 

networks while artificial intelligence are well-crafted algorithms that 

solve specific intelligent problems (such as chess playing, pattern 

recognition, etc.) without using neural network as the computational 

architecture. 

 
 
 An artificial neural network (ANN) or commonly just neural network (NN) is 

an interconnected group of artificial neurons that uses a mathematical model or 

computational model for information processing based on a connectionist approach 

to computation. In most cases an ANN is an adaptive system that changes its 

structure based on external or internal information that flows through the network. 

 
 
 Conventional approaches have been proposed for solving these problems. 

Although successful applications can be found in certain well-constrained 

environments, none is flexible enough to perform well outside its domain. ANNs 

provide exciting alternatives, and many applications could benefit from using them. 

 

 

 

http://en.wikipedia.org/wiki/Adaptive_system
http://en.wikipedia.org/wiki/Biological_neural_network
http://en.wikipedia.org/wiki/Biological_neural_network
http://en.wikipedia.org/wiki/Biological_neural_network
http://en.wikipedia.org/wiki/Peripheral_nervous_system
http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Neuroscience
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Cognitive_model
http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Information_processing
http://en.wikipedia.org/wiki/Connectionism
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Adaptive_system


 
 

1.4 Graphical User Interface (GUI) 

 
 
 A graphical user interface (GUI) is a graphical display that contains devices, 

or components, that enable a user to perform interactive tasks. To perform these 

tasks, the user of the GUI does not have to create a script or type commands at the 

command line. Often, the user does not have to know the details of the task at hand. 

The GUI components can be menus, toolbars, push buttons, radio buttons, list boxes, 

and sliders.  

 
 
 In MATLAB, a GUI can also display data in tabular form or as plots, and can 

group related components. The applications that provide GUIs are generally easier to 

learn and use since the person using the application does not need to know what 

commands are available or how they work. 

 
 
 
 
1.5 Problem Statement 

 
 
 In a common style, this will be a difficulty to know and differentiate the types 

of fingerprint. In this world, there are many types of marble and have a little different 

among them in the decorative design. We could not able to know the type of 

fingerprint which have the feature had been needed.  

 
 
 By using ANN toolbox, we able to assign an input pattern or train the 

network. This ability of the network is to recognize the data features that were 

extracted from the image with a little differentiate. Adding with using Graphical User 

Interface (GUI) almost inside the MATLAB is to be user friendly when using this 

system. 

 

 

 

 

 



 
 

1.6 Objectives 

 
 

The aim of this project is to design and implement a pattern recognition 

system that can recognize the type of fingerprint using MATLAB. 

 
 

The main objectives of this project are: 

 
 

i. To recognize fingerprint image from the features extracted data for 

the recognition analysis using Artificial Neural Network (ANN). 

ii. To design and implement a pattern recognition system that can 

recognize the type of fingerprint based on the features extracted from 

the image. 

 
 
 
 
1.7 Scope of Project 

 
 

 This project is to design and implement a pattern recognition system by using 

a graphical user interface (GUI) called NNTOOL. In this project, there is main target 

to achieve at the end of this project: 

 
 

i. To design and train the network in learning algorithm and weight 

initialization. 

ii. To study about using graphical user interface (GUI) include inside 

Neural Network toolbox. 

iii.  To adapt of using the features extracted from the image which 

compare and produce a description about the image. 

iv. To use Graphical User Interface Develop Environment (GUIDE) to 

create the Graphical User Interface (GUI). 

 

 

 



 
 

1.8 Literature review 

 
 
1.8.1 Fingerprint 
 
 
 Fingerprint identification (sometimes referred to as dactyloscopy) or 

palmprint identification is the process of comparing questioned and known friction 

skin ridge impressions (see Minutiae) from fingers or palms to determine if the 

impressions are from the same finger or palm. The flexibility of friction ridge skin 

means that no two finger or palm prints are ever exactly alike (never identical in 

every detail), even two impressions recorded immediately after each other. 

Fingerprint identification (also referred to as individualization) occurs when an 

expert (or an expert computer system operating under threshold scoring rules) 

determines that two friction ridge impressions originated from the same finger or 

palm (or toe, sole) to the exclusion of all others. [1] 

 
  
 Fingerprint matching techniques can be placed into two categories: minutae-

based and correlation based. Minutiae-based techniques first find minutiae points and 

then map their relative placement on the finger.  However, there are some difficulties 

when using this approach. It is difficult to extract the minutiae points accurately 

when the fingerprint is of low quality. Also this method does not take into account 

the global pattern of ridges and furrows. The correlation-based method is able to 

overcome some of the difficulties of the minutiae-based approach.  However, it has 

some of its own shortcomings. Correlation-based techniques require the precise 

location of a registration point and are affected by image translation and rotation. [2] 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Minutiae
http://en.wikipedia.org/wiki/Expert_system
http://en.wikipedia.org/wiki/Adaptive_thresholding
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Figure 1.1 Types of Fingerprint [3] 

 
 
 
 

1.8.2 Artificial Intelligent (AI) 

 
 
 Conventional AI mostly involves methods now classified as machine 

learning, characterized by formalism and statistical analysis. This is also known as 

symbolic AI, logical AI, neat AI and Good Old Fashioned Artificial Intelligence 

(GOFAI). Methods include: 

 
 

i. Expert systems: apply reasoning capabilities to reach a conclusion. An 

expert system can process large amounts of known information and 

provide conclusions based on them. 

 
ii. Case based reasoning: stores a set of problems and answers in an 

organized data structure called cases. A case based reasoning system 

upon being presented with a problem finds a case in its knowledge 

base that is most closely related to the new problem and presents its 

solutions as an output with suitable modifications. 

http://en.wikipedia.org/wiki/Image:Arch.jpg
http://en.wikipedia.org/wiki/Image:Loop.jpg
http://en.wikipedia.org/wiki/Image:Whorl.jpg
http://en.wikipedia.org/wiki/Image:Tented_arch.jpg
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Formalism
http://en.wikipedia.org/wiki/Statistical_analysis
http://en.wikipedia.org/wiki/Neats
http://en.wikipedia.org/wiki/GOFAI
http://en.wikipedia.org/wiki/GOFAI
http://en.wikipedia.org/wiki/Expert_system
http://en.wikipedia.org/wiki/Case_based_reasoning
http://en.wikipedia.org/wiki/Case_based_reasoning
http://en.wikipedia.org/wiki/Case_based_reasoning


 
 

iii.  Bayesian networks 

 
iv. Behavior based AI: a modular method of building AI systems by 

hand. 

