

QUID AROMA FOR

:

IDENTIFICATION OF (

SWIFTLET RANCHING

.

.

ONG FOO KHENG

A thesis submitted in partially fulfillment of the requirements for the award of degree of Bachelor of Applied Science (Honours) in Industrial Chemistry

> Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang (UMP)

> > 2012

ABSTRACT

Bird's nest is an excellent restorative food with a sweet and calm character; it is good for any age or gender. Therefore bird's nest is highly popular among the Chinese communities. This make swiflets ranching industry is growing stronger and stronger in our nation. The major swiftlet ranching areas are located mostly in secondary and tertiary townships where food source is in abundance and pollution levels are at their relative minimum. Bird's nest is actually dried saliva of swiftlet, therefore in swiftlet farming; owners tend to have various kinds of way to attract swiftlet to their bird house. However some birdhouse owners complained that they are not getting the desired result that very few swiftlets are staying in their house to build their nests. Basically it is affected by a few parameter which is sound, design of bird house, location and also aroma attraction. Therefore the objective of the study is to analysis chemical compounds in aroma using solid phase microextraction (SPME) with coupled with gas chromatography-mass spectroscopy (GC-MS). By using all these powerful analytical instrument, able to detect compound that present in liquid aroma that use to attract swiftlet to build nest in the bird house. For volatile chemical compounds, SPME which coupled with GC-MS is used. Therefore by using these method, able to identify chemical compounds to attract bird swiftlet to bird house.

ABSTRAK

Sarang burung walit merupakan sejenis makanan yang dapat mengembalikan dan menambah tenaga badan. Ia adalah sesuai bagi setiap peringkat masyarakat tidak kira sama ada lelaki atau perempuan, muda atau tua. Sarang burung walit sangat terkenal di kalangan masyarakat cina. Oleh itu, industri perternakan burung walit telah berkembang dengan kadar yang amat memberangsangkan di negara kita. Biasanya, penternakan burung walit terletak di kawasan luar bandar dimana sumber makanan adalah mencukupi dan keadaan pencemaran alam adalah minimum. Sebenarnya, sarang burung walit berasal daripada air liur burung walit yang telah kering, oleh itu, dalam penternakan burung walit, penternak telah menggunakan pelbagai cara untuk menarik perhatian burung walit untuk membuat sarang di rumah burung. Walaubagaimanapun, terdapat juga penternak yang hanya berjaya menarik segelintir burung walit untuk membuat sarang di rumah burung yang disediakan. Sebenarnya untuk menarik burung walit untuk membuat sarang di rumah burung adalah dipengaruhi oleh beberapa faktor, iaitu bunyi, reka bentuk rumah burung, lokasi dan juga penggunaan aroma. Oleh itu, objektif tujuan kajian ini adalah untuk menganalisis sebatian kimia yang terdapat dalam aroma dengan menggunakan mikroekstraksi fasa pepejal (SPME) berpasang dengan kromatografi pengesan pengionan nyalagas-spektroskopi jisim (GC-MS). Dengan menggunakan kelengkapan analisis ini, adalah mampu mengesan komponen kimia yang terdapat dalam aroma yang digunakan untuk menarik perhatian burung walit untuk membina sarang di rumah burung. Bagi komponen kimia yang mudah meruap, SPME yang berpasang dengan GC-MS akan digunakan. Dengan kaedah ini, akan dapat mengenal pasti sebatian kimia dalam aroma cair yang digunakan untuk menarik perhatian burung walit.

TABLE OF CONTENTS

	PAGE
DECLARATION	ii
SUPERVISOR'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATION	xviii

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statements	2
1.3	Research Objectives	2

