DECLARATION OF THES	IS / UNDERGRADUATE PRO	DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT		
Author's full name: <u>VIKNEs</u>	<u>SH A/L PUNICHELVAN</u>			
Date of birth : <u>3RD JAN</u>	<u>[UARY 1989</u>			
Title : DESIGN SYSTEM	NAND IMPLEMENTATION C 1 FOR SUPPORTING CRITIC	<u>)F FLYWHEEL ENERGY STORAGE CAL LOAD</u>		
Academic Session	: <u>2012/2013</u>			
I declare that this thesis is cla	ussified as:			
COFIDENTIAL	(Contain confidential informatio	n under the Official Secret Act 1972)*		
RESTRICTED	(Contains restricted information research was done)*	as specified by the organization where		
J OPEN ACCESS	I agree that my thesis to be publi	ished as online open access (full text)		
I acknowledge that Universiti Mal	aysia Pahang reserves the right as	s follows:		
1. The Final Year Project F	Report is the property of Universit	ti Malaysia Pahang.		
 The Library of Universit only. 	I Malaysia Pahang has the right t	o make copies for the purpose of research		
3. The library has the right	to make copies of the thesis for a	cademic exchange.		
		Certified by:		
Menerla		Twit -		
SIGNATURE		SIGNATURE OF SUPERVISOR		
	١	PROF.MADYA, DR. AJISMAN APEN		
Date: 28 JUNE 2013	,	Date: 4/2 - 2013		

UNIVERSITI MALAYSIA PAHANG

NOTES: *

If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction

DESIGN AND IMPLEN..... ERGY STORAGE SYSTEM FOR SUPPORTING CRITICAL LOAD

VIKNESH A/L PUNICHELVAN

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechatronics Engineering

Faculty of Manufacturing Engineering UNIVERSITI MALAYSIA PAHANG

JUNE 2013

UNIVERSITI MALAYSIA PAHANG FACULTY OF MANUFACTURING ENGINEERING

I certify that the project entitled "Design and Implementation of Flywheel Energy Storage System for Supporting Critical Load" is written by Viknesh Punichelvan. I have examined the final copy of this thesis and in my opinion; it is fully adequate in terms of scope and quality for the award of the degree of Bachelor of Mechatronics Engineering. I herewith recommend that it be accepted in fulfillment of the requirements for the degree of Bachelor of Mechatronics Engineering.

(ASSOC. PROF.DR.ABDUL AZIZ BIN JAAFAR) Examiner

Signature:

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechatronics Engineering.

Signature:

Name of Supervisor:

Position:

4/2-2013 Date:

ASSOCIATE PROFESSOR DR. AJISMAN APEN LECTURER OF FKP

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for the award of other degree.

Signature: Name: ID Number: Date: White VIKNESH A/L PUNICHELVAN FB09002 28 JUNE 2013 Dedicated to my parents, sisters, family members and friends who have directly or indirectly contributed for the completion of this project paper.

ACKNOWLEDGEMENTS

I'm grateful and would like to express my heartfelt gratitude to my parents, brother and sisters for their love, sacrifice, encouragement and support which made the completion of this paper possible. Without them, I could not have achieved something this meaningful in my life.

Hereby, I also acknowledge my sincere indebtedness and gratitude to express my heartfelt gratitude to my supervisor, Associate Professor Dr. Ajisman Apen for his brilliant ideas, invaluable guidance, incessant encouragement and relentless support in making this research possible. He has always impressed me with her outstanding passion for study in reaction and analysis. I undertook this topic from this field to be studied with much interest that I believe I have gained from him. He, not only my final year project supervisor, was also my Power Electronics and Electrical Drive System lecturer who has guided me and provided his continuous support for these subjects. I am also truly grateful for him progressive vision about my study about liquid systems, his tolerance of my mistakes.

My sincere thanks also goes to all lab staffs of Faculty of Manufacturing Engineering, UMP who have also continuously supported and educated me throughout the way. Hereby, I also acknowledge my sincere indebtedness and gratitude to my parents and sisters for their love, sacrifice, encouragement and support which made the completion of this paper possible. Without them, I could not have achieved something this meaningful in my life.

ABSTRACT

Flywheel energy storage system (FESS) is a system that can store energy in mechanical form and release out in electrical form. Nowadays, energy storage systems were widely used such as battery, hydroelectric, fossil fuels and also flywheel energy storage. The main principle of flywheel is the more energy that enters the systems the faster it rotates. The aim of this study is to design and implement a FESS for critical load. Then, period of power generated by FESS was analyzed. Besides that, the voltage that generated by FESS was compared based on minimum value of capacitance used in self excited generator (SEIG). Firstly, a thin firm shaped flywheel rotor was fabricated and it was assembled to the SEIG. FESS consists of a self-excited capacitance induction motor-generator set, power exchange circuit and flywheel rotor. When, there is an ac source, the flywheel rotor start to rotate and it stores energy. Then, the stored energy can be released to the critical load when blackout occurs. The energy stored in the system depends on the properties and moment of inertia of flywheel rotor. The obtained result indicated 47µF is the suitable minimum value of the capacitance of SEIG, and it followed by 33µF and 68µF. The result shows FESS potential to store energy for short period. This study can be a significant initiation to an energy storage system.

ABSTRAK

Sistem roda tenaga adalah satu sistem penyimpanan tenaga yang boleh menyimpan tenaga dalam bentuk mekanikal dan melepaskan dalam bentuk elektrik. Pada masa kini, sistem penyimpanan tenaga telah digunakan secara luas seperti bateri, hidroelektrik, bahan api fosil dan juga roda tenaga penyimpanan tenaga. Prinsip utama roda tenaga adalah apabila lebih bantak tenaga memasuki sistem, pemutaran roda tinggi juga meningkat. Tujuan kajian ini adalah untuk merekabentuk dan melaksanakan sistem roda tenaga untuk beban kritikal. Kemudian, tempoh kuasa yang dihasilkan oleh sistem roda tenaga telah dianalisis. Selain itu, voltan yang dihasilkan oleh sistem roda tenaga telah dibandingkan berdasarkan nilai minimum yang digunakan dalam penjana teruja diri (SEIG). Pertama, sebuah roda tenaga yang berbentuk silinder direka dan telah dipasang pada SEIG. sistem roda tenaga terdiri daripada pemuat sendiri teruja induksi set motorpenjana, litar pertukaran kuasa dan roda tenaga pemutar. Apabila, tenaga elektrik dialir ke sistem roda tenaga, roda tenaga pemutar mula berputar dan ia menyimpan tenaga. Kemudian, tenaga yang disimpan boleh dikeluarkan kepada beban kritikal apabila blackout berlaku. Tenaga yang disimpan di dalam sistem bergantung kepada sifat dan momen inersia roda tenaga pemutar. Keputusan yang diperolehi menunjukkan 47µF adalah nilai minimum yang sesuai kapasitan SEIG, dan ia diikuti oleh 33µF dan 68µF. Hasilnya menunjukkan sistem roda tenaga potensi untuk menyimpan tenaga untuk tempoh yang singkat. Kajian ini boleh menjadi permulaan yang ketara kepada sistem penyimpanan tenaga.

TABLE OF CONTENTS

Page

1

SUPERVISOR'S DECLARATION	iii
STUDENTS DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xvii

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives	3
1.4	Scope of Study	4

СНА	CHAPTER 2 LITERATURE REVIEW	
2.1	Flywheel Basics	5
	2.1.1 Energy Storage System in Flywheel	5
	2.1.2 Flywheel Materials	7
2.2	Motor / Generator	8
	2.2.1 Induction Motor	8
	2.2.2 Self-Excited Induction Generator	10
2.3	Power Loss	11
2.4	Electrical Switch	11
	2.4.1 Single Pole Double Through Relay	12
2.5	Computer-Aided Design and Computer-Aided Manufacturing	12
2.6	Machining	13
	2.6.1 Turning	13
	2.6.2 Milling	13
	2.6.3 Drilling	14
2.7	Conclusion	14
CHAPTER 3 RESEARCH METHODOLOGY		

3.1	Introduction	15
3.2	Flywheel Rotor and Experiment Bench of FESS	15

Page

	3.2.1	Materials	16
	3.2.2	Equipments	16
	3.2.3	Design of Flywheel	17
	3.2.4	CAD/CAM	18
	3.2.5	Machining Operation of Flywheel	20
	3.2.6	Experiment Bench	22
3.3	Electr	ical Part	22
	3.3.1	Power Transfer Circuit	23
	3.3.2	Excitation Capacitance for Self-Excited Induction Generator	24
3.4	Experi	iment of FESS	25
	3.4.1	Equipments	29

3.4.2	Experiment 1: Motor-generator set as motor	29
3.4.3	Experiment 2: Motor-generator set as generator	30

CHAPTER 4 RESULT AND DICUSSIONS

4.1	Introd	uction	31
4.2	Motor	-Generator Set of FESS as Motor	31
	4.2.1	The speed of flywheel rotor when the input voltage increases	31
	4.2.2	The free rotation of flywheel rotor, when the power shut down	33
4.3	Motor	-Generator Set of FESS as Generator	35
	4.3.1	Case 1: 33µF	35

Page

31

		Page
	4.3.2 Case 2: 47µF	39
	4.3.3 Case 3: 68µF	42
4.4	Comparison between Motor and Generator Modes	45
4.5	Conclusion	45
СНА	PTER 5 CONCLUSION AND RECOMMENDATIONS	48
5.1	Conclusion	48
5.2	Recommendations	49
REFERENCES		
APP	ENDICES	
A	Analysis of mechanical part	54
В	Characteristics of induction machine (MATLAB)	59
С	Technical drawing	62
D	G-code generated by CATIA	67
Ε	Flywheel and experiment bench	73
F	Data sheet of electronic components	74
G	Bolts and nuts that have been used	81
Н	Machines that have been used	82
I	Pictures that were taken during experiment	83
J	Gantt chart	84

LIST OF TABLES

Table No.	Title	Page
2.1	Shape-factor K for different planar stress geometries	7
2.2	Data for different rotor materials	8
3.1	Material used to fabricate flywheel rotor and experiment bench	16
3.2	Electronic components	23
4.1	Speed (rpm) of flywheel rotor at different input voltage	32
4.2	Time taken to rotate by flywheel rotor when the power	34
	shut down	
4.3	Generated voltage when power shut down $(33\mu F)$	36
4.4	The voltage drop with speed of flywheel rotor $(33\mu F)$	38
4.5	Voltage that generated by FESS for a short period (47 μ F)	39
4.6	The drop of voltage with speed of the flywheel rotor (47 μ F)	41
4.7	Voltage that generated by FESS for a short period (68μ F)	42
4.8	Drop of generated voltage with speed of flywheel rotor (68μ F)	44

LIST OF FIGURES

Figure No.	Title	Page
3.1	Top view of flywheel rotor	17
3.2	Bottom view of flywheel rotor	18
3.3	Machining simulation in CATIA	18
3.4	Flowchart for mechanical part	19
3.5	Raw material of flywheel rotor was clamped directly	20
	in milling machine	
3.6	Pocketing process on raw material	21
3.7	Flywheel rotor	22
3.8	Signal circuit	24
3.9	Wye (Y) connection for 3 phase induction machine	24
3.10	Generator circuit	25
3.11	Isometric view of FESS	26
3.12	FESS after assembled	26
3.13	Block diagram of FESS	27
3.14	Flowchart of FESS	28
3.15	Photo contact tachometer	30
4.1	Graph of revolution per minute (rpm) versus voltage (V)	33
4.2	Graph of revolution per minutes (rpm) versus time	35
4.3	Generated voltage for $33\mu F$ is shown in multimeter	36
4.4	Graph of voltage (V) versus time (ds) for $33\mu F$	37
4.5	Graph of voltage (V) versus revolution per minute (rpm)	38
4.6	Graph of voltage (V) versus time (ds) for 47μ F	40

Page

4.7	Graph of voltage (V) versus revolution per minute (rpm)	41
	for 47µF	
4.8	Graph of voltage (V) versus time (ds) for 68μ F	43
4.9	Graph of voltage (V) versus revolution per minute (rpm)	44
	for 68µF	

LIST OF SYMBOLS

E _k	Kinetic energy
Ι	Moment of inertia
ω	Angular velocity
ev	Kinetic energy per unit volume
e _m	Kinetic energy per unit mass
K	Shape factor of flywheel
σ	Maximum stress
ρ	Mass density
ω _m	Rotor speed in radians per seconds
(Os	Synchronous speed in radians per seconds
n _{sync}	Synchronous speed in revolution per minutes
n _m	Rotor speed in revolution per minutes
fe	Frequency
Р	Number of Poles
S	Percentage of slip
P _{conv}	Induced power
τ_{ind}	Induced torque
Ploss	Mechanical loss
P _{cu}	Copper loss
Pwind	Windage loss
V	Voltage
μF	Microfarad
kW	Kilowatt
ds	Deciseconds

LIST OF ABBREVIATIONS

- FESS Flywheel energy storage system
- UPS Uninterruptible power source
- AC Alternative current
- SEIG Self excited induction generator
- CAD Computer-aided design
- CAM Computer-aided manufacturing
- RPM Revolution per minute
- NC Numerical control
- SPDT Single pole double throw

CHAPTER 1

INTRODUCTION

This chapter mainly emphasizes on the general idea of this study along background of study, problems identification and objectives of the project and scope of work that must be done.