 
 
 Conventional AI research focuses on attempts to mimic human intelligence 

through symbol manipulation and symbolically structured knowledge bases. This 

approach limits the situations to which conventional AI can be applied. Lotfi Zadeh 

stated that "we are also in possession of computational tools which are far more 

effective in the conception and design of intelligent systems than the predicate-logic-

based methods which form the core of traditional AI." These techniques, which 

include fuzzy logic, have become known as soft computing. These often biologically 

inspired methods stand in contrast to conventional AI and compensate for the 

shortcomings of symbolicism. These two methodologies have also been labeled as 

neats vs. scruffies, with neats emphasizing the use of logic and formal representation 

of knowledge while scruffies take an application-oriented heuristic bottom-up 

approach. [4] 

 
 
 The subject of AI spans a wide horizon. It deals with the various kinds of 

knowledge representation schemes, different techniques of intelligent search, various 

methods for resolving uncertainty of data and knowledge, different schemes for 

automated machine learning and many others. Among the application areas of AI, we 

have Expert systems, Game-playing, and Theorem-proving, Natural language 

processing, Image recognition, Robotics and many others. The subject of AI has been 

enriched with a wide discipline of knowledge from Philosophy, Psychology, 

Cognitive Science, Computer Science, Mathematics and Engineering. Thus in Figure 

1.2, they have been referred to as the parent disciplines of AI. An at-a-glance look at 

Figure 1.2 also reveals the subject area of AI and its application areas. [5] 

http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Behavior_based_AI
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Neats_vs._scruffies
http://en.wikipedia.org/wiki/Neats_vs._scruffies


 
 

 

Figure 1.2 Parent Disciplines of AI [5] 

 
 
 

 
1.8.3 Neural Network Toolbox 

 
 

The first important part is using Neural Network toolbox. The Neural 

Network toolbox is a collection of function built in MATLAB which allows you to 

create and edit fuzzy inference system within the framework of MATLAB 

environment and integrate into simulations using SIMULINK. [1] 

 
 
 A neuron with a single R-element input vector is shown below. Here the 

individual element inputs 

 
 
 p1, p2,... pR  

 

 



 
 

are multiplied by weights 

 
 
 w1,1, w1,2, ... w1, R 

 
 
and the weighted values are fed to the summing junction. Their sum is simply Wp, 

the dot product of the (single row) matrix W and the vector p. 

 
 

 

Figure 1.3 Simple Perceptron Layer 

 
 
 The neuron has a bias b, which is summed with the weighted inputs to form 

the net input n. This sum, n, is the argument of the transfer function f.  

 
 
 n=w1,1p1+w1,2p2+... + w1, RpR + b 

 
 
This expression can, of course, be written in MATLAB code as 

 
 
 n = W*p + b  

 
 
 However, you will seldom be writing code at this level, for such code is 

already built into functions to define and simulate entire networks. 

 



 
 

 Two or more of the neurons shown earlier can be combined in a layer, and a 

particular network could contain one or more such layers. First consider a single 

layer of neurons. A one-layer network with R input elements and S neurons follows.  

 
 

 

Figure 1.4 3 Perceptron Layers 

 
 
 In this network, each element of the input vector p is connected to each 

neuron input through the weight matrix W. The ith neuron has a summer that gathers 

its weighted inputs and bias to form its own scalar output n(i). The various n(i) taken 

together form an S-element net input vector n. Finally, the neuron layer outputs form 

a column vector a. The expression for a is shown at the bottom of the figure. 

 
 
 Note that it is common for the number of inputs to a layer to be different from 

the number of neurons (i.e., R is not necessarily equal to S). A layer is not 

constrained to have the number of its inputs equal to the number of its neurons. 

 
 
 You can create a single (composite) layer of neurons having different transfer 

functions simply by putting two of the networks shown earlier in parallel. Both 

networks would have the same inputs, and each network would create some of the 

outputs. The input vector elements enter the network through the weight matrix W. 

 



 
 

 

 
 
 Note that the row indices on the elements of matrix W indicate the 

destination neuron of the weight, and the column indices indicate which source is the 

input for that weight. Thus, the indices in w1,2 say that the strength of the signal 

from the second input element to the first (and only) neuron is w1,2. The S neuron R 

input one-layer network also can be drawn in abbreviated notation. 

 
 
 A network can have several layers. Each layer has a weight matrix W, a bias 

vector b, and an output vector a. To distinguish between the weight matrices, output 

vectors, etc., for each of these layers in the figures, the number of the layer is 

appended as a superscript to the variable of interest. You can see the use of this layer 

notation in the three-layer network shown below, and in the equations at the bottom 

of the figure. 

 
 

 

Figure 1.5 Multilayer Perceptron 



 
 

 The network shown above has R1 inputs, S1 neurons in the first layer, S2 

neurons in the second layer, etc. It is common for different layers to have different 

numbers of neurons. A constant input 1 is fed to the bias for each neuron. 

