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Abstract. The steady stagnation point flow and heat transfer towards an exponentially  stretching/shrinking sheet with 

constant heat flux is investigated in this paper. The transformed governing nonlinear boundary layer equations are solved 
numerically  by using Runge-Kutta-Fehlberg method. Numerical solutions are obtained for the local wall temperature, 

local skin-friction coefficient as well as velocity and temperature profiles. The features of the flow and heat transfer 

characteristics for different values of the stretching/shrinking parameter and the Prandtl number are analyzed and 
discussed. 
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INTRODUCTION 

During the last few decades, the viscous flow and heat transfer in a boundary layer region due to a stretching 

sheet has attracted considerable attention. It has several theoretical and technical applications in industrial 
manufacturing processes such as the aerodynamic extrusion of plastic sheets, hot rolling, wire drawing, glass-fibre  

production, and the cooling and drying of paper and textiles. Hiemenz [1] used similarity transformation to reduce 
the Navier-Stokes equation to nonlinear ordinary differential equation to solve two-dimensional stagnation flows. 

Sakiadis [2] introduced the concept of boundary layer flow continuously moving on solid surface with constant  

speed.  Crane [3] was the first who investigate the boundary layer flow of a viscous incompressible fluid with a 

linearly stretching plate. The works of Crane [3] and Hiemenz [1] were extended by Chiam [4] to studied the effect 
of stagnation point flow on a stretching surface. Furthermore, Wang [5] was the first who investigated  stagnation 

flow towards a shrinking sheet and obtained both a dual and unique solution for the specific range of the velocity-
ratio parameter in two-dimensional and asymmetric cases. Moreover,  Mahapatra and Gupta [6] reinvestigated the 

two-dimensional stagnation point flow of an incompressible viscous electrically conducting fluid towards a 

stretching surface. In addition, there are some very significant researches about the stagnation point flow toward 

stretching sheet with dissimilar physical situations were made by [7-13]. 
Lin and Chen [14] introduced an exact solution of heat transfer from a stretching surface with constant heat flux 

and it is important to be noted that problems with a variable heat flux has been presented  by [15-23]. Magyari and 

Keller [24] were the first to study boundary layer and heat transfer over an exponentially stretching sheet. Then,  the 
heat transfer and boundary layer flow towards an exponentially shrinking/stretching sheet were discussed in [25-37].  

The aim of this paper is to study the numerical solution of the stagnation-point boundary layer and heat transfer 
towards an exponentially stretching and shrinking sheet with constant heat flux. In this paper, the similarity 

transformation for momentum and heat equations to third and second order differential equation are used, 

respectively. To the best of our knowledge, this problem has not been presented before, so the investigated results 

are considered new.  
 

MATHEMATICAL MODEL 
 

Let consider the steady viscous, laminar and two-dimensional boundary layer stagnation point flow (of an 

incompressible fluid) and heat transfer over an exponentially stretching/shrinking sheet. The Cartesian coordinate 

system is used in such a way that the x-axis is along the surface of the sheet and the y-axis is normal to it. The plate 



is stretched/shrunk in the x-direction with a velocity .wU  The governing continuity, momentum and energy equation 

are written in as follows : 
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where u and v are the components of velocity along the x- and y- axes respectively, T is the temperature , ν  is  the 
kinematic fluid viscosity, 

w
T  is  the surface temperature and α is the thermal diffusivity of the fluid. The boundary 

conditions are given by: 
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where 
wq is the surface heat flux, k  is the thermal conductivity, T∞ is the free stream temperature assumed to be 

constant and b is a constant which measures the rate of temperature increase along the sheet. The straining 

velocity
s

U and the stretching/shrinking velocity 
w

U are given by:  

                                  ( ) exp( )w

x
U x a

L
=     and   ( ) exp( )s

x
U x c

L
=                                                                                   (2.6) 

when 0a >  it is the shrinking sheet and when 0a <  it is  the stretching sheet. The similarity transformations are 

introduced by: 
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where η  is the similarity variable and ψ  is the stream function defined for u
y

ψ
=
∂
∂
 and v
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= −
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∂
. The transformed 

ordinary differential equations are: 
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From boundary condition (2.4) and (2.5) , we get the following forms:  
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along with (0) 1 (CWT)θ =  and  
a

c
ε =  is the stretching/shrinking parameter. 