1.1 BACKGROUND OF THE STUDY

Storing energy plays an important role in human's life to balance the supply and demand of energy. The energy storage system that currently used can be categorized as mechanical, electrical, chemical, biological and also thermal. Nowadays, there are so many energy storage systems were widely used such as battery, hydroelectric, fossil fuels and also flywheel energy storage. Not all this energy storage systems technically and economically feasible. Flywheel energy storage system (FESS) stored energy in mechanical form. It stored the kinetic energy in the spinning flywheel. Development in material technology, power electronic and signal electronic becomes flywheel as a promising candidate for the energy storage system.

Thousand years ago, the flywheel has been utilized. Then, a few hundred years ago mechanical flywheels where widely used to achieve smooth operation of machines from cycle to cycle, thereby render possible the industrial revolution. The early models flywheels consisting of only a stone wheel attached to an axle. Then, in the 1970s the flywheel energy storage was proposed as a primary objective for electric vehicles and stationary power backup. On the same time, fiber composite rotors where built and magnetic bearings were started to appear in the 1980s. Thus the potential for using flywheel as electric energy storage has long been established by extensive research. Nowadays flywheels widely used to store energy mechanically and transferred to electrical energy. FESS can have energy fed in the rotational mass of a flywheel, store it as kinetic energy, and release out up on demand (Bolund, B., Bernhoff, H., & Leijon, M., 2007).

The main principle of flywheel is the more energy that enters the systems the faster it rotates. So, the system can be stored more energy in form of mechanical. The FESS which works by accelerating a cylindrical assembly called a rotor to a very high speed and maintaining the energy in the system as rotational energy. This rotational energy is converted back by slowing down the flywheel. The most advanced flywheel energy storage system consists of blades made of composite materials and magnetic bearings that rotate at speed of 20,000 to 50,000 revolutions per minute. This kind of systems can maximally stored energy in few minute and have energy efficiency up to 90 percent. The ration of energy that can be taken out of the system in relation to the energy supplied to the system is called as energy efficiency.

Recently, flywheel is proving to be an ideal form of storage on account of its high efficiency, long cycle life, wide operating temperature range, freedom from depth of discharge effects and higher power and energy density on both a mass and a volume basis (Liu, H., & Jiang, J., 2007). Nowadays, effective saving energy has developed for leveling energy consumption between day-time and night time, preventing instantaneous voltage change. A FESS is one of valuable energy-saving system. When compared to other energy storage systems, FESS is very simple and characterized by high energy density (Murakami, K., Komori, M., Mitsuda, H., & Inoue, a., 2007).

FESS has lot of advantages. One of the most valuable advantages of FESS is producing critical emergency power supply for limited period. Nowadays, flywheels are widely used as supplementary uninterruptible power source (UPS) or flywheel backup at several industries especially industries that depend on computers works. This is because; the data that stored in computers might loss when there is sudden power off. So, a flywheel can produce electrical power to a computer room for a few minutes or hours. Flywheels also have some other advantages such as it can operate at a much wider temperature range, not affected by temperature changes and are not subject to many of the common failures of chemical rechargeable batteries. More than, a flywheel system itself is a kinetic or mechanical battery, spinning at very high speeds to store energy that is instantly available when needed. Another major advantage of flywheels is the ability to handle high power levels. For example, this is a desirable quality in a vehicle, where a large peak power is necessary during acceleration (Bolund, B., Bernhoff, H., & Leijon, M., 2007).

In this study, the FESS for a critical load will discussed. The output of the flywheel energy storage system is discussed. Then, the possibility of using different value of capacitance in self excited induction generator (SEIG) is also discussed.

1.2 PROBLEM STATEMENT

Mostly the normal power system could not full fill the requirement for the critical load. There are many critical loads such as computer rooms, operation rooms in hospitals are immediately need high reliability and quality of power supply. A sudden power shut down, can bring lot of negative impacts such as data lost, delay and also to a human's life. So, an energy storage system is a best solution that can be solved this problem. A FESS which stored energy in the mechanical form would be able to support the critical loads for a short period.

1.3 OBJECTIVES

There are a few objectives that one would like to achieve at the end of this study. The main objective of this study is to design and implement a FESS for critical load by using self excited induction machine (SEIG). Then, to analyze the period of power that produced by the FESS to the supporting critical load. Besides that, another objective of this study is to determine the voltage generated by FESS for different value of capacitance.

1.4 SCOPE OF STUDY

This study aim to use thin firm shaped flywheel in FESS. Then, aluminium was chose as raw material for the flywheel rotor. Another scope of this study is using a three phase asynchronous induction machine as motor-generator set of FESS.

CHAPTER 2

LITERATURE REVIEW

2.1 FLYWHEEL BASICS

2.1.1 Energy storage system in Flywheels

Flywheel is acting as the medium carrying energy. The inertia of a rotating mass used to store energy in a flywheel. The amount of kinetic energy that stored as rotational energy is depending on the inertia and speed of rotating mass (Jiancheng et al., 2002). Normally, the flywheel is placed in a vacuum chamber to reduce or eliminate the friction-loss from the air and suspended by bearings for stabile operation. The kinetic energy is transferred and out of the flywheel with an electrical machine that can function either as a motor or generator. When that electrical machine acts as a motor, the electric energy supplied to the stator winding is converted to torque and applied motor, causing it to spin faster and gain kinetic energy. While in the generator mode, kinetic energy stored in the rotor applies a torque that converted to electric energy.

The kinetic energy that stored in the thin firm flywheel is proportional to the mass and to the square of its rotational speed according to Eq. (2.1).

$$E_{k} = \frac{1}{2}I\omega^{2}$$
(2.1)

Where E_k is kinetic energy stored in the flywheel. *I* is moment of inertia and ω is the angular velocity of the flywheel. The moment of inertia is a function of its shape and mass (Bolund.B et al., 2007). Eq. (2.1) shows that the way to increase the stored energy is to speed up the flywheel.

The speed limit is set by the stress developed within the wheel due to inertial loads, called tensile strength σ . The lighter material which develops lower inertial loads at a given speed with low density and high tensile strength is good for storing kinetic energy. The maximum energy density respect to volume and mass respectively is:

$$e_{\rm v} = K_{\rm \sigma} \tag{2.2}$$

$$e_{\rm m} = K\sigma/\rho \tag{2.3}$$

where e_v is kinetic energy per unit volume, e_m is kinetic energy per unit mass, K is shape factor, σ is maximum stress in the flywheel and ρ is mass density (Kirk, J. A., 1977). Since the energy stored is proportional to the square of angular velocity, increasing the angular speed is more effectively than increasing mass to increase the stored energy. But a rapid increasing of angular speeds will cause increase in frictional losses and also thermal problems. So, in such cases, the magnetic bearing technology used to reduce the frictional losses, but it's too expenses (Thesis, A., 2003). Table 2.1 shows that the shape-factor for different planar stress geometries.

Fly wheel geometry	Cross section	Shape factor K
Disc		1.000
Modified constant stress disc	ALL TANTAL	0.931
Conical disc	and TANTATA	0.806
Flat unpierced disc	anner guerre	0.606
Thin firm		0.500
Shaped bar		0.500
Rim with web	P	0.400
Single bar		0.333
Flat pierced bar	1	0.305

Table 2.1: Shape-factor K for different planar stress geometries

Source: Bolund.B et al., (2007)

2.1.2 Flywheel Materials

The flywheel can be divided into two classes, which based on material in the rotor. For first class of flywheel advanced composite materials used to made up the rotor. These kinds of the materials have very high strength to weight ratios that bring high specific energy to the flywheels. Overall, these classes of flywheels determine the performance of flywheels. The maximum stored energy is ultimately limited by the tensile strength of the flywheel material. Fiber composites are the better choice for FESS. Table 2 illustrates theoretical flywheel energy comparison when K = 0.5. Composite materials is highest tensile when compares to the steel material.

Rotor material	$\sigma_{\rm m}$ (GPa)	ρ (kg/m ³)	$E_{\rm sp}$ (Wh/kg)
E-glass	3.5	2540	190
S-glass	4.8	2520	265
Kevlar	3.8	1450	370
Spectra 1000	3.0	970	430
T-700 graphite	7.0	1780	545
T-1000 graphite (projected)	10.0	_	780
Managing steel	2.7	8000	47

Table 2.2: Data for different rotor materials

Source: Liu, H., & Jiang, J. (2007)

2.2 MOTOR / GENERATOR

In the FES system, the motor/generator is used to exchange the electric energy and kinetic energy. The motor/generator acted as a motor and the flywheel accelerates, when the flywheel stores energy. While the motor/generator acts as generator, the flywheel releases the energy. So the generator will produce an electrical power to the load. Normally, in a simple FESS the asynchronous motor used as motor/generator because this kind of motor easy to be built for high power and easy to operate at high speed. It's easy to be driven by the AC power converter (Jiancheng et al., 2002). Overall, it can be said that, the motor/generator and power electronic determines the power capabilities if the system.

2.2.1 Induction Machine

According to Stephen J. Chapman (2002), induction machine is a machine that with only amortisseur windings. Induction machine also is a kind of AC motor where power is supplied to the rotor by electromagnetic induction which means the voltage is

induced in the rotor windings instead of being physically connected by wires. There are two different types of induction machine rotors, which are squirrel cage rotor and wound rotor. In this study, a three phase squirrel cage rotor induction machine was used. A squirrel-cage induction machine rotor consists of a series of conducting bars laid into slots carved in the face of the rotor and shorted at either end by large shorting rings.

An induction machine is possible to function as either as a motor or as a generator when it connected to an ac source of appropriate voltage and frequency. Regeneration is possible, if the rotor of the induction machine is able to rotate above synchronous speed decided by supply frequency and the pole number of the machine (Singh, G. K., 2004). When the induction machine acts as a motor, the rotor speed of the motor, ω_m will be less than the synchronous speed, ω_s . So, the rotor effectively moves in clockwise direction with respect the magnetic field, inducing in each bar a voltage having the polarity indicated and a magnitude proportional to slip velocity and to the field strength acting on the bar. While, in a generator mode, the rotor speeds of motor, ω_m is faster than the synchronous speed, ω_s (Mahmoud Riaz., 2010). Then the direction of the induced torque in the machine reverses and the machine becomes generator, converting mechanical power to electric power (Stephen J. Chapman., 2002). The synchronous speed and the rotor speed of the motor respectively can be calculated by equations;

Synchronous speed,
$$n_{sync} = \frac{120 f_e}{P}$$
 (2.4)

Rotor speed,
$$n_m = (1 - s)n_{sync}$$
 (2.5)

Where, f_e is the system frequency in Hertz and P and s are the number of poles in the machine and percentage of slip in the machine. The power converted to mechanical form in an induction motor is equal to;

Induced power,
$$P_{conv} = \tau_{ind} \omega_m$$
 (2.6)

Where, τ_{ind} is an induced torque in an induction machine. The speed of an induction motor can be accomplished by changing the number of poles on the machine, by applied electrical frequency and by changing the applied terminal voltage.

2.2.2 Self-Excited Induction Generator (SEIG)

In recent years, squirrel cage induction machines are used as the electromechanical energy converter. The principle of self-excitation applied to the induction machines to generate electricity. According to Tze-Fun (1888), an induction machine called as self-excited induction generator (SEIG), when a suitable capacitance is connected across the stator winding of an induction machine and self-excitation occur under favorable conditions. SEIG is good candidate for electric generation applications, because they do not need external power supply to produce the magnetic field. According to D. Seyoum et al. (2000) permanent magnet generator can also be used for energy applications but they suffer from uncontrollable magnetic field, which decays over a period due to weakening of the magnets, and generated voltage tends to fall steeply with load.