 
 
 Note that the outputs of each intermediate layer are the inputs to the 

following layer. Thus layer 2 can be analyzed as a one-layer network with S1 inputs, 

S2 neurons, and an S2xS1 weight matrix W2. The input to layer 2 is a1; the output is 

a2. Now that all the vectors and matrices of layer 2 have been identified, it can be 

treated as a single-layer network on its own. This approach can be taken with any 

layer of the network. The layers of a multilayer network play different roles. A layer 

that produces the network output is called an output layer. All other layers are called 

hidden layers. The three-layer network shown earlier has one output layer (layer 3) 

and two hidden layers (layer 1 and layer 2). Some authors refer to the inputs as a 

fourth layer. This toolbox does not use that designation. [6] 

  
 
 The principles behind the toolbox are more important than simply compiling 

lists of algorithms. Data analysis and modeling methods should not be used in 

isolation; all parts of the toolbox interact in a coherent way, and implementations of 

standard pattern recognition techniques (such as linear regression and K-nearest-

neighbour classifiers) are provided so that they can be used as benchmarks against 

which more complex algorithms can be evaluated. This interaction allows 

researchers to develop new techniques by building on and reusing existing software, 

thus reducing the effort required and increasing the robustness and usability of the 

new tools.  

 
 
 Supervised neural networks are trained to produce desired outputs in response 

to sample inputs, making them particularly well suited to modeling and controlling 

dynamic systems, classifying noisy data, and predicting future events.  

 
 

i. Feedforward networks have one-way connections from input to output 

layers. They are most commonly used for prediction, pattern 

recognition, and nonlinear function fitting. Supported Feedforward 



 
 

networks include Feedforward Backpropagation, Cascade-forward 

Backpropagation, Feedforward Input-delay Backpropagation, Linear, 

and Perceptron networks.  

 
ii.  Radial Basis networks provide an alternative, fast method for 

designing nonlinear Feedforward networks. Supported variations 

include generalized regression and probabilistic Neural Networks.  

 
iii.  Dynamic networks use memory and recurrent feedback connections to 

recognize spatial and temporal patterns in data. They are commonly 

used for time-series prediction, nonlinear dynamic system modeling, 

and control system applications. Prebuilt dynamic networks in the 

toolbox include focused and distributed time-delay, nonlinear 

autoregressive (NARX), layer-recurrent, Elman, and Hopfield 

networks. The toolbox also supports dynamic training of custom 

networks with arbitrary connections. 

 
 
 Unsupervised neural networks are trained by letting the network continually 

adjust itself to new inputs. They find relationships within data and can automatically 

define classification schemes.  

 
 
 The Neural Network Toolbox supports two types of self-organizing, 

unsupervised networks: competitive layers and self-organizing maps. Competitive 

layers recognize and group similar input vectors. By using these groups, the network 

automatically sorts the inputs into categories.  

 
 
 Self-organizing maps learn to classify input vectors according to similarity. 

Unlike competitive layers they also preserve the topology of the input vectors, 

assigning nearby inputs to nearby categories. [7] 

 

 

 

 



 
 

1.8.4 Pattern Recognition 

 
 
 Pattern recognition is a sub-topic of machine learning. It can be defined as 

"The act of taking in raw data and taking an action based on the category of the data" 

 
 
 Most research in pattern recognition is about methods for supervised learning 

and unsupervised learning. 

 
 
 Pattern recognition aims to classify data (patterns) based on either a priori 

knowledge or on statistical information extracted from the patterns. The patterns to 

be classified are usually groups of measurements or observations, defining points in 

an appropriate multidimensional space. 

 
 
 A complete pattern recognition system consists of a sensor that gathers the 

observations to be classified or described; a feature extraction mechanism that 

computes numeric or symbolic information from the observations; and a 

classification or description scheme that does the actual job of classifying or 

describing observations, relying on the extracted features. 

 
 
 The classification or description scheme is usually based on the availability of 

a set of patterns that have already been classified or described. This set of patterns is 

termed the training set and the resulting learning strategy is characterized as 

supervised learning. Learning can also be unsupervised, in the sense that the system 

is not given an a priori labeling of patterns, instead it establishes the classes itself 

based on the statistical regularities of the patterns. 

 
 
 The classification or description scheme usually uses one of the following 

approaches: statistical (or decision theoretic), syntactic (or structural). Statistical 

pattern recognition is based on statistical characterizations of patterns, assuming that 

the patterns are generated by a probabilistic system. Structural pattern recognition is 

based on the structural interrelationships of features. A wide range of algorithms can 
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be applied for pattern recognition, from very simple Bayesian classifiers to much 

more powerful neural networks. 

 
 
 Pattern recognition is more complex when templates are used to generate 

variants. For example, in English, sentences often follow the "N-VP" (noun - verb 

phrase) pattern, but some knowledge of the English language is required to detect the 

pattern. Pattern recognition is studied in many fields, including psychology, 

ethology, and computer science. [8] 

 
 
 
 
1.8.5 Graphical User Interface (GUI) in GUIDE 

 
 
 GUI design is an important adjunct to application programming. Its goal is to 

enhance the usability of the underlying logical design of a stored program. The 

visible graphical interface features of an application are sometimes referred to as 

"chrome". They include graphical elements (widgets) that may be used to interact 

with the program. Common widgets are: windows, buttons, menus, and scroll bars. 

Larger widgets, such as windows, usually provide a frame or container for the main 

presentation content such as a web page, email message or drawing. Smaller ones 

usually act as a user-input tool. 

 
 
 The widgets of a well-designed system are functionally independent from and 

indirectly linked to program functionality, so the GUI can be easily customized, 

allowing the user to select or design a different skin at will. [9] 

 
 
 A major advantage of GUIs is that they make computer operation more 

intuitive, and thus easier to learn and use. For example, it is much easier for a new 

user to move a file from one directory to another by dragging its icon with the mouse 

than by having to remember and type seemingly arcane commands to accomplish the 

same task.  
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 Adding to this intuitiveness of operation is the fact that GUIs generally 

provide users with immediate, visual feedback about the effect of each action. For 

example, when a user deletes an icon representing a file, the icon immediately 

disappears, confirming that the file has been deleted (or at least sent to the trash can). 