The physical quantities of interest are the local skin frication coefficient 
f

C  and local Nusselt number xNu  

which are defined as: 
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where ρ  is the fluid density, while the surface shear stress wτ  and the surface heat flux wq  are respectively given 

by: 
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where µ  and k  being the dynamic viscosity and thermal conductivity, respectively. Using the similarity variables 

in (2.5) give  

                                
1
2Re ''(0)f xC f=   ,   

1
2

1

(0)Re

x

x

Nu

θ
=   (CHF)         (2.14) 

where Re e
x

u x

v
=  is the local Reynolds number.  

RESULTS AND DISCUSSION 

Equations (2.8) and (2.9) with boundary conditions (2.10) and (2.11) have been solved by using Runge-Kutta-

Fehlberg method. The problem of the stagnation point over an exponentially stretching/shrinking sheet with constant 
wall temperature (CWT) have been solved numerically and the results obtained are consistent with what have been 

reported by  Bhattacharyya and Vajravelu [27]. This cofirm the duality existence and uniqueness of the solution of 

the aforementioned problem. Moreover, the skin friction coefficient (0)f ′′ plotted in FIGURE 1 that shows duality, 

when the velocity ratio parameter ε is between -1.487068 and -0.9734, whereas no similar solution exists for 
1.487068ε < − and unique solution exists for 0.9734ε > − . These findings show a good agreement with those 

Bhattacharyya [29, 30] reported.  We can conclude that this method works good for the present problem and 
confident that the results presented here are accurate.  

FIGURE 2 illustrates the 
1
2/ Rex x

Nu  as a function of ε and It shows when ε decrease the 
1
2/ Rex x

Nu  slightly 

decrease in the first solution but increases in the second solution.  

FIGURES 3 and FIGURE 4 illustrate the first and second solutions of velocity profiles( ( )f η′ ) for different 

values of ε  and with  Pr=0.1.   From these figures, it is found that the boundary thickness of the second solution is 
thicker than those of the first solution.  Moreover, for the first solution with an increasing magnitude of ,ε  the 
velocity profile is decreasing, but it is increasesing in the second solution except for small values of .η   
 Finally, FIGURE 5 and FIGURE 6 illustrate the temperature profiles ( )θ η  for different values of ε and Pr, 

respectively.  It can be seen that, as Pr and ε  decreases, the temperature profile increases and the thermal boundary 
layer thickness also increases. This is because for small values of Pr, the fluid is highly conductive. Physically, if Pr 

increases, the thermal diffusivity decreases and this phenomenon leads to the decreasing of energy transfer ability 

that reduces the thermal boundary layer. 
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 FIGURE 1:  Skin friction coefficient (0)f ′′  as a function of ε (CWT)        
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FIGURE 2: The value of local Nusselt number 
1
2Re

x

x

Nu
  with ε  

                          
FIGURE 3: The first solution of velocity profiles ( )f η′  for different values of ε  when  Pr=0.1                                           

                         
FIGURE 4:  The second solution of velocity  profiles ( )f η′ for different values of ε  when  Pr=0.2 

 

                         
 
 



                               
 FIGURE 5: Temperature profiles ( )θ η  for different values of ε  when Pr=0.5  

 

 

                              
FIGURE 6: Temperature profiles ( )θ η  for different values of Pr when 0.8ε =  

 

CONCLUSIONS 

In this paper, we have numerically studied the problem of stagnation point toward an exponentially 
stretching/shrinking sheet with constant heat flux are solved by using the Runge-Kutta-Fehlberg method. The local 

skin friction coefficient and local Nusselt number as well as velocity and temperature profiles are discussed and 
plotted as a function of the stretching/shrinking parameter.  
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