The advantages of SEIG over synchronous induction machine are small size and weight, simple construction, absence of separate source for excitation, cheap and low maintenance cost. Besides its application as a generator, the principle of self-excitation can also be used in dynamic braking of three phase induction motor. The terminal capacitance in SEIG must have a certain minimum value so that the self-excitation may take place. This value is affected by the machine parameters, its speed and load condition (A.K. Tandon et al., 1984 and Malik et al., 1987).

2.3 **POWER LOSS**

The energy efficiency is an important parameter to a FESS. The total efficiency of a FESS depends on the power losses. Flywheel must be rotating continuously overcoming its mechanical loss, P_{loss} , which consist of an axial rotating loss, P_{ax} , windage loss, P_{wind} , copper loss, P_{cu} and iron core loss, P_{Fe} . The power losses of the system can be calculated by equation;

$$P_{loss} = P_{ax} + P_{wind} + P_{cu} + P_{Fe}$$
(2.7)

To improve the efficiency of a FESS, the windage loss must be reducing. This is because the windage loss is the largest amount of losing from the total losses. Then, generally a vacuum enclosure used to reduce the mechanical losses.

On the other hand, using helium-air mixture gas is a better way to reduce the windage loss. Of course, using this kind of technologies can improve the total efficiency of the system (Liu, H., and Jiang, J.,2007).

2.4 ELECTRICAL SWITCH

Switch is an electrical component that can break an electrical circuit, interrupting the current or diverting it from on conductor to another (Falex., 2008 and Houghton Mifflin., 1979). Switch can be classified to two types; manually operated switches and automatically operated switches.

2.4.1 Single Pole Double Throw (SPDT) Relay

SPDT relay is an electrical switch that automatically manipulated by signal. Many relays use an electromagnet to operate a switching mechanism mechanically, but other operating principles are also used. Generally, relay switches are used to control a high-voltage circuit with a low-voltage signal, as in some types of modems or audio amplifiers and to control a high-current circuit with a low-current signal, as in the starter solenoid of an automobile and etc.

2.5 COMPUTER-AIDED DESIGN AND COMPUTER-AIDED MANUFACTURING (CAD/CAM)

Computer-aided design and computer-aided manufacturing (CAD/CAM) are a computer system which is used to both design and manufacture products. CAD used to create the computer models which defined by geometrical parameters. But, CAD/CAM systems are used both for designing a product and for controlling manufacturing process. The geometries in the CAD drawing are used by the CAM portion of the program to control a machine that creates the exact shape that was drawn. CAD/CAM software is most often used for product development, machine-tooling and manufacturing.

The developments in solid modeling systems bring an enhanced environment for generation NC tool path. The CAD/CAM used to generate G-code for making automatic generation of the tool path in NC machining (You et al., 1995). G-code is common name which used for numerical control (NC) programming language. G-code generated from CAD/CAM mainly used in automation of machining process. The G-code gives instruction to the cutting tool to move. The machining process from stock material to the finished part include various different stages, including rough cut, semi-finish cut, and finish cut. Every stage might have a number of sub-machining processes (You et al., 1995).

2.6 MACHINING

Machining is a material removal process in which a sharp cutting tool is used to mechanically cut away material so that the desired part geometry remains. Machining processes are classified as turning, milling and drilling. Other machining operations such as shaping, planning, boring, broaching and sawing are falling into miscellaneous operations.

2.6.1 Turning

Turning is a single point cutting tool removes material from a rotating workpiece to generate a cylindrical shape. Machine tool that used in turning process is

V No. Aksesen: 8737

Jadual proses aliran bahan baharu Perpustakaan UMP

2013			
Unit Paroleban	Talta	Catatan	
1. Tarikh order]		
2. Bahan diterima (receipt)	VII		
3. Proses Teknik: strip/cop hakmilik/ no. aksesen	8/11		
4. Serah ke U.Pengkatalogan/media	13/11		
MIGATION OWNER 24-24		Canadan	
1. Semakan penerimaan	5/11		
2. Proses Pengkatalogam			
3. Barcode & spine label			
4. Proses RFID			
5. Serah ke U. Sirkulasi		·	
Unit Sirkulasi/Media	Tarikh	Catatan	
1. Release for circulation			
2. Bahan disusun di rak 🔍			
BAHAN SEGERA			
TESIS			

n a lathe are facing, counter turning, occur on both external and internal oured part. Parts ranging from pocket iller shafts can be turned on a lathe.

the cutting tool rotates to bring cutting operations are performed on milling ess in industry for machining parts to in about an axis while a workpiece is of the cutter are able to shave chips of ed based on the spindle position. The tical position. Milling processes are ual cuts on the material in a single run; many teeth, spinning the cutter at high cutter slowly. Most often it is some 'wiki/Milling_%28machining%29).

2.6.3 Drilling

Drilling is a cutting process that enlarges a hole of circular cross-section in solid material by using drill bit. The drill bit is a rotary cutting tool, often multipoint. The bit is pressed against the workpiece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the workpiece, cutting off chips from what will become the hole being drilled (http://en.wikipedia.org/wiki/ Drilling).

2.7 CONCLUSION

In this chapter, extracts from previous studies and reports were extracted and cited in order to improve understanding on variables involved in this study. FESS is a system that can generate a backup power to a critical load. The energy stored in the flywheel rotor depends on the shape and properties of the material.

CHAPTER 3

RESEARCH METHODOLOGHY

3.1 INTRODUCTION

In this chapter, the methods and techniques used to conduct this research are deliberated step by step. Methodology is an important part where it precisely describes and discusses the methods to achieve and accomplish the objectives of this research. This chapter consists of three sections. Firstly, prepared a suitable raw material for flywheel rotor and experiment bench, and fabricate it based on design. Then, a power electronic circuit to control the motor-generator set and generator circuit were constructed. Finally, the flywheel rotor and power electronic switch were installed to the induction machine and data was taken from the experiment.

3.2 FLYWHEEL ROTOR AND EXPERIMENT BENCH OF FESS

Here, this study consists of two main raw materials as aluminium alloy block for flywheel rotor and stainless steel for experiment bench. The raw materials undergo some machining operation to fabricate.

3.2.1 Materials

Table 3.1: Material used to fabricate flywheel rotor and experiment bench

Raw material	Grade	Uses
Aluminium alloy	1000 series	Aluminium alloys are widely used in
(350x350x35)mm		engineering structures. Aluminium is the most
		widely used non-ferrous metal. Other than that,
		aluminum used worldwide as a material for
		automotives, heat sink, construction and other
		engineering applications.
Stainless Steel	ASI 304	There are over 150 grades of stainless steel, of
(650x550x5)mm		which fifteen are most commonly used.
		Generally stainless steels milled into coils,
		sheets, plates, bars, wire, and tubing to be used
		in cookware, cutlery, household hardware,
		surgical instruments, industrial equipment and
		as an automotive and aerospace structural alloy
		and construction material in large buildings.

3.2.2 Equipments

Equipments that used to fabricate flywheel and experiment bench are:

- i. Milling machine
- ii. Lathe machine
- iii. Welding
- iv. Shear machine
- v. Bending machine

3.2.3 Design of Flywheel

In this study, the shape that chosen for the flywheel is thin firm and the shape factor is about 0.5. The diameter and thickness of the flywheel rotor are 340 mm and 25 mm respectively. This design consists of an island on front side and a key shaped hole on another side of the flywheel rotor. Here, the purpose of the island is to support the flywheel from moving away. On the other side of flywheel rotor, a key shape was pocketed about 20 mm. This key shape was designed purposely to lock the flywheel with the motor rotor. The design of flywheel rotor that drawn in CATIA is shown in figures 3.1 and 3.2 respectively (*detail technical drawing of flywheel rotor is shown in Appendix C.1). The flowchart of this part is shown in figure 3.4.

Figure 3.1: Top view of flywheel rotor

Figure 3.2: Bottom view of flywheel rotor

3.2.4 CAD/CAM

In this study, the tool that used to design the flywheel rotor is CATIA. This design was drawn including machining simulation. The G-code was generated from CATIA at the end of the machining simulation. Generally, the G-code used for automatic generation of the tool path in numerical controlled machining. G-code is common name which used for numerical control (NC) programming language (*the generated G-code is shown in Appendix D).

Figure 3.3: Machining simulation in CATIA

Figure 3.4: Flowchart for mechanical part

3.2.5 Machining operation of flywheel rotor

The size work piece that prepared for flywheel is $350 \times 350 \times 35$ mm. Here, the automatic tool generation cannot be conduct at laboratory because the work piece is dimensionally too large. So, the flywheel was fabricated manually by milling machine and lathe machine.

3.2.5.1 Milling operation

Firstly, the raw material was clamped directly in the milling machine. The raw material was pocketed up to 20mm depth by using 10mm end mill. Then, a hole was drilled to get the key shape. After drilled, the raw material was unclamped and it was filed to remove the burrs. The direct clamp of raw material and pocketing processes are shown in figures 3.5 and 3.6 respectively.

Figure 3.5: Raw material was clamped directly in milling machine

Figure 3.6: Pocketing process on raw material

3.2.5.2 Lathe operation

Here the lathe used to reduce the diameter of a part to a desired dimension. After milling process, the raw material was clamped securely in the lathe chuck to undergo a turning process. Then, install a roughing or finishing tool. Move the tool off the part by backing the carriage up with the carriage hand wheel, and then use the cross feed to set the desired depth of cut. The clamped material was cut into cylindrical shape by turning operation. The diameter of the flywheel rotor is 170mm and the thickness is 25mm. After the material cut into cylindrical shape, an island was cut. The diameter of island is 160mm and thickness of 5mm. Finally, the flywheel rotor undergoes profile finishing turning operation to remove the sharp edges. The flywheel rotor are shown in Appendix A.1)

Figure 3.7: Flywheel rotor

3.2.6 Experiment Bench

The experiment bench was made by stainless steel with dimension of 650 mm x 550 x 5 mm. Firstly, cut the metal sheet by using shear machine. Then, it was drilled and pocketed (through hole) by milling machine. Finally, the legs of bench were welded (*the complete mechanical parts are shown in Appendix E.1)

3.3 ELECTRICAL PART

There are two types of circuit was used in this study. Firstly, the power transfer switches circuit. Secondly, generator circuits for three different capacitance which are 33μ F, 47μ F and 68μ F (N.H. Malik and A.A. Mazi, 1987 and Swathi devabhaktuni and S.V.Jayaram kumar, 1998). The electronic components that used for this study is shown in table 3.2.

Table 3.2: Electronic components

Components	Unit
15V Step down transformer	1
Voltage regulator, L7809CV	2
Diode, 1N4003	6
Capacitor, 220µF 50V	2
Capacitor, 10µF 50V	2
Heat Sink	2
Resistor, 18Ω	2
Capacitor, 33µF 350V	3
Capacitor, 47µF 350V	3
Capacitor, 68µF 350V	3
SPDT relay	6
Fuse holder	2
Fuse, 15A	1
Fuse, 1.5A	1
3 phase circuit breaker	1

(*datasheet of components are shown in Appendix F)

3.3.1 Power Transfer Circuit

In this study, a circuit that produced 9V signal was designed as shown in figure 3.8. Here, the 9V signal used to activate SPDT relay switch. The SPDT relay switches were used to control the FESS automatically. Then, the signal of this circuit was tested by oscilloscope before it connects to the SPDT relay switch (*the result of signal circuit is shown Appendix F.5)

Figure 3.8: Signal circuit

3.3.2 Design of Excitation Capacitance for Self-Excited Induction Generator (SEIG)

A 3 phase asynchronous induction machine was connected in wye (Y) connection as shown in figure 3.9. In wye (Y) the stator windings are connected from phases of the supply to the neutral. Then, to generate the power, it was applied SEIG technique. The capacitors are connected across every stator terminal as shown n figure 3.10.

