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Abstract. In multivariate statistical quality control, the existing tests known as Generalized Variance (GV) and Vector 
Variance (VV), plays an important role in measuring process variability. In this paper, we present the computational 
efficiency of both tests to illustrate that their complexity as a function of dimension. From the mathematical derivation 
and simulation study, the computational efficiency of VV outperforms GV, particularly when the number of variables is 
large. 
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THE STABILITY TEST OF COVARIANCE STRUCTURE 

 
Nowadays, testing the stability of process variability in multivariate setting is very crucial. There are many different 
methods discussed in the literature which are constructed based on the notion of multivariate variability measure. 
According to Djauhari [1], a multivariate variability measure is defined as a non-negative, real valued function of a 
covariance matrix such that the more scattered the population, the larger the value of that function and, conversely, 
the less scattered the population, the smaller the value of that function. In multivariate setting, variability is 
numerically represented by covariance matrix. The importance of covariance structure stability has been shown in 
many research areas such as medical research [2], genetic research [3], [4], [5], [6], personality research [7], 
financial industry [8],[1], [9] real estate industry [10] and service industry [11], [12].  
 
In this paper, we focus on the use of the determinant of sample covariance matrix or, equivalently, sample 
generalized variance (GV) and vector variance (VV) as multivariate variability measures to monitor the stability of 
covariance structure. We can see the role of generalized variance in controlling the stability of covariance structure 
in [2], [1], [3], whereas the role of vector variance as multivariate variability measure has been shown in [4], [1] and 
[13]. 

Many researchers employ GV due to its simplicity in geometric interpretation and computation. However, GV 
requires the condition that the covariance matrix must be non-singular. In addition, it is quite cumbersome to 
compute covariance matrices if the data set is of high dimension. Therefore, to overcome this condition, [1] and [4] 
suggested using VV in controlling the stability of covariance structure. 

We begin in the next section with the issue of non-singularity of covariance matrix. Later on, we present the 
research results on computational efficiency of GV and VV. In that section, its computational complexity and 
computational time of these two methods will be provided. Finally, a conclusion will be delivered in the last section. 
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NON SINGULARITY OF THE COVARIANCE MATRIX 
 
The first issue is matrix singularity. The determinant of covariance matrix, i.e GV will be zero if (1) an entire row is 
zero, (2) two rows or column are equal, or (3) a row or column is a constant multiple of another row or column. If 
the determinant is zero, the matrix will be singular and does not have an inverse. However, VV does not require the 
condition that covariance matrix must be non-singular. The following example will clarify this statement. 

Let Σ =
2 2
2 2

. Then, GV = 0 and thus the matrix Σ is a singular. However, the value of VV 

= 2 2 2 22 2 2 2 = 16. Mathematically, we can conclude that VV is more lenient than GV. 
 

 
COMPUTATIONAL EFFICIENCY 

 
Next, the second issue is about the computational efficiency of GV and VV.  In this section, the total number of 
operations and computation time needed to calculate both GV and VV are shown. 

 
Total Number Operations Needed for GV and VV 

 
In this section, we present the algorithm of GV and VV for p=2 to p=5. 
 
(i) Case p = 2 

Let S = 11 12

21 22

s s
s s

. Then,  

 
(a) GV = 11 22 12 21s s s s

 
      Total number of operations needed is 3 (2 multiplications and 1 subtraction). 
 
(b) VV= 2 2 2 2

11 12 21 22s s s s . 
      Total number of operations needed is 7 (4 multiplications and 3 additions). 

 
(ii) Case p = 3 

Let S =
11 12 13

21 22 23

31 32 33

s s s
s s s
s s s

. Then, 

 
(a) GV 11 22 33 23 32 12 33 21 23 31 13 32 21 22 31s s s s s s s s s s s s s s s  

Total number operations needed are 14 (9 multiplications, 1 addition and 4 subtractions). 
 

(b) VV 2 2 2 2 2 2 2 2 2
11 12 13 21 22 23 31 32 33s s s s s s s s s .  

Total number operations needed are 17 (9 multiplications, 8 additions). 
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(iii) Case p = 4 

Let S =

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

s s s s
s s s s
s s s s
s s s s

. Then, 

 

(a) GV= 11 22 33 44 22 34 43 23 32 44 23 34 42 24 32 43 24 33 42s s s s s s s s s s s s s s s s s s s  

  12 21 33 44 21 34 43 23 31 44 23 34 41 24 31 43 24 33 41s s s s s s s s s s s s s s s s s s s  

  13 21 32 44 21 34 42 22 31 44 22 34 41 24 31 42 24 32 41s s s s s s s s s s s s s s s s s s s  

  14 21 32 43 21 33 42 22 31 43 22 33 41 23 31 42 23 32 41s s s s s s s s s s s s s s s s s s s  

Total number operations needed are 75 (52 multiplications, 5 additions and 18 subtractions). 
 

(b)  VV 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44s s s s s s s s s s s s s s s s  

Total number operations needed are 31 (16 multiplications, 15 additions). 
 
