Impact location determination on thin laminated composite plates using an NIR-FBG sensor system

Z. M. Hafizi, J. Epasachchi, K. T. Lau

Faculty of Health Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia
Advance Structural Integrity and Vibration Research (ASIVR), Faculty of Mechanical Engineering, University Malaysia Pahang, Pekan 26600, Pahang, Malaysia

ABSTRACT

An integration of Structural Health Monitoring (SHM) into composite structures contribute towards the development of smart composites structure. Smart-structure offers an ability have a continuous and real-time information of its circumstances under critical loading applications. One of the main objectives in this research study was the development of the Fiber Bragg grating (FBG) sensor system for SHM of thin composite laminates. Not only that, this work has been utilizing the FBG sensors in the Near Infra-red (NIR) range; ~830 nm, as an alternative to the applications of the conventional 1550 nm FBG sensors. The capability of this sensor system was validated with the impact location determination test on a thin composite plate. It showed a very promising result whereby the relative error falls below 10%.

KEYWORDS
NIR fibre Bragg grating; Optical sensors; Location detection; Composite plate

DOI: https://doi.org/10.1016/j.measurement.2014.08.040
ACKNOWLEDGMENT

The authors would like to thank the Faculty of Engineering and Surveying and the Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland for providing laboratory facilities and financial support. They would also like to thank the interdisciplinary Photonics Laboratories (iPL), the University of Sydney for their support in fabricating the NIR FBGs. Finally, special thanks to Universiti Malaysia Pahang together with the Ministry of Higher Education, Malaysia for scholarship support.