This contrast with the situation for a CLI, in which the user types a delete command 

(inclusive of the name of the file to be deleted) but receives no automatic feedback 

indicating that the file has actually been removed.  

 
 
 In addition, GUIs allow users to take full advantage of the powerful 

multitasking (the ability for multiple programs and/or multiple instances of single 

programs to run simultaneously) capabilities of modern operating systems by 

allowing such multiple programs and/or instances to be displayed simultaneously. 

The result is a large increase in the flexibility of computer use and a consequent rise 

in user productivity.  

 
 
 But the GUI has become much more than a mere convenience. It has also 

become the standard in human-computer interaction, and it has influenced the work 

of a generation of computer users. Moreover, it has led to the development of new 

types of applications and entire new industries. An example is desktop publishing, 

which has revolutionized (and partly wiped out) the traditional printing and 

typesetting industry. [10] 

 
 
 
 
1.9  Methodology 

 
  
1.9.1 Introduction 

 
 
 In doing a successful project, a methodology is one of the important 

elements. Methodology is the set of procedure of the project flow which includes the 

theories, concepts or ideas, comparative study of different approaches and critique of 

the individual methods will make sure that the project will run smoothly according to 

plan and to make sure that we can get the expected result.  

http://www.bellevuelinux.org/multitasking.html
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1.9.2 Methodology 

 

 

 

Figure 1.6 Project Operation Flowchart 

 
 
 
 

1.9.3 Software Design 

 
 
 To be done this project, the Neural Network Toolbox is used to accomplish 

the scope of the project. The additional software is used such as Graphical User 

Interface (GUI) in GUIDE for make a system is well designed and easy to use. This 

also called as “user friendly”. 

 

 

 

 

 



 
 

1.9.4 Software Procedure 

 

 

Figure 1.7 Flowchart of System Procedure 

 
 

 After developing the Neural Network Toolbox which is the main part of this 

system, the Graphical User Interface (GUI) in GUIDE is used to make the system is 

more systematic and user easy to evaluate the result just only insert data and clicking 

the buttons. The output result will appear after simulating the system application.  
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1.9.5 Result and Analysis 

 
 
 From the result of the system, data and output will be compared. M-file 

which is constructed inside GUI is used to define the output in the statement that 

easy to understand. 

 
 
 
 
1.9.6 Conclusion 

 
 
 After the system is developed, and description of the fingerprint is carried 

out, a conclusion is made in order to see the successfulness of this project based on 

the objectives that were set earlier. Thus, a recommendation is made for future 

progress for enhancement of this system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

CHAPTER 2 

 
 
 
 

SYSTEM MODEL 

 
 
 
 

2.1 Introduction 

 
 
 In order to design this project, a system modeling is necessary to provide 

method for the control system. By this, a descriptive model of the system as a 

hypothesis of how the system could work is built. For the neural network, the system 

is able to be constructing by weight and bias. This is the most important thing.  

 
 
 
 
2.2 System Model 

 
 

 

Figure 2.1 Modeling Box for Neural Network 

 
 
 From the Black-Box above, there is no previous knowledge, but there are 

measurements, observations, records, and data. 



 
 

 

Figure 2.2 Neural Network Layers 

 
 

 As we know, inside a single box from the Figure 2.1 above, there stands the 

idea of learning from the data behind the Neural Network. If there do not have any 

prior knowledge AND there do not have any measurements (by all accounts very 

hopeless situation indeed) it may be hard to expect or believe that the problem at 

hand may be approached and solved easily. 

 
 

 

Figure 2.3 Neural Network Concepts 

 

 



 
 

 From the Figure 2.3 above, there are equation are construct inside the Neural 

Network. The bias and weight are affecting the output of the data. Error of the output 

data will be reanalyzing until get the needed data. In reaching that, the weight and 

bias must be reinitializing by supervised learning or unsupervised learning. 

 
 

i. Data can be modeled by a set of linear in parameter functions; this is a 

foundation of a parametric paradigm in learning from experimental data. 

 
ii. In the most of real-life problems, a stochastic component of data is the 

normal probability distribution law, i.e., the underlying joint probability 

distribution is Gaussian. 

 
iii.  Due to the second assumption, the induction paradigm for parameter 

estimation is the maximum likelihood method that is reduced to the 

minimization of the sum-of-errors-squares cost function in most engineering 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

CHAPTER 3 

 
 
 
 

SOFTWARE 

 
 
 
 

3.1 Introduction 

 
 
 The Graphical User Interface (GUI) is designed to be simple and user 

friendly. A simple example will get you started. Inside the Neural Network Toolbox 

also have the GUI which called “NNTool”. This application still same as the 

previous Neural Network, but it is a simplification of using the command. 