Figure 3.9: Wye (Y) connection for 3 phase induction machine

į

Figure 3.10: Generator circuit

3.4 EXPERIMENT OF FESS

Before the experiments started, the flywheel rotor assembled to the rotor of induction motor. Firstly, the induction machine was placed on the experiment bench. A L shape holder used to attach both experiment bench and the induction machine. M8 bolts and nuts were used to tight the induction machine to the experiment bench. Then, the flywheel rotor installed to the rotor of the induction machine by using M6 stainless steel bolt (*bolts and nuts that have been used to assemble the FESS are shown in Appendix G.1) and the system that drawn in CATIA is shown in figure 3.11. A rubber washer was placed into the flywheel rotor to reduce the frictions between flywheel and rotor of induction machine. After that, stator terminals of induction machine connected to the three phase power and also to generator circuit. The FESS that assembled is shown in figure 3.12.

SEIG
Experiment bench
Flywheel rotor

Figure 3.11: Isometric view of FESS

Figure 3.12: FESS after assembled

Figure 3.13 and 3.14 shows, the block diagram and flowchart of FESS respectively. The process flow the system begins with produce 9V signal from the signal circuit. When a 9V signal received by the power exchange unit, the SPDT relays

(normally open) open the gate. So, the motor generator set acts as motor and the flywheel start to rotate. The voltage increased slowly by using phase indicator. On the other side, the SPDT relays at load circuit (normally open) open the gate to the load. When there is a blackout occurs, the motor-generator set acts as a generator. The SPDT relays at generator circuit (normally closed) open the gates while the gates at load circuit and motor circuit are closed. The voltage generated supplied to the critical load through the relay.

Figure 3.13: Block diagram of FESS

Figure 3.14: Flowchart of FESS

3.4.1 Equipments

Equipments that used to fabricate flywheel and experiment bench are:

- I. Oscilloscope
- II. Multimeter
- III. Photo contact tachometer
- IV. Slide transformer

3.4.2 Experiment 1: Motor-generator set as motor

In this experiment, induction machine was used as a motor. Firstly, the three phase voltage increased slowly up to 415 V and the speed of the flywheel rotor was recorded for every 50 V. The speed of flywheel rotor was recorded in revolution per minute (rpm) by using photo contact tachometer as shown in figure 3.15. Here, the slide transformer was used to increase the voltage. After the flywheel rotor achieved a constant speed, the three phase power was switched off. Then, the rotation time of flywheel rotor and the rpm of the rotor were recorded. The experiment was repeated for three times and an average value was calculated. Finally, the graphs of rpm versus voltage and rpm versus time (ds) were plotted respectively.

i

Figure 3.15: Photo contact tachometer

3.4.3 Experiment 2: Motor-generator set as generator

In this experiment, the motor-generator set was acting as generator. Firstly, make sure that the stator terminals of induction machine were connected to the generator capacitance circuit for 33μ F. The three phase power source supplied to the motor-generator set. When it achieved a constant speed at 415 V, main power was switched off. Then, the voltage that generated was recorded. A multimeter and stopwatch are used to record the data. Then, the experiment was repeated for three times and an average value was calculated. The graphs of voltage against time (ds) and voltage versus rpm were plotted respectively. These steps were repeated for 47µF and 68µF (*pictures that were taken during experiment are shown in Appendix I).

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 INTRODUCTION

This chapter mainly summarizes all tabulated data from the study findings. Later in this chapter, detailed justifications are available on the generated voltage at different capacitance and comparison between motor and generator mode.

4.2 MOTOR-GENERATOR SET OF FESS AS MOTOR

4.2.1 The speed of flywheel rotor when the input voltage increases

Table 4.1 shows that, the speed (rpm) of the flywheel rotor varies with the input voltage. This experiment started by increasing of the input voltage. Here, the average speed was taken to reduce the error. The input voltage has to increase slowly, because in an induction machine, stator is powered by alternating current (ac) and designed to rotate in time with AC oscillations as rotating magnetic field present. Furthermore, to start an induction motor, initially high starting current is needed, before it is stable. The, a high rate of magnetic torque present initially before stabilize, that is due to motor that reaches its maximum torque, at about 20% or 0.02 of slip.

Besides that, the rotor speed becomes unstable during startup and it is being control by the number of pole pairs and frequency of supply voltage. Rotor speed turns stable as the shaft rotation speed is kept above the peak torque point. It also can be said, the speed of rotor will be constant after a peak torque point. Besides that, in an induction motor, the slip or speed at which the maximum torque occurs can be controlled by varying the rotor resistance. The value of that maximum torque is independent of the rotor resistance. A high rotor resistance lowers the speed at which maximum torque occurs and thus increases the starting torque of the motor. So, sudden start of an induction machine might cause the rotor to damage. The parameters of induction motor and characteristics (MATLAB Simulink) of the induction machine are shown in Appendix A.2 and B respectively)

¥7-14 ¥7		Revolution per minute, rpm					
voltage, v	1 st reading	2 nd reading	3 rd reading	Average			
0	0	0	0	0			
50	600	625	650	625			
100	1194	1200	1225	1206			
150	1470	1390	1471	1444			
200	1480	1479	1481	1480			
250	1489	1485	1487	1487			
300	1492	1491	1495	1493			
350	1495	1494	1495	1495			
400	1497	1497	1497	1497			

Table 4.1: Speed (rpm) of flywheel rotor at different input voltage

Figure 4.1: Graph of revolution per minute (rpm) versus voltage (V)

Figure 4.1 shows that, the graph of revolution per minute (rpm) versus voltage (V). The trend of the graph shows that, the speed (rpm) of flywheel rotor increased rapidly and it achieved a constant state at end of the experiment. At 50V the speed of flywheel rotor is 625rpm. Then, it was increasing rapidly to1206 rpm at 100V. After 150V, the speed of the flywheel rotor increased slowly until it achieved a constant speed of 1497 rpm at 400V. From the graph, it can be said that, the rotor rotate up to rated speed (1497 rpm) which near to the synchronous speed of motor (1500 rpm).

4.2.2 The free rotation of flywheel rotor, when the power shut down

Table 4.2 indicates that, time taken to rotate by flywheel rotor when the power shut down. For this experiment, the power was shut down when the flywheel rotor

achieved rated speed. Then, the speed (rpm) of flywheel rotor was recorded for every 10 seconds.

	Revolution per minute, rpm						
1 ime, s	1 st reading	2 nd reading	3 rd reading	Average			
0	1497	1497	1497	1497			
10	1182	1198	1196	1192			
20	967	955	961	961			
30	735	740	745	740			
40	531	535	539	535			
50	331	332	342	335			
60	149	141	142	144			
70	25	28	27	26.67			
80	0	0	0	Û			

Table 4.2: Time taken to rotate by flywheel rotor when the power shut down

Figure 4.2 shows that, graph of revolution per minutes (rpm) against time (s). The trend of graph indicates the speed (rpm) of the flywheel rotor decreases with the time (s). At 0s the speed of the flywheel rotor is about 1497 rpm. At 30s the speed (rpm) of the flywheel rotor is almost half of the rated speed, 740 rpm. The speed (rpm) of the flywheel rotor decreases slowly and it achieved 0 rpm at 80s. The duration of flywheel rotor to rotate depends on the properties of material and also moment of inertia of flywheel rotor. The moment of inertia of flywheel rotor that was used in this study is 0.075 kg.m², while the moment of inertia of rotor motor is 0.016 kg.m². When the moment of inertia of flywheel rotor will able to rotate more time (*the parameter and calculation for moment of inertia of flywheel rotor are shown in Appendix A.1).

Figure 4.2: Graph of revolution per minutes (rpm) versus time (s)

4.3 MOTOR-GENERATOR SET AS GENERATOR

For this experiment, the theory of SEIG applied to the induction machine for three different values of capacitors $(33\mu F, 47\mu F \text{ and } 68\mu F)$. For all three cases, the generated voltage with time (ds) was recorded. Then, the drop of voltage with speed (rpm) of flywheel rotor will discuss.

4.3.1 Case 1: 33µF

Table 4.3 shows the voltage that generated by FESS when the power was shut down. From the table, it can be said that FESS generated voltage for a very short period.

Here, the period of generated voltage measured in deciseconds (ds) and the voltage was recorded by using multimeter as shown in figure 4.3.

Figure 4.3: Generated voltage for $33\mu F$ is shown in multimeter

Table 4.3:	Generated	voltage when	power shut	down	(33µF)
------------	-----------	--------------	------------	------	--------

	Voltage, V					
Time, ds	1 st reading	2 nd reading	3 rd reading	Average		
0	214.3	224	211.6	215.63		
5	164	163	160.3	162.43		
10	126.1	125	127.1	126.07		
15	94	90	89	91		
20	62.4	63	61	62.13		
25	38	35	33.6	35.53		
30	12	18	16	15.33		
35	0.56	0.3	0.12	0.33		

Figure 4.4 indicates the graph of voltage (V) versus time (ds). The trend of the graph shows the voltage decreases uniformly with the time (ds). For 33μ F, FESS able to generate up to 216V instantly when the blackout occurs. At 15 ds and 20 ds the voltage decreases to 91V and 62V respectively. The voltage becomes 0.33V which is almost to zero at 35 ds.

Figure 4.4: Graph of voltage (V) versus time (ds) for 33µF

Table 4.4 shows the drop of the voltage with speed of the flywheel rotor. From this table, it can be said that, the voltage decreases rapidly with decreases of the speed of the flywheel rotor. From this table, a graph of voltage (V) versus revolution per minute (rpm) was plotted as shown in figure 4.5. According to the graph, the voltage generated by FESS is high at rated speed. When the speed of flywheel rotor decreases, the voltage also decreases. According to the graph, the FESS generated 217.4V when the rotor rotated near to the rated speed about 1496.33 rpm. When the flywheel rotor rotated at 1128 rpm, the motor-generator set able to generate 78V. At the speed of 833.3 rpm the voltage decreases to 1.1V and becomes inconsistence.

	Volta	ige, V		Re	volution pe	r minute, r	pm
1 st reading	2 nd reading	3 rd reading	Average	1 st reading	2 nd reading	3 rd reading	Average
214.3	221.3	216.6	217.40	1496	1497	1496	1496.33
165	163.2	162	163.4	1389	1391	1402	1394.00
121.3	121.3	108.3	118.3	1348	1356	1341	1348.33
77	76.5	81.6	78.37	1131	1121	1132	1128.00
61.8	59.6	62	61.13	942.3	931	962.1	945.13
35.4	37.9	30.1	38.30	908	887.3	886	893.77
12.3	18.3	14.7	15.10	867	852	868	862.33
1	1.4	0.9	1.1	842	831	827	833.33

Table 4.4: The voltage drop with speed of flywheel rotor $(33\mu F)$

Figure 4.5: Graph of voltage (V) versus revolution per minute (rpm) for $33\mu F$

In this, experiment, the capacitors of 33μ F in SEIG are replaced to 47μ F. Table 4.5 shows, the voltage that generated by FESS for a short period. A graph of voltage (V) versus time (ds) was plotted based on table 4.5.

71 , 1	Voltage, V					
Time, ds	1 st reading	2 nd reading	3 rd reading	Average		
0	236.5	232.4	228.9	232.60		
5	131.9	132.5	130.4	131.60		
10	115.2	112.5	109.6	112.43		
15	83.1	80.1	81.9	81.7		
20	53.6	52.9	52.1	52.87		
25	39.1	32.6	35.7	35.80		
30	12.9	15.1	13.5	13.83		
35	0.9	1.2	1.1	1.07		

Table 4.5: Voltage that generated by FESS for a short period $(47\mu F)$

The trend of the graph in figure 4.6 is almost same with the graph in figure 4.4. In this case, the FESS generated about 232.6V instantly when the main source was shut down. Then, the generated voltage decreased very rapidly in few deciseconds. At 15 ds, the voltage decreased to 81.7V and it becomes to 1.07V at 35 ds. When compared to case 1, the FESS more voltage for this case. This is because; 47μ F might be a suitable minimum value of capacitance for SEIG.

Figure 4.6: Graph of voltage (V) versus time (ds) for 47μ F

Table 4.6 shows, the drop of voltage generated by FESS with speed (rpm) of flywheel rotor. From this table, a graph of voltage (V) versus revolution per minute (rpm) was plotted as shown in figure 4.7. For this case, the FESS able to generated up to 232V at the speed of 1495 rpm. When, the flywheel rotor rotated at 1108 rpm, the FESS still able to generate 71.3V. The voltage level at the speed of 912 rpm and 850 rpm are 39.9V and 11.6V respectively. Then, the voltage decreased to 0.43V at 815.1 rpm and it becomes inconsistent of voltage for rest of rotation.