CHAPTER 2 LITERATURE REVIEW

0.1	a		
2.1	Swiftlet	Farming	3
	2.1.1	Research Background	3
2.2	Swiftlet		5
	2.2.1	Introduction	5
•	2.2.2	Distribution	6
	2.2.3	Nutrition	7
	2.2.4	Breeding Season	8
	2.2.5	Bird's Nest	10
	2.2.6	Life Cycle	12
	2.2.7	Growth Stage	14
	2.2.8	Harvest of Swiftlet's Nest	16
	2.2.9	Nutritional Value of White Edible Bird's Nest	17

viii

2.3	Bird Ho	use	20
	2.3.1	Diversity of Bird House Designs	20
	2.3.2	Cleanliness of Premises	22
	2.3.3	Working hour	23
	2.3.4	Pool of Stagnant Water	23
	2.3.5	Windows and Door for the Bird House	24
	2.3.6	Entrances for Swiftlet	25
	2.3.7	Breeding Ground	26
	2.3.8	Uses of Artificial Nest	28
	2.3.9	Air Humidifier	28
	2.3.10	Audio System	29
	2.3.11	Pesticide Spraying	30
2.4	Analysis	s of Liquid Aroma	31
	2.4.1	Solid Phase Microextraction	31
	2.4.2	Gas Chromatography-Mass Spectrometer (GC- MS)	32

ix

CHAPTER 3 METHODOLOGY

3.1	Introdu	ction	34
3.2	Sample	Collection	34
	3.2.1	Schematic of Methodology	34
3.3	Method	lology	35
	3.3.1	Gas Chromtography- Mass Spectrometry (GC-	35
	3.3.2	Solid Phase Microextrction (SPME)	36
СНА	PTER 4	RESULT AND DISCUSSION	
4.1	Optimiz	zation of SPME Parameter	37
4.2	Chroma	atograms for New Aroma Sample	38
	4.2.1	Chromatogram for New Aroma Sample using SPME 50/30µm DVB/Carboxen TM /PDMS Stableflex TM (Gray)	39
	422	Chromotogram for Now Aromo comula using	41

4.2.2	Chromatogram for New Aroma sample using	41
	CAR/PDMS SPME Fiber (Black)	
4.2.3	Chromatogram for New Aroma sample using	43
	PDMS/DVB SPME Fiber (Blue)	
4.2.4	Chromatogram for New Aroma sample using	45
	PDMS SPME Fiber (RED)	
Chromt	ogram for Old Aroma Sample	46
	4.2.24.2.34.2.4Chromt	 4.2.2 Chromatogram for New Aroma sample using CAR/PDMS SPME Fiber (Black) 4.2.3 Chromatogram for New Aroma sample using PDMS/DVB SPME Fiber (Blue) 4.2.4 Chromatogram for New Aroma sample using PDMS SPME Fiber (RED) Chromtogram for Old Aroma Sample

CHAPT	ER 5	CONCLUSION	
	4.4.4	Chromatogram of Bird Shit Sample using PDMS SPME Fiber (Red)	60
	1,1.2	PDMS/DVB SPME Fiber (Blue)	20
	4.4.3	CAR/PDMS SPME Fiber (Black) Chromatogram of Bird Shit Sample using	58
	4.4.2	(Gray) Chromatogram for Bird Shit Sample using	56
	4.4.1	Chromatogram for Bird Shit Sample using SPME 50/30µm DVB/Carboxen TM /PDMS Stableflex TM	54
4.4	Chromtog	gram for Bird Shit Sample	53
		PDMS SPME Fiber (Red)	
	4.3.4	Chromatogram for Old Aroma Sample using	52
	4.3.3	Chromatogram for Old Aroma Sample using	50
	4.3.2	Chromatogram for Old Aroma Sample using CAR/PDMS SPME Fiber (Black)	48
		Stableflex TM (Gray)	
		SPME 50/30µm DVB/Carboxen TM /PDMS	.,
	4.3.1	Chromatograms for Old Aroma Sample using	47