 
 
 
 
3.2 Training Data Table 

 
 

Table 3.1 : Features extract 1 

 Fore 
ground 

Total 
Min 

Min 
06 

Min 
065 

Min 
075 

Min 
08 

Min 
09 

Normed 
Match 

Type A 0.101 0.189 0.290 0.302 0.516 0.302 0.302 0.287 

Type B 0.054 0.102 0.038 0.382 0.448 0.160 0.159 0.276 

Type C 0.604 0.485 0.504 0.506 0.513 0.449 0.448 0.298 

Type D 0.072 0.310 0.558 0.561 0.560 0.478 0.478 0.323 

Type E 0.120 0.071 0.385 0.686 0.608 0.240 0.239 0.436 

 

 

 

 

 



 
 

Table 3.2 : Features extract 2 

 Fore 
ground 

Total 
Min 

Min 
06 

Min 
065 

Min 
075 

Min 
08 

Min 09 Normed 
Match 

Type A 0.166 0.330 0.403 0.597 0.274 0.424 0.424 0.411 
Type B 0.042 0.089 0.028 0.333 0.412 0.156 0.155 0.272 
Type C 0.452 0.333 0.376 0.562 0.520 0.425 0.424 0.274 
Type D 0.081 0.321 0.565 0.542 0.562 0.451 0.451 0.296 
Type E 0.127 0.078 0.292 0.718 0.589 0.303 0.302 0.499 

 
 
 
 

3.3 Neural Network Toolbox 

 
 
3.3.1 Open Neural Network Toolbox (NNTool) 

 
 
 In GUI, to create a perceptron network is to perform the AND function. It has 

an input vector ‘p’ and a target vector‘t’. Just call the network as Network. 

 
 
 To start, type ‘nntool’ at the command window after open the MATLAB 

software. Other way to get the GUI of the Neural Network as follow the instruction 

(Start in MATLAB menu > Toolboxes > NNTool) or shown as the figure 8 below; 

 
 

 

Figure 3.1 Starting the NNTool 

 

 

 

 



 
 

The Network/Data Manager window will appear as shown in Figure 3.2; 

 
 

 

Figure 3.2 Network/Data Manager Explorer Window 

 
 
 
 
3.3.2 Create Input, Target and Network 

 
 
 First, define the network input, called ‘Input’. To define this data, from the 

Network/Data Manager as shown on Figure 3.2, click New, and a new window, 

Create Network or Data, appears. Select the Data tab. Set the Name to Input, the 

Value refer to the training data table, and make sure that Data Type is set to Inputs. 

Also the same type if we need to add target ‘t1’ and we need to make sure the Data 

Type is set to Targets. 

 



 
 

 

Figure 3.3 Create the Data 

 
 
 Create a new network and call it Fingerprint. Select the Network tab. Enter 

Network under Name. Set the Network Type to Perceptron, for that is the kind of 

network you want to create. 

 
 
 Set the input ranges by entering numbers in that field, but it is easier to get 

them from the particular input data that you want to use. To do this, click the down 

arrow at the right side of Input Range. This pull-down menu shows that you can get 

the input ranges from the file Input. That is what you want to do, so click Input. 

 
 
 You need to use a hardlim transfer function and a learnp learning function, so 

set those values using the arrows for Transfer function and Learning function, 

respectively. By now your Create Network or Data window should look like the 

Figure 3.4; 
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Figure 3.4 Create the Network 

 
 

After setting the data, target and Network, at least will show as Figure 3.5 below; 

 
 

 

Figure 3.5 Network/Data Manager after Setting the Data 

Set name 
Fingerprint as 

Network. 
 

Take Perceptron as the 
network type. Others 

also can. 
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3.3.3 Train Network 

 
 
 To train the network, click Fingerprint to highlight it. Then click Open. This 

leads to a new window, labeled Network: Fingerprint. At this point you can see the 

network again by clicking the View tab. You can also check on the initialization by 

clicking the Initialize tab. Now click the Train tab. specify the inputs and output by 

clicking the Training Info tab and selecting “Input” from the list of inputs and “t1” 

from the list of targets.  

 
 

 

Figure 3.6 Training the Data 

 

 

 

 

 

 

 

 

 

Set the Data that you 
need to test 

Train use for produce the 
output 



 
 

3.4 GUI in GUIDE 

 
 
3.4.1 Open GUIDE 

 
 
 From MATLAB File menu, click  New > GUI. From the MATLAB explorer, 

click the button at the menu bar as shown as Figure 3.7; 

 
 

 

 

 

Figure 3.7 Open the GUIDE 

 
 

 The displays the GUIDE Quick Start dialog box shown in the following 

Figure 3.8. The GUIDE Quick Start dialog box contains two tabs: 

 
 

i. Create New GUI – Asks you to start creating your new GUI by 

choosing a template for it. You can also specify the name by which 

the GUI is saved. 

 
ii. Open Existing GUI – Enables you to open an existing GUI in GUIDE. 

You can choose a GUI from your current directory or browse other 

directories. 

 
 
 At GUIDE templates, chose the Blank GUI (Default), and click OK to 

display the blank templates. This is for user first time of making the GUI. 

Click here to open the GUIDE. The function of GUIDE is provide 
a set of tools for creating graphical user interfaces (GUIs). 



 
 

 

Figure 3.8 GUIDE Quick Start 

 
 
 
 

3.4.2 Develop a GUI 

 
 
 After click OK to display the blank GUI in the Layout Editor, the Fig-file will 

appear as shown in the following Figure 3.9. Set the size of the GUI by resizing the 

grid area in the Layout Editor. Click the lower-right corner and drag it until fit to the 

size that the user needed. To create the push button, select the push button from the 

component palette at the left of the Layout Editor and drag it into the layout area as 

shown in the Figure 3.9; 

 

Chose this templates of the 
user using it at the first time 

for the beginner function 

Click OK to create the blank 
GUI, new windows explorer 

will appear 



 
 

 
 

Figure 3.9 Insert Push Button 
 
 
 To change the name at the Push Button, right click and choose property 

inspector. The explorer will appear as shown as Figure 3.10. Then change the name 

at String from ‘Push Button’ to ‘Introduction’ as shown as Figure 3.10. For the 

others push button, use the same step which every tab have their own function. 

 

Drag Push Button 
into 6 or others 

depend on the user 
needed 

Resize the grid 
area 



 
 

 

Figure 3.10 Change Name of Push Button 

 
 

 To insert a picture in GUI, click Axes and drag as shown as Figure 3.11. 

Axes are also function to display plotting graph from the operation had given. 

