Effect Of Melt Conditioning On Heat Treatment And Mechanical Properties Of AZ31 Alloy Strips Produced By Twin Roll Casting


* The EPSRC Centre - LiME, BCAST, Brunel University, Uxbridge UB8 3PH, UK
b Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

ABSTRACT
In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. Detailed optical microscopy studies were carried out on as-cast and homogenized TRC and MC-TRC strips. The results showed uniform, fine and equiaxed grain structure was observed for MC-TRC samples in as-cast condition. Whereas, coarse columnar grains with centreline segregation were observed in the case of as-cast TRC samples. The solidification mechanisms for TRC and MC-TRC have been found completely divergent. The homogenized TRC and MC-TRC samples were subjected to tensile test at elevated temperature (250–400 °C). At 250 °C, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. The mechanism of deformation has been explained by detailed fractures surface and sub-surface analysis carried out by scanning electron and optical microscopy. Homogenized MC-TRC samples were formed (hot stamping) into engineering component without any trace of crack on its surface. Whereas, TRC samples cracked in several places during hot stamping process.

KEYWORDS: Twin roll casting; Solidification; Tensile test; Fracture analysis; Optical and scanning electron microscopy

DOI: 10.1016/j.msea.2014.10.019