5.1	Conclusion of the project	62
5.2	Recommendation for Future Study	63

REFERENCES

64

LIST OF TABLES

Table No.		
2.1	Types of license	g
2.2	Differences between swiftlets species	7
2.3	Breeding season table for edible nest swiftlets and black nest swiftlets	9
2.4	Breeding information for edible nest swiftlets and black nest swiftlets	12
2.5	Nutrition content in edible bird nest	18
2.6	Types of amino acid in edible bird nest and its function	19
3.1	Experiment parameter for GC-MS	35
4.1	Components of new aroma sample for 50/30µm DVB/CARBOXEN TM /PDMS STABLEFLEX TM (Gray)	40
4.2	Structure of each component new aroma sample using 50/30µm DVB/CARBOXEN TM /PDMS STABLEFLEX TM (Gray)	40
4.3	Components of new aroma sample using CAR/PDMS (Black) SPME fiber	41
4.4	Structure of each component for new aroma sample using CAR/PDMS SPME fiber (Black)	42
4.5	Components of new aroma sample using PDMS/DVB SPME fiber (Blue)	44
4.6	Structure of each component for new aroma sample using PDMS/DVB SPME fiber (Blue)	44
4.7	Components of new aroma sample using PDMS SPME fiber (RED)	45
4.8	Structure of each component for new aroma sample using PDMS SPME fiber (RED)	46

4.9	Components of old aroma sample using 50/30µm DVB/CARBOXEN TM /PDMS STABLEFLEX TM (Gray)	47
4.10	Structure of each component for old aroma sample using 50/30µm DVB/CARBOXEN TM /PDMS STABLEFLEX TM (Gray)	48
4.11	Components of old aroma sample using CAR/PDMS SPM fiber (Black)	49
4.12	Structure of each component for old aroma using CAR/PDMS SPM fiber (Black)	49
4.13	Components of old aroma sample using PDMS/DVB SPME fiber (Blue)	50
4.14	Structure of each component for old aroma using PDMS/DVB SPME fiber (Blue)	51
4.15	Components of old aroma sample using PDMS SPME fiber (Red)	52
4.16	Structure of each component for old aroma using PDMS SPME fiber (Red)	53
4.17	Components of bird shit sample using SPME 50/30µm DVB/Carboxen TM /PDMS Stableflex TM (Gray)	54
4.18	Structure of each component for bird shit sample using SPME 50/30µm DVB/Carboxen TM /PDMS Stableflex TM (Gray)	55
4.19	Components of bird shit sample using CAR/PDMS SPME fiber (Black)	57
4.20	Structure of each component for bird shit sample using CAR/PDMS SPME fiber (Black)	57
4.21	Components of bird shit sample using PDMS/DVB SPME fiber (Blue)	58
4.22	Structure of each component for bird shit sample using PDMS/DVB SPME fiber (Blue)	59
4.23	Components for bird shit sample using PDMS (Red) SPME fiber	60

xii

•

LIST OF FIGURES

Figure	No.	Page
2.1	Bird's nest	4
2.2	Types of edible bird nest	5
2.3	Map of distribution of swiftlets	6
2.4	Ephemeroptera.sp	7
2.5	Isoptera.sp	8
2.6	Trichoptera.sp	8
2.7	Swiftlet start nesting in pairs	10
2.8	Nesting	10
2.9	Edible Bird's Nest White Mix Strip	11
2.10	Edible Bird's Nest Golden All Strip	11
2.11	Edible Bird's Nest (RAW)	12
2.12	Swiftlet's eggs	13
2.13	Swiftlet's egg in nest	13
2.14	Swiftlet's egg	15
2.15	Newly hatched swiftlets	15
2.16	Adult swiftlet	15
2.17	Baby swiftlet	15
2.18	Tools to harvest bird nest	16
2.19	Swiftlets not even move when harvesting the bird nest	17
2.20	Varieties of edible bird nest	20
2.21	Design of bird house	21

xiv

.

2.22	Bird house design	22
2.23	Audio system in the bird house	22
2.24	Water pool for bird house	23
2.25	Electric fence system for swiftlet birdhouse protection	24
2.26	Alarm panel box	25
2.27	Entrance for swiftlets	26
2.28	Entrances for swiftlets	26
2.29	Swiftlets in nest	27
2.30	The nest is ready to be harvest	27
2.31	Artificial nest	28
2.32	Ultrasonic humidifier for swiftlet farming	29
2.33	The walets lover sound system	30
2.34	Cockroaches	30
2.35	SPME diagram	32
2.36	SPME instrument	32
2.37	Schematic diagram of GC-MS	33
2.38	Gas chromatography – Mass spectrometer	33
3.1	Flow Chart of the process	34
3.2	Gas Chromatography-Mass Spectrometry Detector (GC-MS)	36
3.3	Solid phase microextraction (SPME)	36
4.1	Chromatogram of new aroma sample with 50/30 µm DVB/CARBOXEN TM /PDMS STABLEFLEX TM (Gray)	39
4.2	Chromatogram for new aroma sample using CAR/PDMS (Black) SPME Fiber	41