 
 

 

Figure 3.11 Creating Axes 

To change the name of 
Push Button 

At String, this is for the 
Display on the Push Button 



 
 

 When you save a GUI, GUIDE creates two files, a FIG-file and an M-file. 

The FIG-file, with extension .fig, is a binary file that contains a description of the 

layout. The M-file, with extension .m, contains the code that controls the GUI. 

 
 

i. Save and activate your GUI by selecting Run from the Tools menu. 

ii. GUIDE displays the following dialog box. Click Yes to continue. 

 
 

 

Figure 3.12 Saving Project GUI 

 
 

iii.  GUIDE opens a Save As dialog box in your current directory and 

prompts you for a FIG-file name. 

 

 

 

Figure 3.13 Directory Save File Name 

 
 

iv. Browse to any directory for which you have write privileges, and then 

enter the filename Print for the FIG-file. GUIDE saves both the FIG-

file and the M-file using this name. 



 
 

3.4.3 Programming the GUI 

 
 

 From the push button at the layout area, right click view callback > callback 

which is connect to the M-file that had been construct by saving the project as 

explain as before. Figure 3.14 shows prove of the function callback. With the 

command “figure (introduction)” means that this button is connect or link with other 

GUI template called ‘introduction’. These are the function of callback; 

 
 

i. Routine that executes whenever you activate the uicontrol object . 

ii. Define this routine as a string that is a valid MATLAB expression or 

the name of an   M-file. 

iii.  The expression executes in the MATLAB workspace. 

 

 

 

 

 

Figure 3.14 Function of Callback 

 
 

 For the link this GUI template with other application such as Neural Network 

Toolbox (NNTool), the command is shown as Figure 3.15. 

 

 

-Callback will bring the user to M-file which has specific command for 
  the push button ‘Introduction’ 
-This button was declared as shown picture above.  



 
 

 

 

 

Figure 3.15 Link to NNTool 

 
 

 Every system has their own result whenever shown in graph, statement at 

command window or others. So, just creating a push button which is to simplify the 

user just click the button and result will appear. Example is this fingerprint 

recognition system. Figure 3.16 shows the command at the M-file also the function 

of the defining the output. 

 
 

 

 

 

 

 

 

 

Figure 3.16 Produce an Output with Defining the Variable Outputs 

 

 

 

Just type NNTool which is to connect the 
Neural Network toolbox with the push button. 

 a=evalin ( ‘*’ , ’*’ )  
-‘base’ is to import data from 
   workspace into function. 
-‘Fingerprint_outputs’ is the 
   result which was imported by 
   the function above 

‘a’ is the defining for the equation. 
The value inside is one of the 

result. 
 



 
 

 For the axes that want to insert picture, this apart of making GUI more 

valuable. Just copy the picture needed and insert at folder MATLAB which is the 

main path of reference to be search in. The Figure 3.17 shows that how to import 

image from the path and put it into axes.  

 
 

 

Figure 3.17 Import Image to the Axes 

 
 
 Creating an exit button with message box is the function of quit of the whole 

system. This is a part of completing the system. At the end in making GUIDE, save 

the entire project. After that run GUI template and see the result of each function. 

 
 

 

Figure 3.18 Creating an Exit Button 

 

 

 

 

 

 

 

 

[x,map]=imread (‘*’,’jpg’) is to 
import image to the axes. ‘jejari is 
the image file name in format jpeg. 



 
 

 

 

 

 

CHAPTER 4 

 
 
 
 

RESULTS 

 
 
 
 

4.1 Introduction 

 
 
 As the results, this system is able to recognize the type of the fingerprint and 

produce and output at the matrix form. In this system, it is able to define the five 

types of the fingerprint and will display others if the data is not equal to the training 

data. With using GUIDE of making GUI, it is able to make user easy to use the 

system. With creating define function inside M-file, it able to produce a display 

about the fingerprint recognizing.  

 
 
 
 
4.2 GUIDE Main Page Display 

 
 
 The GUI of GUIDE is used as the main page of the whole system. Every 

button has its own link to other application and description. To further this 

recognition system, click the button ‘Go to NNTool’ and insert data as explain in 

past chapter. 

 



 
 

 

Figure 4.1 GUIDE Main Page 

 
 
 
 

4.3 Recognition Results 

 
 
4.3.1 Fingerprint Type A 

 

 

 After using and implement the Neural Network toolbox, the output will be 

produce and the matrix form is defined by the M-file. So, the result will produce a 

message box. 



 
 

 

Figure 4.2 Performance of Type A 

 

 Graph above shows that the value of the performance to the data type A. The 

value of performance is 0.091825. 

 

 

Figure 4.3 Output Display for Type A 

 
 

 After export the output result from the data manager of the NNTool, refer to 

the main page of the GUI and click the ‘Output’ push button to display the result. 

The message box will show as Figure 4.3 above. 



 
 

4.3.2 Fingerprint Type B 

 
 

 

Figure 4.4 Performance of Type B 

 
 

 Graph above shows that the value of the performance to the data type B. The 

value of performance is 0.0664. 

 
 

 

Figure 4.5 Output Display for Type B 

 



 
 

 After export the output result from the data manager of the NNTool, refer to 

the main page of the GUI and click the ‘Output’ push button to display the result. 

The message box will show as Figure 4.5 above. 

 
 
 
 
4.3.3 Fingerprint Type C 

 
 

 

Figure 4.6 Performance of Type C 

 
 

 Graph above shows that the value of the performance to the data type C. The 

value of performance is 0.09565. 



 
 

 

Figure 4.7 Output Display for Type C 

 
 

 After export the output result from the data manager of the NNTool, refer to 

the main page of the GUI and click the ‘Output’ push button to display the result. 