	Volta	ge, V		Re	volution pe	r minute, rj	om
1 st reading	2 nd reading	3 rd reading	Average	1 st reading	2 nd reading	3 rd reading	Average
236	232.6	228.4	232.33	1497	1496	1493	1495.33
132.6	136.5	139.2	136.1	1352	1348	1341	1347.00
115.5	112.3	113	113.6	1212	1219.6	1220	1217.20
98.9	95.2	91.3	95.13	1164	1159	1161	1161.33
71.3	69.9	78.6	73.27	1114	1109	1102.3	1108.43
39.9	38.7	35.8	38.13	912	908	917	912.33
22.6	19.6	19.1	20.43	871	872	869	870.67
11.6	11.7	11.1	11.47	850	851	849	850.00
6.2	5.9	5.8	5.97	831	834.2	832	832.40
0.3	0.9	0.1	0.43	819	812.3	814	815.10

Table 4.6: The drop of voltage with speed of the flywheel rotor $(47\mu F)$

Figure 4.7: Graph of voltage (V) versus revolution per minute (rpm) for 47µF

In this case, the experiment was conducted for 68μ F. The result that obtained from this experiment is shown in table 4.7.

		Voltage, V					
l'ime, ds	1 st reading	2 nd reading	3 rd reading	Average			
0	171.3	179.2	175.3	175.27			
5	126.3	132.6	129.3	129.40			
10	114.6	108.4	110	111.00			
15	91.3	95.3	90.3	92.3			
20	58.3	55.3	54.3	55.97			
25	33.2	31.2	30.2	31.53			
30	21.3	26.8	22.3	23.47			
35	11.5	7.59	10.23	9.77			
40	1.3	1.23	0.59	1.04			

Table 4.7: Voltage that generated by FESS for a short period $(68\mu F)$

Figure 4.8 shows that, the graph of voltage (V) against time (ds). The trend of this graph decreased uniformly which is same with case 1 and case 2. According to the graph, the maximum voltage that can be generated by FESS for this capacitance is about 175.27V. The voltage drop at 10 ds and 15 ds are 111V and 92.3V respectively. For this case, the voltage generated up to 40 ds which is 1.04V. When compared to the 33μ F and 47μ F, the maximum voltage that generated for this case is low. This is because the 68μ F absorb some energy by itself. So, the generated voltage is low compared to other two cases.

Figure 4.8: Graph of voltage (V) against time (ds) for 68µF

Table 4.8 shows, decreasing of generated voltage with speed of flywheel rotor. The result that obtained from this experiment was plotted as shown in figure 4.9. Based on this graph, the voltage decreases uniformly with decreases of the speed of flywheel rotor. At the speed of 1495 rpm the FES able to generated voltage about 173.8V and it was decreased to 60.23 at 1207.67 rpm. When the flywheel rotor rotated at the speed of 860.33 rpm, the voltage decreased to 1.1V. At the end of this experiment, the generated voltage drop to 0V.

	Volta	ige, V		Re	volution pe	r minute, r _f	om
1st reading	2nd reading	3rd reading	Average	1st reading	2nd reading	3rd reading	Average
171.3	179.2	170.9	173.80	1497	1493	1495	1495.00
132.6	128.3	126.3	129.07	1468	1462	1461	1463.67
98.6	92.4	96.5	95.83	1352	1368	1372	1364.00
60.3	59.1	61.3	60.23	1206	1207	1210	1207.67
30.4	35.2	32.7	32.77	1106	1098	1087	1097.00
15.6	17.3	19.6	17.50	938	941	945	941.33
6.2	6.7	8.2	7.03	902	895	891	896
0.6	1.2	1.5	1.1	869	851	861	860.33

Table 4.8: Drop of generated voltage with speed of flywheel rotor $(68\mu F)$

Figure 4.9: Graph of voltage (V) versus revolution per minute (rpm) for 68µF

4.4 COMPARISON BETWEEN MOTOR AND GENERATOR MODES

Based on the experiment, the duration of free rotation of flywheel rotor in motor mode is higher than generator mode. This is because, in motor mode an electrical energy applied to the stator winding is converted to torque and applied to the rotor, causing the flywheel rotor to spin faster and gain kinetic energy. While in generator mode, kinetic energy that stored in spinning flywheel applies a breakdown torque oppose the direction of the rotor. So when blackout occurs, the duration of free rotation of flywheel rotor is lower in generator mode. Breakdown torque is not the same in motor and generator modes. Generally, breakdown torque in generator mode is two to four times greater than the motor breakdown torque. For the same torque value the generated rotor losses in the generator mode operation significantly lower than in the motor mode of operation. Consequently, the nominal power of the same induction machine in the generator mode operation can be significantly higher than in the motor mode of operation.

Furthermore, existence of mechanical loses such as friction and windage losses also causing the free rotation of flywheel rotor are lower in generator mode. The FESS able to generate voltage in generator mode because the kinetic energy that stored in flywheel rotor applies a torque and it converted to an electrical energy. So, the system able to generate voltage and supplied to the critical load. Besides that, when the moment of inertia of flywheel rotor is high, the energy that stored will increase. So, it generates more electrical energy to the system.

4.5 CONCLUSION

Based on comparison done on the capacitance that used in this study, capacitance of 47μ F definitely came up as the most suitable capacitance for SEIG, followed by 33μ F and 68μ F. The voltage generated by FESS is fully depends on properties of flywheel rotor and induction machine that used.

This chapter presented, discussed and compared data on voltage generated in different value of capacitance for SEIG. With the results gained, all the objectives of this study have been achieved accordingly. The next chapter discusses on recommendations of curative actions that could be applied in order to improve the efficiency of the system. Upon completing the next chapter, this study could be concluded as a whole.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

The previous chapter (chapter 4) clearly discussed the results obtained from this study. Throughout this study has successfully achieved all the objectives.

First objective has been successfully achieved where a simple FESS was implemented. The induction machine was applied a concept of SEIG. Moreover, the system successfully was acting as motor and generator. The experiment shows the FESS can deliver an emergency power to a critical load. It can be said that, the induction machine has been selected due to its advantages compared to other machines.

Secondly, the period of voltage generated by FESS to critical load successfully analyzed. FESS shows potential to store energy for short period. Here, the period of voltage generated fully depends on properties of flywheel rotor and induction machine. When the moment of inertia of flywheel rotor is high the duration of flywheel to rotate is also high. Furthermore, the fast rotation of flywheel rotor is suitable for direct generation of high voltage. So, the FESS induced power to the critical load for longer time.

Finally, there are three different value of capacitors are practiced in this paper to find a minimum capacitance for SEIG. Based on experiment done, it can be concluded the capacitance of 47μ F is a suitable candidate for this system and it followed by 33μ F

and 68µF. It can be said, FESS using SEIG has been studied. Last but not least, this system is simple and cheaper to other energy storage systems.

5.2 RECOMMENDATIONS

With respect to the limitation of this study, several recommendations could be made for the future studies pertaining flywheel energy storage system.

Frictionless or low mechanical losses of FESS would be a better representation of an efficient energy storage system. Future researches should conduct by using a vacuum chamber. The flywheel rotor should be placed into the vacuum chamber to reduce the mechanical losses and also to produce more output. Besides that, to improve the efficiency of the FESS the flywheel rotor can be fabricated in disc shape which has a shape factor of 1. So, the flywheel will rotate more rotation with faster.

As for analysis methods, an advance tachometer is highly recommended for faster results. Nevertheless, regardless of the analysis method used, a proper laboratory technique and handling would ensure results with high precision regardless of the methods used.

APPENDIX A

ANALYSIS OF MECHANICAL DESIGN

Appendix A.1 Calculation for moment of inertia and energy stored in flywheel rotor

Prope	rties of flywheel rotor
Shape	Thin firm
Material	Aluminum 1000 series

 2700 kg/m^3

 0.075 kg/m^2

0.5

5.2 kg

Table A.1	Properties	of flywheel	rotor
-----------	------------	-------------	-------

The amount of energy stored in a flywheel can be calculated by using equation (2.1),

$$E_k = \frac{1}{2}I\omega^2$$

Where moment of inertia for solid cylinder is,

Density of Aluminum

Shape factor

Moment of inertia

Mass

I =
$$\frac{1}{2}$$
 mr² (3.3)

Where the mass of flywheel rotor is 5.2 kg and the radius of the flywheel is 170 mm. So, the moment of inertia of the flywheel is,

I =
$$\frac{1}{2}$$
 (5.2 kg) (0.17m)²
= 0.075 kg.m²

So, the expected kinetic energy that will stored in the flywheel is,

$$E_{k} = \frac{1}{2} (0.075 \text{ kg.m}^{2}) (151.8 \text{ rad/s})^{2}$$
$$= 865.73 \text{ kJ}$$

The lighter material which develops lower inertial loads at a given speed with low density and high tensile strength is good for storing kinetic energy. According to equation (2.2) the maximum energy density respect to volume and mass respectively is:

$$e_v = K\sigma$$

= (0.5) (250 MPa)
= 125 MPa

.

$$e_{\rm m} = \frac{K\sigma}{\rho}$$

= $\frac{(0.5)(250 \text{ MPa})}{2700 \text{ kg.m}^3}$
= 0.0463 MPa/kg. m³

*Where the density and tensile strength are taken from the book of Shigley's Mechanical Design Ninth Edition.

Appendix A.2 Calculation for rotor speed and torque of induction machine

Parameters of induction machine, MarelliMotori ITALY		
Model	80MB4	
Power	0.75 kW	
Voltage, Y	415 V	
Voltage, Δ	240 V	
Current, Y	1.86 A	
Current, Δ	3.21 A	
Phase	3	
Power Factor, $\cos \Phi$	0.94	
Frequency	50 Hz	
R.P.M	1450	
Pole	4	
Mass	9.1 kg	

Table A.1: Parameters of induction machine

Source: Laboratory of Electrical Drive System

According to the equation (1.4), the synchronous speed of motor is,

$$n_{\text{sync}} = \frac{120 f_e}{P}$$
(3.1)
= $\frac{120 (50 \text{ Hz})}{4}$
= 1500 r/min

 $\omega_{\text{sync}} = (1500 \text{ r/min}) (2\pi \text{ rad/1 rev}) (1 \text{ min/60s})$ = 157.1 rad/s

From the table 3.1, the rotor speed is 1450 r/min,

$$\omega_{\rm m}$$
 = (1450 r/min) (2 π rad/1 rev) (1 min/60s)
= 151.8 rad/s

According to the equation (1.6), the shaft load torque is,

$$\tau_{\text{ind}} = \frac{P_{out}}{\omega_m}$$
(3.2)
= $\frac{(15 \times 1000 \text{ W})}{151.8 \text{ rad /sec}}$
= 98.81 N-m

Appendix A.3 Technical data of induction machine

Via Sabbionara, 1 36071 Arzignano Vicenza Italy

DATI TECNICI - TECHNICAL SPECIFICATION

Cliente Customer		ns. Our R	Riferimento leference n) 0.	
MOTORE TIPO -	MOTOR TYPE			MA80MB4	
POTENZA NOMINALE - RATED POWER			ĸw	0,75	
SERVIZIO - DUTY TYPE				S1	
TENSIONE STATORE - RATED VOLTAGE			V	400 STAR	
FREQUENZA - FREQUENCY			Hz	50	
CORRENTE NOMINALE STATORE - NOMINAL CURRENT			A	2	
VELOCITA' NOMINALE - RATED SPEED			R.P.M.	1385	
ESECUZIONE-EXECUTION				T.E.F.C.	
FORMA - SHAPE			IM	IM B3 (IM 1001)	
GRADO di PROTEZIONE - PROTECTION DEGREE				55	
TIPO dI RAFFREDDAMENTO - COOLING SYSTEM				411	
$INERZIA - INERTIA (J = PD^2 / 4)$			Kgm ²	0,0016	
TEMPERATURA AMBIENTE - AMBIENT TEMPERATURE			°C	40	
CLASSE dI ISOLAMENTO - INSULATION CLASS				F	
CLASSE di SOVRATEMPERATURA - TEMP RISE CLASS				В	
NORME APPLICABILI - APPLICABLE STANDARDS				CEI EN 60034-1	
		<u> </u>	-	CARICO - LOAD	
				4/4	
			%	73,2	
COS Ø – POWER FACTOR				0,73	
CORRENTE di C.C LOCKED ROTOR CURRENT			p.u.	4,1	
COPPIA MASSIMA-BREAK DOWN TORQUE			р .и.	2,8	
COPPIA DI SPUNTO - STARTING TORQUE			p.u.	2,8	
PROTEZIONI	AVVOLGIMENT	I - WINDINGS		•	
TERMICHE	CUSCINETTI - E	BEARINGS		•	
SCALDIGLIE AN	TICONDENSA - SPACE H	EATERS		-	
L A D-END				6204-27	
TIPO CUSCINETTI	ITI - BEARINGS	LO N-END		6204-2Z	
LUBRIFICANTE -	TIPO -	TYPE		•	
	- INTER	VALLO - INTERVAL	hr		
SENSO di ROTAZIONE - DIRECTION of ROTATION				BOTH	
RUMOROSITA' - NOISE (no load operat. at 1m with tolerance 3 dB(A))			dB(A)	49	
PESO - WEIGHT			1 2 5 4		
PESO - WEIGHT	······································		Kg	9,5	
PESO - WEIGHT INTENSITA' di VI	BRAZIONE-VIBRATION I	EVEL	Kg IEC 34-14	9,5 STANDARD	