4.3	Chromatogram for new aroma sample using PDMS/DVB (Blue) SPME Fiber	43
4.4	Chromatogram for new aroma sample using PDMS (RED) SPME Fiber	45
4.5	Chromatogram for new aroma sample using SPME 50/30 µm DVB/Carboxen TM /PDMS Stableflex TM (Gray)	47
4.6	Chromatogram for new aroma sample using CAR/PDMS (Black) SPME Fiber	48
4.7	Chromatogram for new aroma sample using PDMS/DVB (Blue) SPME Fiber	50
4.8	Chromatogram for new aroma sample using PDMS (Red) SPME Fiber	52
4.9	Chromatogram for bird shit sample using SPME 50/30 μm DVB/Carboxen TM /PDMS Stableflex TM (Gray)	54
4.10	Chromatogram of bird shit sample using CAR/PDMS (Black) SPME Fiber	56
4.11	Chromogram of bird shit sample using PDMS/DVB (Blue) SPME Fiber	58
4.12	Chromatogram for bird shit sample using PDMS (Red) SPME Fiber	60

xvi

LIST OF SYMBOLS

°C Degree Celsius

% Percentage

•

α

Alpha

LIST OF ABBREVIATIONS

•

CAS	Chemical Abstract Service	
CCTV	Closed Circuit Television	
cm	Centimeter	
DVB	Divinyl Benzene	
eV	Electron Volt	
GC-MS	Gas Chromatography- Mass Spectrometry	
gm	Grams	
HS	Headspace	
kHz	Kilohertz	
m	Meter	
μm	Micrometer	
min	Minute	
mL	Mililiter	
mm	Milimeter	
NIST	National Institute of Standard and Technology	
PDMS	Polydimethyl Siloxane	
Pfs	Peak Frequency	
Ppt	Part per Trillion	
Sec	Seconds	
sp	Species	
SPME	Solid Phase Microextraction	
Tr	Trace	

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

ţ

For the past 5 years, swiflets industry has arise strongly in our nation as due to price and well known nutritious value of edible bird' nest. However, this industry is still a relatively new industry as compared to other fundamental and long standing industry like rubber, palm oil, oil and gas.

On the other hand, the edible bird' nest industry have much longer history of over 100 years ago and was only primarily made up by cotton style operations. The mainly source of bird's nest is from indigenous suppliers who collect the nests from caves, which are natural habitat of edible nest swiftlets. As the swiftlets ranching continue to grow in the country, more and more supplies of edible bird's nest came from purpose built farm that build for swiftlet farming have made their way into the supply chain (Merica, 2007).

The swiftlet farming in Malaysia have the potential to expand into multimillion ringgits industry as the industry is very profitable and lower risk as compared to other industry. Besides that, the continuously growing demands for edible bird's nest by wealthy oversea places like Hong Kong, China and also local Chinese communities also being a major contributor to the fast growing of swiftlet farming industry. There is also a noticeable worldwide trend that being pursued internationally as well as pharmaceutical and herbal products companies using edible bird's nest as a base materials for producing natural and organic health supplement for local and also overseas consumption.

1.2 PROBLEM STATEMENT

Currently swiftlet farming in Malaysia essentially involves the conversion of people centric building into bird house that use to protect certains species of swiftlets (white edieble bird' nest swiflets or *Aerodramus Fuciphagus*) which can only found in South East Asian region (Merica, 2007). The design and construction of the bird house is for the purpose of accommodating such swiftlets population. A continuous vocalization of swiftlets chirp and mating sounds are played throughout the days on certain hours using speaker and audio that installed in the bird house. Such action is done in order to lure the swiftlets that are flying to the bird house for mate and make the bird house as their new home (Tirok Swiftlet Farm, 2007c).