The message box will show as Figure 4.7 above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4.3.4 Fingerprint Type D 

 
 

 

Figure 4.8 Performance of Type D 

 
 

 Graph above shows that the value of the performance to the data type D. The 

value of performance is 0.079075 

. 
 

 

Figure 4.9 Output Display for Type D 

 



 
 

 After export the output result from the data manager of the NNTool, refer to 

the main page of the GUI and click the ‘Output’ push button to display the result. 

The message box will show as Figure 4.9 above. 

 
 
 
 

4.3.5 Fingerprint Type E 

 
 

 

Figure 4.10 Performance of Type E 

 
 

 Graph above shows that the value of the performance to the data type E. The 

value of performance is 0.09115. 



 
 

 

Figure 4.11 Output Display for Type E 

 
 

 After export the output result from the data manager of the NNTool, refer to 

the main page of the GUI and click the ‘Output’ push button to display the result. 

The message box will show as Figure 4.11 above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

4.3.6 Unrecognized Fingerprint 

 
 

 

Figure 4.12 Performance of Unrecognized Type 

 
 
 Graph above shows that the value of the performance to the random data. The 

value of performance is 0.09275. 

 
 

 
Figure 4.13 Output Display for Unrecognized Type 

 



 
 

 After export the output result from the data manager of the NNTool, refer to 

the main page of the GUI and click the ‘Output’ push button to display the result. 

The message box will show as Figure 4.13 above. 

 
 
 
 

4.4 Close System 

 
 
 At the end of using the system, it needs to be close and from that the exit 

button is created. This exit button will close all application. 

 
 

 

Figure 4.14 Exit Button Display 

 

 

 

 

 

 

 



 
 

4.5 Discussion 

 
 
 From this project, there are many element must be consider and focus in 

training the data until it produce maintain and static value. The problem using this 

application is difficult to understand and implement. Since the GUI and M-file are 

constructed to state the difficulty output value in the easy statement to understand. 

There are many difficulties in searching the training data. This data also can be 

extract from the image by our own. But, it is need other system application such as 

data mining and image processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

CHAPTER 5 

 
 
 
 

CONCLUSION AND RECOMMENDATION 

 
 
 
 

5.1 Introduction 

 
 
 Conclusion and recommendation are made after the analyses of the result are 

done. The conclusion involve of the summary of the project taken. Then, 

recommendations are prepared for future progress and improvement of the projects 

done. 

 
 
 
 
5.2 Conclusion 

 
 
 Finally the project is successfully done with recognizing the fingerprint data 

by using Neural Network toolbox. Almost using the Perceptron is not a complete 

system of using Neural Network which is need more than one application in Neural 

Network toolbox such as Feedfoward, Backpropagation, Hopfield and others, the 

outputs were display. 

 
 
 Neural Network normally could be constructing by more five hundreds data. 

It is difficult to develop that much of data which need to train more than 10 times for 

each data. Perceptron is a sub-application of the main applications such as 

Feedfoward and Backpropagation. But user also can construct by making a 

Multilayer Perceptron (MLP). 



 
 

 

 The usage of GUIDE in making Graphical User Interface (GUI) is making of 

any system inside or outside the MATLAB software more easy to use. That is called 

User-friendly. In this Fingerprint Recognition System, it successful of interface the 

NNTool and produce the output display by import the output result from the 

workspace of the MATLAB software.   

 
 
 
 
5.3 Recommendation 

 
 
 For a future development of this project, the Neural Network Toolbox can be 

design to recognize above 500 data and variety types of image such as face 

expression, footprints, cornea, ear print and others. This project is most perfectly if 

we combine all the applications in Neural Network Toolbox such as Feedforward, 

Backpropgation and others. This Neural Network toolbox must be interface with 

Graphical User Interface (GUI) in GUIDE. Furthermore, the output result must be 

display just a single click after choosing or insert the raw data.  
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2) FLOWCHART OF NEURAL NETWORK TOOLBOX 
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APPENDIX B 

 

IMAGES OF GUI APPLICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) MAIN PAGE 

 



 
 

 

 

 

 

 

 

 

 

 

 

2) INTRODUCTION 

 



 
 

 

 

 

 

3) HELP 

 



 
 

 



 
 



 
 

 

 

 

 

4) CREDIT 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 

PROGRAMMING OF GRAPHICAL USER INTERFACE (GUI) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1) MAIN PAGE 

 

 

function varargout = Design(varargin) 

% DESIGN M-file for Design.fig 

%      DESIGN, by itself, creates a new DESIGN or raises the existing 

%      singleton*. 

% 

%      H = DESIGN returns the handle to a new DESIGN or the handle to 

%      the existing singleton*. 

% 

%      DESIGN('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in DESIGN.M with the given input arguments. 

% 

%      DESIGN('Property','Value',...) creates a new DESIGN or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before Design_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to Design_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help Design 

  

% Last Modified by GUIDE v2.5 28-Oct-2007 21:28:47 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @Design_OpeningFcn, ... 



 
 

                   'gui_OutputFcn',  @Design_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if  nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if  nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before Design is made visible. 

function Design_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to Design (see VARARGIN) 

  

% Choose default command line output for Design 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes Design wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

% to make a background just only use axes by resize fit to the work size 

[x,map]=imread('jejari','jpg'); 

image(x) 



 
 

set(gca,'visible','off') 

  

% --- Outputs from this function are returned to the command line. 

function varargout = Design_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pushbutton2. 

% link the button with the new GUI figure. just the introduction 

function varargaout=pushbutton2_Callback(h, eventdata, handles, varargin) 

figure (introduction) 

% hObject    handle to pushbutton2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA 

  

 

% --- Executes on button press in pushbutton4. 

% link the button with the new GUI figure. show the procedure in using 

% NNtoool 

function varargaout=pushbutton4_Callback(h, eventdata, handles, varargin) 

figure (help1) 

% hObject    handle to pushbutton4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  

% --- Executes on button press in pushbutton5. 