APPENDIX B

CHARACTERISTICS OF INDUCTION MACHINE (MATLAB)

Appendix B.1 Simulink of the induction motor

Appendix B.2 Starting condition of induction machine

Rotor Speed

				<ele< th=""><th>stromagnetic</th><th>torque Te (N</th><th>l*m)></th><th></th><th></th></ele<>	stromagnetic	torque Te (N	l*m)>		
	ĺ			1]				
	ľ							 	
	, , .			 				 	
	ł			 					
		•]•••••		 				 	
		1		 					
	-ŀ			 				 	, _
	 	U 						 	
			; I	I.	i I		: L	, , , , , , , , , , , , , , , , , , , ,	
îme of	fse	er: O							

Electromagnetic Torque

Stator Current

APPENDIX C

TECHNICAL DRAWING

Appendix C.1 Technical drawing of flywheel rotor

Appendix C.2 Technical drawing of experiment bench

Top of flywheel rotor

Bottom of flywheel rotor

Experiment bench

3 phase induction machine

FESS

APPENDIX D

G-CODE GENERATED BY CATIA

Appendix D.1 G-code of the pocketing process

% (POCKET) 01000 N1 G17 G40 G49 G54 X0 Y0 Z50.G80 G90 N2 G21 (End Mill D10 Rc0 Long) N3 T1 S1000 M3 N10 G70 G90 :12 T2 M6 N14 G40 G90 G94 N16 G91 G74 X0 Z0 :18 G40 G90 G94 N20 G94 G97 G54 G40 G1 X-30 Z-172.3021 F39.3701 S70 H01 M3 M8 N22 Z-172.6357 N24 Z-173.4326 N26 Z-174.7118 N28 Z-176.0797 N30 Z-177.1153 N32 Z-177.5 N34 Z-177.1153 N36 Z-176.0797 N38 Z-174.7118 N40 Z-173.4326 N42 Z-172.6357 N44 Z-172.3021 N46 Z-171.1756 N48 Z-170.049 N50 Z-170.2714 N52 Z-171.1944 N54 Z-172.6456 N56 Z-174.4235 N58 Z-176.2815 N60 Z-177.9616 N62 Z-179.2307 N64 Z-179.9125 N66 Z-179.2307 N68 Z-177.9616 N70 Z-176.2815 N72 Z-174.4235 N74 Z-172.6456

N76 Z-171.1944 N78 Z-170.2714y N80 Z-169.3425 N82 Z-170.049 N84 Z-168.9225 N86 Z-167.7959 N88 Z-167.9071 N90 Z-168.9991 N92 Z-170.6715 N94 Z-172.7627 N96 Z-175.0702 N98 Z-177.371 N100 Z-179.4424 N102 Z-181.0841 N104 Z-182.1372 N106 Z-182.5 N140 M5 N142 M30 N144 M2 N146 G91 G74 X0 Z0 N148 M2 욲

Appendix D.2 G-code of drilling process

```
%(DRILLING)
02000
N1 G17 G40 G49 G54 X0 Y0 Z50.G80 G90
N2 G21
( End Mill D6 Rc0 Long )
N3 T1 S1000 M3
N14 G40 G90 G94
N16 G91 G74 X0 Z0
:18 G40 G90 G94
N20 G97 G54 G40 G0 X-1 Z0 S70 H01 M3
N22 G94 G1 X10 F39.3701 M8
N24 X-1
N26 X15
N28 X-1
N30 M5
N32 M30
N34 M2
N36 G91 G74 X0 Z0
N38 M2
웡
```

Appendix D.3 G-code of roughing process

%(ROUGHING)	N82 Z-46,1985
04000	N84 Z-46.0948
N1 G17 G40 G49 G54	N86 Z-41.9777
X0 Y0 Z50.G80 G90	N88 Z-41.9151
N2 G21	N90 Z-37.1628
(End Mill D20 Rc0	N92 Z-37.0961
Long)	N94 Z-32.6598
N3 T1 S1000 M3	N96 Z-32.5737
N10 G70 G90	N98 Z-28.4699
N14 G40 G90 G94	N100 Z-28.4188
N16 G91 G74 X0 Z0	N102 Z-26.6136
:18 G40 G90 G94	N104 Z-26.555
N20 G97 G54 G40 G0	N106 Z-22.7833
X65 Z9.0153 S70	N108 Z-22.7748
H01 M3	N110 Z-21.1584
N22 X.1	N112 Z-21.0786
N24 G94 G1 X-17.5	N114 Z-16.3931
F11.811 M8	N116 Z-16.3176
N26 Z0	N118 Z-11.9147
N28 Z-137.8557	N120 Z-11.8469
F39.3701	N122 Z-9.4478
N30 Z-132.7803	N124 Z-9.4181
N32 Z-132.6602	N126 Z-6.8063
N34 Z-127.6331	N128 Z-6.7695
N36 Z-127.5218	N130 Z-4.3807
N38 Z-121.328	N132 Z-4.3378
N40 Z-121.2496	N134 Z-2.4397
N42 Z-114.3226	N136 Z-2.4164
N44 Z-114.1682	N138 Z-1.5455
N46 Z-106.2232	N140 Z-1.5193
N48 Z-106.083	N142 Z0524
N50 Z-96.4503	N144 Z0495
N52 Z-96.2961	N146 ZU
N54 Z-90.1952	N148 Z-2.5
N56 Z-90.1075	N150 Z-5
N58 Z-83.8164	N152 Z-104.6465
N60 Z-83.7176	N154 Z-104.6389
N62 Z-77.7914	N156 Z-112.721
N64 Z-77.6727	N158 Z-104.65/5
N66 Z-69.2493	N160 Z-104.65
N68 Z-69.103	N162 Z-104.4032
N70 Z-62.971	N164 Z-104.1687
N/2 Z-62.9522	N166 Z-94.3958
N/4 Z-61.0328	N168 Z-94.1401
N/6 Z-60.9185	N1/U Z-8/.8849
N78 Z-53.8153	N172 Z-87.7368
N8U Z-53.685	N174 Z-81.3581

N176	Z-81.1938
N178	Z-75.1688
N180	7-74 971
N182	2-66 4289
N18/	7-66 3043
N104	2-00.0040
N100	2-06.100
NI88	2-66.03/4
N190	Z-59.9054
N192	Z-59.8743
N194	Z-57.9361
N196	Z-57.7469
N198	Z-50.5294
N200	Z-50.4179
N202	Z-50.2876
N204	Z-50.1806
N206	z - 42 694
M208	Z = 42.651
N210	7-39 3024
N210	7 20 1067
NZIZ	Z-30.190/
$N \ge 14$	2-33.3819
N216	Z-33.2707
N218	Z-28.7677
N220	Z-28.6249
N222	Z-24.435
N224	Z-24.3496
N226	Z-22.4933
N228	Z-22.3952
N230	Z-18.5648
N232	Z-18.55
N234	Z-16 9252
N236	2-16 7931
N230	7-12 0279
N2J0	2-12.02/9
NZ40	2-11.090
NZ4Z	2-7.4196
N244	Z-7.3041
N246	Z-5.0198
N248	Z-5.0585
N250	Z-3.4808
N252	Z-4.9602
N254	Z-5
N256	Z-7.5
N258	Z-10
N260	Z-82,9771
N262	7-82 9678
N26/	7-88 0683
NDGE	7_02 0000
112 0 0	ローリム・フランム

N268	7-82 9838	N368	7-65 4193	N470	7-40.2005
NZ 00	2-02.9030	N370	7-65 4091	N472	2-40.0531
N270	7-78 9014	N370	7-69 201	N474	7-32 1862
N270	2-70.3014	N374	7-65 / 386	N476	7-32 1192
NZIZ		N276	7-65 4394	N479	7-31 7874
NZ74		N370	2-03.4204	N470	Z-JI./0/4
N276	2-72.4465	N200		N400	Z-31.0024
N278	2-72.2487	N380	2-60.7043	N482	Z-Z7.Z793
N280	2-72.1506	N382	2-60.337	N484	2-27.1749
N282	Z-63.6085	N384	2-60.1785	N486	Z-22.0455
N284	Z-63.5122	N386	Z-53.//83	N488	2-21.9349
N286	Z-63.2413	N388	Z-53.7448	N490	2-20.0333
N288	Z-63.0936	N390	Z-51.7435	N492	Z-20.0638
N290	Z-56.841	N392	z-51.6633	N494	Z-18.9831
N292	Z-56.809	N394	z-51.3783	N496	Z-19.9696
N294	z-54.8397	N396	2-51.2693	N498	Z-20
N296	z-54.7439	N398	Z-43.9582	N500	Z-22.5
N298	Z-54.5546	N400	Z-43.8825	N502	Z-25
N300	Z-54.461	N402	z-43.5545	N504	Z-36.7003
N302	Z-47.2435	N404	Z-43.4128	N506	Z-36.6893
N304	2-47.1573	N406	z-35.6876	N508	Z-39.2601
N306	Z-46.9155	N408	Z-35.6138	N510	Z-36.7247
N308	Z-46.7839	N410	Z-35.3558	N512	Z-36.7146
N310	z-39.1903	N412	2-35.2578	N514	Z-36.7004
N312	z-39.103	N414	Z-30.9527	N516	Z-28.6861
N314	z-38.9322	N416	Z-30.8484	N518	Z-28.6233
N316	7-38-848	N418	2-25.8232	N520	Z-28.2245
N318	7-34-6272	N420	z-25.7125	N522	Z-28,1152
N320	2-34.5226	N422	2-20.9874	N524	Z-25.0365
N322	7-29.602	N424	7-20.9246	N526	Z-25.0648
N324	z = 29 4911	N426	7-20.708	N528	Z-24.0463
N326	7-24 8769	N428	7-20.6259	N530	2-24.9716
N328	7-24 8031	N430	z-16 3657	N532	Z-25
N320	7-24 6603	N432	7-16 2832	N534	2-26 2507
N222	7-24 59	N434	7-15 0298	N536	2-27 5013
N224	2-24.09	NA36	2 15.0250	N538	2-27.5015
NOOG	2-20.4001	M430	7_13 8198	N540	2 27.0000
NOOD	2-20.310J	NAAO	7-14 9667	N542	2 20
N330	2 - 10.3747	N440	Z-14.9007	N544	2-29.407
N340		N44Z		NELC	2-29.0099
N342	2-14.34/5	N444		NJ40	2-29.757 7 00 25
N344	Z-14.3316 R 10.600	N440	2-20	ND40	Z-20.33 7 37 9064
N346	2-12.692	N448		NEED	Z-Z7.0004
N348	2-12.6244	N450	2-50.2012	NODZ NEE4	Z-Z7.5 7 07 5010
N350	2-12.4925	N452	2-53.2642	N554	Z-27.5013
N352	z-12.4279	N454	2-50.2336	N556	X-7.5 F.0394
N354	Z-10.0252	N456	Z-50.2231	N558	G0 X65
N356	Z-10.061	N458	Z-48.6477	N560	28.1013
N358	Z-8.6723	N460	Z-48.5759	N562	X10.1
N360	z-9.9642	N462	Z-48.2106	N564	G1 X.1
N362	Z-10	N464	z-48.0937	F11.8	311
N364	z-12.5	N466	z-40.6737	N566	X-17.5
N366	Z-15	N468	z-40.6042	N568	Z005