Some owners believe that by using aroma will able to increase the tendency of the swiftlets to nesting at the bird house. Certain kinds of liquid aroma is been used to lure the bird swiftlets to the bird house beside the other factors (Tirokswifts, 2007). Therefore is a need to identify the chemical compounds that are present in liquid aroma that's had been used to attract the bird swiftlets to the bird house in order verify the effectiveness of aroma in attracting bird swiftlets.

1.3 RESEARCH OBJECTIVE

There are two objectives to achieve in this project:

- To identify the chemical compounds that present in the liquid aroma that used to attract bird swiftlets to bird house.
- To study and compare the formulation used in different liquid aroma sample with bird shit

-

CHAPTER 2

LITERATURE REVIEW

2.1 SWIFTLET FARMING

2.1.1 Research Background

Swiftlet farming in Malaysia starts to grow after significantly after Asian Economic Crisis of 1997-1998. Many businesses especially small and medium sized experience a very difficult hard time during that period, many of them even have shut off throughout the country. Those premises were left empty due to the depressed economic environment at that time, therefore quite a lot landlord had decide that rather than leave it idle, they had converted it to swiftlet farms. Currently, Indonesia is the world largest bird's nest producer which is 100 tons per year, follow by Malaysia, Thailand and Philippines with output around 10 tons per year. However such output still unable to satisfy the world demand which mainly from China, Taiwan and Hong Kong for bird's nest (Jabatan Perhilitan Malaysia, 2008). Figure 2.1 shows an example of bird's nest.

Figure 2.1: Bird's nest

Source: Travel Kat (2011)

The edible-nest Swiftlet (*Aerodramus fuciphagus*) and black-nest Swiftlet (*Aerodramus maximus*) are protected species under the Protection of Wildlife Act, 1972 and any export/import of their nests requires a license from the Department of Wildlife and National Parks (Liz Price, 2011). Protection of Wildlife (Amendment) Order, (2003) which stipulates a payment of RM0.10 cent per gram or RM100 per kilogram for the import/ export licence. The licence to harvest birds' nests is RM200/year (Jabatan Perhilitan Malaysia, 2008). Table 2.1 shows the types of licenses needed to acquire for swiftlet farming:

Table 2.1: Types of license

Types	Agency
Premises license	Local Authorities
License to Harvest Bird's Nest	Department of wildlife and national parks
License for Bird's nest business	Department of wildlife and national parks
License for import / export wild life	Department of wildlife and national parks

Source: Jabatan Perhilitan Malaysia (2008)

2.2 SWIFLET

2.2.1 Introduction

There are 28 species of swiftlet in the world and 13 of it can be found in Malaysia. However there are only 2 species as shown in Figure 2.2 which are the edible-nest Swiftlet (Aerodramus fuciphagus) and black-nest Swiftlet (Aerodramus maximus) which build their nest by using their saliva have very high nutritious value to be commercialize as a health supplement food (Jabatan Perhilitan Malaysia, 2008) Swiftlet have narrow wings for fast flight, with a wide gape and small reduced beak surrounded by bristles for catching insect in flight (Alaine, 2004). Males and females swiftlets look similar and both play equal roles in nesting and rearing young. Most of the swifts nest in caves, on cliffs or in hollows of dead trees. They often use saliva as glue to hold their nests together and to attach them to the substrate. The nests of edible-nest swiftlets (Aerodramus fuciphagus) are a delicacy in some parts of the world like Hong Kong and China are used to make bird's nest soup (Alaine, 2004). As the swiftlets fly in the dark area of their nest cave, they tend to make sounds which are broad band clicks with peak frequency (PFs) between 1 and 16 kHz. Swiftlets appear to use echolocation only for low resolution target discrimination. It also is diurnal birds with large eyes and use vision to locate their prey (Fullard, 1993).