% link the button with the other GUI concept in neural network toolbox. new 



 
 

% windows of the GUI will appear. otherwise it also can be display with 

% manually called. 

function varargaout=pushbutton5_Callback(h, eventdata, handles, varargin) 

NNTool 

% hObject    handle to pushbutton5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

  

% --- Executes on button press in pushbutton6. 

% link the button with the figure out the same function in window command. 

function pushbutton6_Callback(hObject, eventdata, handles) 

a=evalin ('base','Fingerprint_outputs') 

  

if   a>=[0 1 0 0 1 0 1 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0] 

    message=strcat('The Fingerprint is type A'); 

    msgbox(message); 

     

elseif a>=[0 0 0 0 0 0 0 0;0 0 0 1 0 0 1 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 

0] 

    message=strcat('The Fingerprint is type B'); 

    msgbox(message); 

     

elseif a>=[0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;1 0 1 0 1 0 1 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 

0] 

    message=strcat('The Fingerprint is type C'); 

    msgbox(message); 

  

elseif a>=[0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 1 1 0 0 1 0;0 0 0 0 0 0 0 

0] 

    message=strcat('The Fingerprint is type D'); 

    msgbox(message); 

     



 
 

elseif a>=[0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0; 0 0 0 1 0 1 0 

1] 

    message=strcat('The Fingerprint is type E'); 

    msgbox(message); 

  

else 

    message=strcat('Unrecognized the Fingerprint type'); 

    msgbox(message); 

     

end 

% hObject    handle to pushbutton6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

 

% --- Executes on button press in pushbutton7. 

% link the button with the new GUI figure. show the profile of the designer 

% and his supervisor 

function varargaout=pushbutton7_Callback(h, eventdata, handles, varargin) 

figure (credit) 

% hObject    handle to pushbutton7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

 % --- Executes on button press in pushbutton8. 

% function to quit the system. 

function pushbutton8_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

button = questdlg(' Are you sure to exit?','Fingerprint Recognition','Yes','No','No'); 

switch button 

  case 'Yes', 



 
 

    close all 

  case 'No', 

    quit cancel; 

end 

clc 

    disp('Thank You for using this System'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

2) INTRODUCTION 

 

 

function varargout = introduction(varargin) 

% INTRODUCTION M-file for introduction.fig 

%      INTRODUCTION, by itself, creates a new INTRODUCTION or raises the 

existing 

%      singleton*. 

% 

%      H = INTRODUCTION returns the handle to a new INTRODUCTION or the 

handle to 

%      the existing singleton*. 

% 

%      INTRODUCTION('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in INTRODUCTION.M with the given input 

arguments. 

% 

%      INTRODUCTION('Property','Value',...) creates a new INTRODUCTION or 

raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before introduction_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to introduction_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help introduction 

  

% Last Modified by GUIDE v2.5 28-Oct-2007 22:51:00 

  

% Begin initialization code - DO NOT EDIT 



 
 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @introduction_OpeningFcn, ... 

                   'gui_OutputFcn',  @introduction_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if  nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if  nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before introduction is made visible. 

function introduction_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to introduction (see VARARGIN) 

  

% Choose default command line output for introduction 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes introduction wait for user response (see UIRESUME) 



 
 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = introduction_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3) HELP 

 

function varargout = introduction(varargin) 

% INTRODUCTION M-file for introduction.fig 

%      INTRODUCTION, by itself, creates a new INTRODUCTION or raises the 

existing 

%      singleton*. 

% 

%      H = INTRODUCTION returns the handle to a new INTRODUCTION or the 

handle to 

%      the existing singleton*. 

% 

%      INTRODUCTION('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in INTRODUCTION.M with the given input 

arguments. 

% 

%      INTRODUCTION('Property','Value',...) creates a new INTRODUCTION or 

raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before introduction_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to introduction_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help introduction 

  

% Last Modified by GUIDE v2.5 28-Oct-2007 22:51:00 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 



 
 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @introduction_OpeningFcn, ... 

                   'gui_OutputFcn',  @introduction_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if  nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if  nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before introduction is made visible. 

function introduction_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to introduction (see VARARGIN) 

  

% Choose default command line output for introduction 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes introduction wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 



 
 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = introduction_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4) CREDIT 

 

 

function varargout = credit(varargin) 

% CREDIT M-file for credit.fig 

%      CREDIT, by itself, creates a new CREDIT or raises the existing 

%      singleton*. 

% 

%      H = CREDIT returns the handle to a new CREDIT or the handle to 

%      the existing singleton*. 

% 

%      CREDIT('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in CREDIT.M with the given input arguments. 

% 

%      CREDIT('Property','Value',...) creates a new CREDIT or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before credit_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to credit_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help credit 

  

% Last Modified by GUIDE v2.5 29-Oct-2007 01:12:39 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @credit_OpeningFcn, ... 



 
 

                   'gui_OutputFcn',  @credit_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if  nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if  nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before credit is made visible. 

function credit_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to credit (see VARARGIN) 

  

% Choose default command line output for credit 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes credit wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

% import image to be display the pic 

s = imread('aku','jpg'); 

axes(handles.axes1); 



 
 

imshow(s); 

  

handles.s=s; 

guidata(hObject,handles); 

  

s = imread('nieha','jpg'); 

axes(handles.axes2); 

imshow(s); 

  

handles.s=s; 

guidata(hObject,handles); 

  

% --- Outputs from this function are returned to the command line. 

function varargout = credit_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on slider movement. 

function slider1_Callback(hObject, eventdata, handles) 

% hObject    handle to slider1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'Value') returns position of slider 

%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 

  

  

% --- Executes during object creation, after setting all properties. 



 
 

function slider1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to slider1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: slider controls usually have a light gray background. 

if  isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

 