N570 Z2441	N660 G1 X.2
F39.3701	F11.811
N572 Z6494	N662 X-17.5
N574 Z-2.2367	N664 Z-156.8601
N576 Z-2.9787	N666 Z-165.294
N578 Z-4.4455	F39.3701
N580 Z-5.3164	N668 Z-174.5478
N582 Z-7.2144	N670 Z-174.9732
N584 Z-9.6032	N672 Z-175.2671
N586 Z-12.215	N674 Z-181.4249
N588 Z-14.614	N676 Z-188.2376
N590 Z-17.22	N678 Z-193.0848
N592 Z-19.0129	N680 Z-193.3899
N594 Z-23.6983	N682 X-7.5 F.0394
N596 Z-25.3147	N684 G0 X65
N598 Z-29.0865	N686 Z7.9576
N600 Z-30.8917	N688 X10.2
N602 Z-34.9955	N690 G1 X.2
N604 Z-39.4318	F11.811
N606 Z-44.1841	N692 X-17.5
N608 Z-48.3011	N694 Z0
N610 Z-55.7877	N696 Z.3926
N612 Z-62.8909	F39.3701
N614 Z-64.8103	N698 Z.888
N616 Z-70.9423	N700 Z.9093
N618 Z-71.2086	N702 Z.9209
N620 Z-79.3657	N704 Z.4407
N622 Z-85.292	N706 Z0
N624 Z-91.5831	N708 Z2.9828
N626 Z-97.684	N710 X-7.5 F.0394
N628 Z-107.3167	N712 G0 X65
N630 Z-115.2617	N714 Z9.0153
N632 Z-122.1886	N716 X-7.4
N634 Z-128.3823	N718 GI X-17.4
N636 Z-133.4094	
N638 Z-142.0081	N72U X-35
N640 Z-148.4839	N722 ZU
N642 Z-154.543	N/24 Z-13/.4985
N644 Z-156.8019	F39.3701
N646 X-17.2194 Z-	N/26 Z-134.8/19
157.7754	N728 Z-134.7461
N648 X-16.9388 Z-	N73U Z-132.6851
158.4421	N/32 Z-132.6602
N650 X-16.6582 Z-	N/34 Z-127.6331
158.6236	N/36 Z-12/.5218
N652 X-6.6582	N738 Z-121.328
E.U394	N74U Z-121.2496
N654 GU X65	N/42 Z-114.3226
N656 Z-156.1/6	N744 Z-114.1682
N658 X10.2	N746 Z-106.2232
	N/48 Z-IU6.1645

N750	Z-104.3728
N752	Z-104.2709
N754	Z-96.4503
N756	Z-96.2959
N758	Z-95.8274
N760	Z-95.7339
N762	Z-95.2205
N764	Z-95.1619
N766	Z-91.8074
N768	Z-91.6772
N770	Z-87.0326
N772	Z-86.9556
N774	Z-86.1847
N776	Z-86.1455
N778	Z-81.4821
N780	Z-81.3575
N782	Z-78.2988
N784	Z-78.2491
N786	Z-77.6243
N788	Z-77.5294
N790	Z-71.7911
N792	Z-71.6693
N794	Z-69.2204
N796	Z-69.103
N798	Z-61.8645
N800	Z-61.7741
N802	z-60.9807
N804	Z-60.9185
N806	2-53.8153
N808	2-53.7276
N810	2-52-6339
N812	2-52.5494
N814	2-52.0724
N816	z = 52.0173
N818	2-46.1985
N820	Z = 46.0948
N822	7-44.9304
N824	2-44.8985
N826	2-43 6859
N828	2-43.5026
N830	2-39.1841
N832	Z-39.008
N834	7-32 9745
N836	7-32 9196
M838	7-32 6101
NRZO	2 32.0101
M840	7-28 1699
NRAA	2 20.2022 7-28 1180
NSAC	2-26 6136
N849	2-26 555
N850	7-21 7894
	~ ~ ~ . / / / 7

N852 2-21.7309 N854 2-21.1231 N856 2-21.0786	N954 Z-66.3104 N956 Z-66.1613 N958 Z-58.8054	N1056 Z-82.8239 N1058 Z-82.2633 N1060 Z-82.1802
N858 Z-16.3931	N960 Z-58.6884	N1062 Z-81.2465
N860 Z-16.3437	N962 Z-57.8046	N1064 2-81.1723
N862 Z-15.521	N964 Z-57.6938	N1066 2-76.3989
N864 Z-15.4748	N966 Z-50.5284	N1068 2-76.2751
N866 Z-11.9147	N968 Z-50.4184	N1070 Z-72.292
N868 Z-11.8776	N970 Z-49.237	NIU72 2-72.1527
N870 2-11.6608	N972 2-49.1891	NIU74 2-66.1806
N872 Z-11.6282	N974 2-48.6276	N1078 2-63 4024
N874 Z-10.3558	N976 Z-48.3442	N1070 $Z=03.4024N1090$ $Z=63.2629$
N876 Z-10.2908	N970 2-42.0702 N980 7-42 5708	N1082 7-55 7478
N070 2-0.1109	N982 7-39 9091	N1082 7-55 636
NOOU 2-0.0799 NOR2 7-5 0101	N984 7-39 7659	N1086 Z-54 6352
N884 7-5 8902	N986 7-35 2713	N1088 2-54 5185
N886 7 - 4 3782	N988 7-35 1238	N1090 Z-47.2423
N888 $7-4$ 3378	N990 Z-29,0903	N1092 Z-47.1361
N890 Z - 2.4397	N992 Z-29.0055	N1094 2-45.8446
N892 Z-2.4164	N994 Z-28.6411	N1096 Z-45.794
N894 Z-1.5455	N996 Z-28.5741	N1098 Z-45.1846
N896 Z-1.5191	N998 Z-24.4339	N1100 Z-45.0999
N898 ZÖ	N1000 Z-24.3496	N1102 Z-39.1426
N900 Z-2.5	N1002 Z-22.4933	N1104 Z-39.0617
N902 Z-5	N1004 Z-22.4001	N1106 Z-36.3005
N904 Z-104.6465	N1006 Z-17.5758	N1108 Z-36.1744
N906 Z-104.6389	N1008 Z-17.5014	N1110 Z-31.5367
N908 Z-112.721	N1010 Z-16.8352	N1112 Z-31.4598
N910 Z-104.6575	N1012 Z-16.7572	N1114 Z-31.3123
N912 Z-104.65	N1014 Z-12.0272	N1116 Z-31.2395
N914 Z-104.4032	N1016 Z-11.9468	N1118 Z-25.206
N916 Z-104.3045	N1018 Z-11.0746	N1120 Z-25.1291
N918 Z-102.4541	N1020 Z-11.015	N1122 Z-24.6799
N920 Z-102.2873	N1022 Z-7.4087	N1124 2-24.6056
N922 Z-94.3648	N1024 Z-7.3583	N1126 2-20.3984
N924 Z-94.3157	N1026 Z-7.1044	N1128 2-20.3153
N926 Z-93.6928	N1028 Z-7.0779	NII30 2-18.3746
N928 Z-93.5511	N1030 Z-5.7729	NII32 2-18.2805
N930 Z-89.5311	N1032 2-5.6954	N1134 4-13.3631 N1136 7-12 2014
N932 Z-89.4222	N1034 2-5.0104	N1130 $2-13.2314$
N934 2-84.84/4 NO26 7.94 5615	N1030 2-3.6203	N1140 7-12 4698
N930 4-04.5015 N930 4-04.5015	N1040 7-4 9601	N1140 2 - 12.4090 N1142 7 - 10 0252
N930 2-03.7137	N1040 2-4.9001	N1142 $Z = 10.0252$
N940 2-03.0429 N942 7-78 9403	N1042 2 3	N1146 G91 G74 X0
N944 $Z = 78$ $R15$	N1046 $Z-10$	Z0
N946 $Z-74$ 9572	N1048 Z-82.8176	N1180M2
N948 Z-74.8183	N1050 Z-82.8085	8
N950 Z-68.9851	N1052 Z-87.9927	
N952 Z-68.8811	N1054 Z-82.8331	

APPENDIX E

FLYWHEEL AND EXPERIMENT BENCH

Appendix E.1 Mechanical parts of FESS

Front view of flywheel rotor

Bottom view of flywheel rotor

'L' shape induction machine holder

Experiment bench of FESS

APPENDIX F

DATASHEET OF ELECTRONIC COMMPONENTS

Appendix F.1 Voltage regulator, L7809

Continental Device India Limited An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company

3-TERMINAL POSITIVE VOLTAGE REGULATOR

LM7809

TO-220 Plastic Package

The Voltages Available allow these Regulators to be used in Logic Systems, Instrumentation, Hi-Fi Audio Circuits and other Solid State Electronic Equipment

ABSOLUTE MAXIMUM RATINGS (T_=25°C)

DESCRIPTION	SYMBOL	VALUE	UNIT
Input Voltage	Vnv	35	v
		40	v
Power Dissipation	Pp	15	W
Operating Temperature	Tamb	- 20 to +80	ç
Storage Temperature Range	Teta	- 55 to +150	ç

ELECTRICAL CHARACTERISTICS (T_=25°C unless specified otherwise)

V_{IN}=18V, I₀=100mA, T_a=25°C

DESCRIPTION	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Output Voltage	Vo	I _C =5mA ~ 1.5A V _{IN} =12 ~ 24V, P _D 15W	8.65		9.35	v
Line Regulation	R _{EGV}	V _{IN} =11.5 ~ 26V			90	mV
Load Regulation	R _{EGL}	I ₀ =5mA ~ 1.5A			90	m∨
Quiescent Current	Lo Lo				8.0	mA
Quiescent Current Change	ь	V _{IN} =11.5 ~ 26∨			1.0	mA
		I ₀ =5mA ~ 1A			0.5	mA
Input Voltage	V _{IN}		11.5		26	V
Ripple Rejection Radio	R _R	V _{iN} =12 ~ 22V, f=120Hz	56			dB
Max Output Current	юм	Tj = 25°C		2.2		Α
Output Voltage Drift	V/ _T	I _O =5mA , T _J =0 ~ 125°C		- 0.5		mV/ºC
Output Noise Voltage	V _{NO}	f=10Hz ~ 100KHz		10		μV
Short Circuit Current Limit	Isc	T_≕25°C		2.0		Α

LM7809Rev041004E

Appendix F.2 Diode, 1N4003

1N4001 - 1N4007

1.0A RECTIFIER

Please click here to visit our online spice models database

Features

- Diffused Junction
- High Current Capability and Low Forward Voltage Drop
- Surge Overload Rating to 30A Peak
- Low Reverse Leakage Current Lead Free Finish, RoHS Compliant (Note 3)

Mechanical Data

- Case: DO-41 .
- Case Material: Molded Plastic, UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D .
- Terminals: Finish Bright Tin. Plated Leads Solderable per . ML-STD-202, Method 208
- Polarity: Cathode Band .
- Mounting Position: Any .
- Ordering Information: See Page 2 ٠
- .

....

- Marking: Type Number
- Weight: 0.30 grams (approximate)

Maximum Ratings and Electrical Characteristics @TA= 25*C unless otherwise specified

. . .