Aerodramus Maximus

Figure 2.2: Types of edible-nest swiftlet

Source: Ultimate Swiftlets Farming Consulation, 2011

2.2.2 Distribution

Distribution of swiftlets is confined to tropical Southern Asia and Oceania, Northeastern Australia and Indian Ocean. The greatest diversity is in Southeast Asia, Indonesia and Papua New Guinea. However there are several species are restricted to small island with their limited range that can make them very vulnerable like the Seychelles, Whitehead's and Guam swiftlets (Birdlife International species factsheet, 2011). In South East Asia, it covers Andaman Island and Nicobar, Hainan in China, Palawan Island in Philippines, coast and island in Vietnam, Cambodia, Thailand, Myanmar, Peninsular Malaysia, Singapore and island in Indonesia including Sumatra, Java and island of Sunda which is Borneo (Chantler et al., 2000). Figure 2.3 shows the distribution map of swiftlet while Table 2.2 summarized the differences between swiftlets species.

Figure 2.3: Map of distribution of swiftlets

Source: Golden Sunshine Enterprise (2011)

 Table 2.2: Differences between swiftlets species

5

Parts	Edible-nest swiftlet	Black-nest swiftlet
Size	110-120 mm	120-135 mm
Feather	Top is black in color	Top is shining blue greenish
		Abdomen is white is color
	`	Neck to chest is grey in color
Nest	Made from saliva	Made from saliva and feather
Egg size and	Small, size is 21 x 12 mm	Big, size is 21.9-23.5 x 15.3-16 mm.
quantity	width. Two egg for each nest.	One egg for each nest.
Sound	Chirp with high pitch when at	Slow whistling
	nest.	-

Source: Jabatan Perhilitan Malaysia (2008)

2.2.3 Nutrition

These swiftlets feed on insects they caught during flight in air. *Trichoptera sp* (sedge-flies), *Isoptera sp* (termites), *Ephemeroptera sp* (Mayflies) and also same beetles are the major food source for swiftlets (Jabatan Perhilitan Malaysia, 2008). Figure 2.4 until Figure 2.6 are the major food source for swiftlet.

Figure 2.4: Ephemeroptera sp

Source: Discoverlife (2011)

Figure 2.5: Isoptera sp

Source: Meyer (2005)

Figure 2.6: Trichoptera sp

Source: Wilson (2011)

2.2.4 Breeding Season

Usually edible-nest Swiftlets and black nest swiftlets will be mating in the air and usually their partner tend to be their lifetime partner. Swiftlets acquire multi incubation strategy where they will lay as much egg as they could while raising as many baby swiftlets as they could under appropriate weather and also great sum of food source (Jabatan Perhilitan Malaysia, 2008). During breeding season, a swiftlet's salivary glands enlarge enormously, enabling the bird to produce the saliva that binds the nest, which takes approximately one and half to two months to construct and usually holds one or two eggs (TBP swiftlet, 2011) Table 2.3 refers that the breeding season for those swiftlets within one year. The breeding season for swiftlets start from January until December which mean whole year is their breeding season. However, although is whole year, but it will divide into three term in this whole year. For edible nest swiftlets the first term start from December until March, second term start from April and ends at July. The last term start from August until November. As for black nest swiftlets, first term of breeding season start from January until April, second term start from May until August while last term start from September until December. Figure 2.7 and Figure 2.8 shows the nesting of swiftlets.

Table 2.3: Breeding season table for edible nest swiftlets and black nest swiftlets

Note: First row in the table is breeding season for edible nest swiftlet while next row is for black nest swiftlet.

Source: Jabatan Perhilitan Malaysia (2008)

Figure 2.7: Swiftlet start nesting in pairs

Source: Dig Deep (2011b)

Figure 2.8: Nesting

Source: Yap (2010)

2.2.5 Bird's Nest

Both male and female swiftlet will work together nesting during the night. Bird's nest from edible nest swiftlets is fully made from saliva of swiftlets and it need around 30 days to complete the nest. As for the black nest swiftlets, the nest is made from saliva mixed with feather. It will require between 35 days to 127 days for the nest to be completed. Commonly the shape of the nest is half plate however the shape of the formation of nest is depend on the season (sunny/rainy) and also source of food (Jabatan Perhilitan Malaysia, 2008).