 
(iv) Case p = 5 

Let S =

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

s s s s s
s s s s s
s s s s s
s s s s s
s s s s s

. Then 

 
(a) GV =  

22 33 44 55 22 33 45 54 22 34 43 55 22 34 45 53 22 35 43 54 22 35 44 53

23 32 44 55 23 32 45 54 23 34 42 55 23 34 45 52 23 35 42 54 23 35 44 52
11

24 32 43 55 24 32 45 53 24 33 42 55 2

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s
s

s s s s s s s s s s s s s 4 33 45 52 24 35 42 53 24 35 43 52

25 32 43 54 25 32 44 53 25 33 42 54 25 33 44 52 25 34 42 53 25 34 43 52

21 33 44 55 21 33 45 54 21 34 43 55 21 34 45 53 21 35 43 54 21

12

s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s

s

35 44 53

23 31 44 55 23 31 45 54 23 34 41 55 23 34 45 51 23 35 41 54 23 35 44 51

24 31 43 55 24 31 45 53 24 33 41 55 24 33 45 51 24 35 41 53 24 35 43 51

25 31 43 54 25 31 44 53 25 33 4

s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s 1 54 25 33 44 51 25 34 41 53 25 34 43 51

21 32 44 55 21 32 45 54 21 34 42 55 21 34 45 52 21 35 42 52 21 35 44 52

22 31 44 55 22 31 45 54 22 34 41 55 22 34 45 51 22 35 41
13

s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s
s 54 22 35 44 51

24 31 42 55 24 31 45 52 24 32 41 55 24 32 45 51 24 35 41 52 24 35 42 51

25 31 42 54 25 31 44 52 25 32 41 54 25 32 44 51 25 34 41 52 25 34 42 51

s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s
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21 32 43 55 21 32 45 53 21 33 42 55 21 33 45 52 21 35 42 53 21 35 43 52

22 31 43 55 22 31 45 53 22 33 41 55 22 33 45 51 22 35 41 53 22 35 43 51
14

23 31 42 55 23 31 45 52 23 32 41 55 2

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s
s

s s s s s s s s s s s s s 3 32 45 51 23 35 41 52 23 35 42 51

25 31 42 53 25 31 43 52 25 32 41 53 25 32 43 51 25 33 41 52 25 33 42 51

21 32 43 54 21 32 44 53 21 33 42 54 21 33 44 52 21 34 42 53 21

15

s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s

s

34 43 52

22 31 43 54 22 31 44 53 22 33 41 54 22 33 44 51 22 34 41 53 22 34 43 51

23 31 42 54 23 31 44 52 23 32 41 54 23 32 44 51 23 34 41 52 23 34 42 51

24 31 42 53 24 31 43 52 24 32 4

s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s s s 1 53 24 32 43 51 24 33 41 52 24 33 42 51s s s s s s s s s s s s s

 

 
Total number operations needed are 484 (365 multiplications, 27 additions and 92 subtractions). 

 
(b) VV 2 2 2 2 2 2 2 2 2 2 2 2 2

11 12 13 14 15 21 22 23 24 25 31 32 33s s s s s s s s s s s s s  

2 2 2 2 2 2 2 2 2 2 2 2
34 35 41 42 43 44 45 51 52 53 54 55s s s s s s s s s s s s  

Total number operations needed are 49 (25 multiplications, 24 additions). 
 
The above results reveal that the higher dimension of data, the greater the number of operations needed to compute 
GV if compared to VV. 

 
Computational Time of Generalized Variance and Vector Variance 

 
In this section, we present the computational time of GV and VV for p=2, p=3, p=4, and p=5. The aim of our 
simulation study is to illustrate that computational efficiency as a function of the dimension. The simulation is 
implemented using the MATLAB R2009a programming and the experiments were performed on Intel Core2 Duo 
with 2.40GHz-based machine having 3063MB of main memory. Table 1 displays the comparison on time 
consuming in computation of GV and VV at sample size of 10, 20 and 30. We demonstrate this information by 
using a plot in Figure 1 – Figure 3. 
 
 

TABLE [1]. Computational time of GV and VV for p=2 to p=5 at different sample size, n 
 

n p GV VV 

10 

p=2 0.10 1.00 
p=3 0.10 2.00 
p=4 1200.00 40.00 
p=5 1700.00 42.00 

20 

p=2 0.20 1.40 
p=3 0.25 2.30 
p=4 1500.00 50.00 
p=5 3100.00 52.00 

30 

p=2 0.25 2.00 
p=3 0.38 2.80 
p=4 1600.00 50.00 
p=5 3200.00 58.00 
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FIGURE 1. Computational time of sample size, n=10 
 
 

 
 

FIGURE 2. Computational time of sample size, n=20 
 
 

 
 

FIGURE 3. Computational time of sample size, n=30 
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For each different sample size and different number of variables, we calculated both statistics, and the running times 
(in microsecond) were recorded.  Figure 1 – Figure 3 presents the running time mentioned. Interestingly, the plot of 
the running time increases directly to the number of variables. Based on the figures, GV performs better than VV 
when p= 2 and p=3. However, as p increases to 4 and 5, the time consumed by GV is higher than VV. The similar 
trend was also discovered for sample size of 10, 20 and 30. 

 
 

CONCLUSION 
 

From this analysis, we can conclude that VV can operate with both non-singular and singular covariance matrix.  
However, the computation of GV will be more cumbersome when dealing with high dimension data set. In terms of 
total number of operations needed and computation time, VV seems to be superior to GV.  
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