Characteristic	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	114008	1N4007	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} VRVM VR	50	100	200	400	800	800	1000	v
RMS Reverse Voltage	VALANS	35	70	140	280	420	580	700	V
Average Rectified Output Current (Note 1) @ T _A = 75°C	b	T			1.0				A
Non-Repetitive Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load	FEM				30				A
Forward Voltage @ I= 1.0A	VEN				1,0				V
Peak Reverse Current @T _A = 25°C at Reted DC Blocking Voltage @ T _A = 100°C	IRM				5.0 50				μA
Typical Junction Capacitance (Note 2)	C		t	5	_		3		pF
Typical Thermal Resistance Junction to Ambient	Rama		_		100				K/W
Maximum DC Blocking Voltage Temperature	TA				+150				°C
Operating and Storage Temperature Range	T. TSTG	[65 to +154	0			°C

Notes:

Leads maintained at ambient temperature at a distance of 9.5mm from the case.
 Measured at 1.0 MHz and applied reverse voltage of 4.0V DC.
 EU Directive 2002/95/EC (RoHS). All applicable RoHS examptions applied ,ase EU Directive 2002/95/EC Annex Notes.

o	rd	ori	na	Info	rm ai	tion	Biota 41

Device	Packaging	Shipping
TN4 00 1-8	DO-41 Plastic	1K/Bulk
1N4001-T	DO-41 Plastic	5K/Tape & Reel, 13-inch
1N4002-B	DO-41 Flastic	1K/Bulk
1N4002-T	DO-41 Plastic	5K/Tape & Reet, 13-inch
1N4003-B	DO-41 Plastic	1K.Bulk
1N4003-T	DO-41 Plastic	5K/Tape & Reel, 13-inch
1N4004-B	DO-41 Plastic	1K/Bulk
1N4004-T	DO-41 Piestic	5K/Tape & Reel, 13-inch
1\v4005-B	DO-41 Plastic	1K/Bulk
1N4005-T	DO-41 Plastic	5K/Tape & Reel, 13-inch
1N4006-B	DO-41 Plastic	1K/Bulk
1N4006-T	DO-41 Plastic	5K/Tape & Reel, 13-inch
1N4007-B	DO-41 Plastic	1K/Bulk
1N4007-T	DO-41 Plastic	5K/Tape & Reel, 13-inch

Notes: 4. For packaging details, visit our website at http://www.diodes.com/datasneeta/ap02008.pdf.

Appendix F.3 SPDT relay

SONGLE RELAY

参乐继电器 B SONGLE RELAY	RELAY	ISO9002	SRD
	1. MAIN FEAT	JRES	
	 Switching capa- small size desi mounting technic 	city available by 10 gn for highdensity nique.	A in spite of P.C. board
and the second sec	• UL,CUL,TUV re	cognized.	
	Selection of plas	stic material for hig	temperature and
	better chemica	solution performa	nce.
	· Sealed types av	ailable.	
	• Simple relay ma	ignetic circuit to m	eet low cost of
	mass productio	in.	

2. APPLICATIONS

• Domestic appliance, office machine, audio, equipment, automobile, etc.

(Remote control TV receiver, monitor display, audio equipment high rushing current use application.)

3. ORDERING INFORMATION

SRD	XX VDC	S	L	С
Model of relay	Nominal coil voltage	Structure	Coil sensitivity	Contact form
		SuScoled 1974	1.036W	A:I form A
SRD	03、05、06、09、12、24、48VDC	3.5eared type	L.0.30W	B:1 form B
		F:Flux free type	D:0.45W	C:1 form C

4. RATING

5. C	DIMENS	ON _(unit:mm)	DRILLING _{(unita}	mm) WIRING DI	AGRA
	TUV	FILE NUMBER:	R 50056114	10A/250VAC 30VDC	
	UL/CUL	FILE NUMBER:	E167996	10A/125VAC 28VDC	
	CCC	FILE NUMBER:	CQC03001003731	10A/250VDC	

5. DIMENSION (unit:mm)

WIRING DIAGRAM

6. COIL DATA CHART (AT20°C)

U. GOIL D		2011 (21)						
Cail	Coil	Nominal	Nominal	Coli	Power	Pull-In	Drop-Out	Max-Allowable
Con	Voltage	Voltage	Current	Resistance	Consumption	Voltage	Voltage	Voltage
Sensitivity	Code	(VDC)	(mA)	(Ω) ±10%	(W)	(VDC)	(VDC)	(VDČ)
SRD	03	03	120	25	abt. 0.36W	75%Max.	10% Min.	120%
(High	05	05	71.4	70			1	
Sensitivity)	06	06	60	100			1	
	09	09	40	225			}	1
	12	12	30	400			1	
	24	24	15	1600			1	
Coil Sensitivity (High Sensitivity) SRD (Standard)	48	48	7.5	6400			{	
SRD	03	03	150	20	abt. 0.45W	75% Max.	10% Min.	110%
(Standard)	05	05	89.3	55			1	
	06	06	75	80				
	09	09	50	180				
	12	12	37.5	320			1	
j	24	24	18.7	1280	t l			
	48	48	10	4500	abt. 0.51W		!	

7. CONTACT RATING

Тур	×	SAD
nem	FORMC	FORM A
Contact Capacity	104 125 140	10A 30VDC
Resistive Load (cosΦ=1)	104 125140	10A 250VAC
Inductive Load	3A 120VAC	5A 120VAC
(cosΦ=0.4 L/R≈7msec)	3A 28VDC	5A 28VDC
Max. Allowable Voltage	250VAC/110VDC	250VAC/110VDC
Max. Allowable Power Force	800VAC/240W	1200VA/300W
Contact Material	AgCdO	AgCdO
8 DEREORMANCE (at init	(auley left	

9.REFERENCE DATA

1

Item	SRD
Contact Resistance	100mΩ Max.
Operation Time	10msec Max.
Release Time	5msec Max.
Dielectric Strength Between coil & contact Between contacts	1500VAC 50/60HZ (1 minute) 1000VAC 50/60HZ (1 minute)
Insulation Resistance	100 MΩ Min. (500VDC)
Max. ON/OFF Switching Mechanically Electrically	300 operation/min 30 operation/min
Ambient Temperature	-40°C to +85°C
Operating Humidity	45 to 85% RH
Vibration Endurance Error Operation	10 to 55Hz Double Amplitude 1.5mm 10 to 55Hz Double Amplitude 1.5mm
Shock Endurance Error Operation	100G Min. 10G Min.
Life Expectancy Mechanically Electrically	10 ⁷ operations. Min. (no load) 10 ⁵ operations. Min. (at rated coil voltage)
Weight	abt. 10grs.

2

78

Appendix F.4 Capacitor

SPECIFIC	ATI	ON S	;										
Rated voltage	-40~85°C												
Capacitance	-20%												
Dissipation Factor(20°C, 12011z)	Rated Voltag	æ(v) (5.3	1Û	16		25	3	5	50	63	100	160
	Tan 8	0	.24	0.24	0,	2	0.2	0.	16	0,14	0.12	0.1	0.15
Leakage current:	≤ 0.03cv or	3µA which	ever is	greate	r (at 20'(C.aft	er 5	∰ដ្រាបte	s)			-	
· · · · · · · · · · · · · · · · · · ·	2000 hours(Po	larity inver	ts for ev	ery 2	0 hours)						· · ·	
LOAD LIFE(85°C)	Leakage curr	rent			Not me	ore that	n the i	specific	d valu	IC			
	Capacitance	change	hange Within+-20% of the initial value										
	Dissipation factor Not more then 150% of the specified value												
Temperature Stability (120Hz)	Rated voltage	e(V)		6.3	10	16	25	35	50	63	100	160	
,	Impedance	Z-25°C/Z	+20°C	4	3	2 4						4	
	nitio	Z-40℃/Z	-20°C	10	8	6	4	4		3		•	
SHELF LIFE(85°C)	1000hours No	voltage app	lied .TI	hey m	ect the sq	recific	d valu	c for lo	ad life	charas	teristics li	sted above	

DIMENSIONS OF CDLLG SERIES

+ 6 max		~		<u>tinesd</u> (P		C)u
68	up+	o mai	25m	5mm	ľ		
Φ)	5	6.3	8	10	12.5	16	1.8
Φđ	0.5	0.5	0.6	0.6	0.6	0.8	0.8
p	10	25	3.3	50	50	73	7.8

MULTIPLIER FOR RIPPLE CURRENT

Frequenc	cy corre	ction fa	actor fo	r ripple	current
Rated	\$0.60	120	ιĸ	10K	100K
Voltage					
6.3-16	0.8	I	1.1	1.2	1.2
25-35-	0.8	1	1.5	1.7	1.7
50-160	0.8	1	1.6	1.9	1.9

Case Size DxL(mm)

11/1	6.3	10	16	25	35	50	63	96	1 60V	250
Capille										
0.1					t	5x11		5xli		
0.22				T		5x11		5x11		
0.33			[5x11		5x11		
0.47						5x11		5n11		
1						5x11		5x11	6.3x12	6.3x12
2.2						5x11	5x11	5x11	8×12	8x12
33					[5x11	5x11	6 Joci I	Khti2	10x12
4.7				5x11	5xII	5x11	for 11	6.3x11	10x16	l Bali 6
10			5x11	5xII	5x11	é ball	<u>63x11</u>	fix11,5	10x20	12.5x.20
22		5×11	6.3x11A	5x11	6.3x1	6.3x12	5ex11.5	iüx] á	12.5x20	12.5x25
33	5xII	5x11	5x11	6.3x11	6.Jx11	Kat 12.5	10x12.5	10x20	12.5x25	
47	5×11	5x11	6.3e11	6.3x11	Bell.5	10:12.5	10ac16	12.5x20	16x25	
100	6.3x11	6.3x11	Sx11.5	Bx12.5	20x12.5	10x20	12.5x20	16x25	16x35.5	
229	fbt11.5	lbr11.5	10x12.5	iBrió	10x20	12.5028	16x25	18:05.5	T	
3 30	fix 11.5	1 One 12.5	10x16	10.20	12.5x20	12.5x25				
470	10x12.5	10x16	10.20	12.5x20	12.5025	16x25			1	
10:00	10,20	12.5x20	12.5×25	1 6m2 5	16x31.5				•	
2200	12.5×20	lfx25	16x31.5	1						
3360	l6x25	16x31.5				[.				
4760	16x31.5	8x35.5	· · · · ·	1	ľ — — –	1				

7			V
····			
Time	Channel A	Chappel P	
	9.000 V	Chainel_D	Reverse
T2 🛨 🛨 100.000 m	s 9.000 V		
T2-T1 100.000 m	s -19.540 fV		Save Ext. Trigger
Timebase	Channel A	Channel B	Trigger
Scale 10 ms/Div	Scale 5 V/Div	Scale 5 V/Div	Edge
X position 0	Y position 0	Y position 0	Level 0 V
Add B/A A/B	ACODE		Type Sing. Nor. Auto Mono.

Appendix F.5 Result of the signal circuit

APPENDIX G

BOLTS AND NUTS THAT HAVE BEEN USED

Appendix G.1 Bolts and nuts

M6 Hexagonal head and allen key bolt

Washers that used to attach flywheel

Rubber washer that placed inside flywheel

M9 hexagonal head bolt and nut

APPENDIX H

MACHINES THAT HAVE BEEN USED

Shear machine

Bending machine

Vertical drilling machine

Milling machine

APPENDIX I

PICTURES THAT WERE TAKEN DURING EXPERIMENT

Power transferring circuit

Assembled FESS

Generated voltage is shown in multimeter

APPENDIX J

GANTT CHART

Purpose		FYPI											FYP II																			
Timeline		Sep	ept			Dct			Nov			Dec				F	eb	Mar				Apr					Μ	ay		Ju	ne	
Week	1	2	3	4	5	1	5 7	1	3	9	10	11	12	13	14		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Task	Γ											··			<u>. </u>				·						<u> </u>	·		·				
Identify Research Title			Τ	Γ	1	Τ	Τ	Т	Τ	T	٦														Γ	}						
Research Titer Review				1	1	1		1	T	-																1		[Γ
Literature View on Title																								1				[[
Research Scope and Objectives	Τ	Τ]				1	1	Т															1		[[\int	Γ
Research Methodology	Γ.		1																													
Proposal Writing	T	T	Γ		1	Τ		1	-																	[{				Γ
Submission of Proposal					1	1																						[Γ
FYP I Presentation	Γ		T			Τ	T	T		-1															[{						
Preparation for FYP II	T	Τ	Τ				T	T	T		7																					Γ
Preparation for Raw Material	T	T				1	1	T	T						1																	
Machining Operation	Γ						Τ	Τ	Τ																							
Test Signal Circuit	T			1		1	T	1	T						1											{		{				Γ
Construct Power Transferring Circuit	T	T	1	Γ^{-}	1		1	T			_		[_	1																	Γ
Construct Generator Circuit	Τ	T					1]																				\square	
Completion of Mechanical Part	Τ	Τ			T	T	1	Τ	Τ				[Γ																Γ
Combine Mechanical & Electrical Part	Τ	T			1	1		T	T						1								<u> </u>									Γ
Run Experiment	Τ	T			T	T	1	Τ	T	_	7				1											1						Γ
Result & Discussion				Γ			1	Τ	T						-	Γ										}					[Γ
Completion of Project Report	Γ	T	1	r	T	\uparrow	1	T	T	-+-				1	r	Γ	-					[Γ	1	1		1				
Correction & Submission of Report	Γ	T	-	Γ	1	1		T	T	1			[1	{						