INTERNAL SURFACE PIPE ROUGHNESS CLASSIFICATION: AN ACOUSTIC EMISSIONS APPROACH

ARIF JOHARI B MAT ALI@SALIM

Thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

> Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

> > NOVEMBER 2009

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature Name of Supervisor: Mr. Mohd Hafizi b Zohari Position: Supervisor Date: November 2009

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature Name: Arif Johari B Mat Ali@Salim ID Number: MA06075 Date: November 2009

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Objectives	2
1.3	Scope Study	2
1.4	Important of the Study	3

CHAPTER 2 LITERATURE REVIEW

2.1	Flow Analysis In a Circular Pipe	4
2.2	Acoustic Emission (AE) Method	8
	 2.2.1 A Brief History of Acoustic Emission (AE) 2.2.2 Acoustic Emission Signals 2.2.3 Type of Acoustic Emission (AE) 2.2.3 Parameter Of Acoustic Emission (AE) Signal 	8 9 10 11
	2.2.4.1 Root Means Square (RMS)2.2.4.2 Frequency analysis2.2.4.3 Crest factor analysis2.2.4.4 Kurtosis analysis	13 13 13 14

2.2.4.	5 C	ounts

	2.2.5	Acoustic Emission (AE) in Pipes	14
		2.2.5.1 Distress pipes	15
		2.2.5.2 Critical pipes	15
		2.2.5.3 Whole pipes	16
		2.2.5.4 Construction zone	16
	2.2.6	The Advantages of Acoustic Emission (AE)	16
	2.2.7	Application of Acoustic Emission	17
2.3	Corro	sion	19
	2.3.1	Types of corrosion	21
		2.3.1.1 General corrosion	21
		2.3.1.2 Galvanic corrosion	21
		2.3.1.3 Intergranular corrosion	21
		2.3.1.4 Pitting corrosion	21
		2.3.1.5 Crevice corrosion	22

CHAPTER 3 METHODOLOGY

3.1	Introduction	26
3.2	Flowchart	27
3.3	Gantt Chart FYP 1 and FYP 2	28
3.4	Test Rig And Tools Preparation	30
	3.4.1 Hardware Architecture	31
	3.4.1 Details Specification	32
	3.4.2.1 Test Rig	32
	3.4.2.2 Hydraulic Bench	33
	3.4.2.3 Acoustic Emission System	34
3.5	Test's Procedure	37
	3.5.1 Reading Data	39

15

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introd	luction	40
4.2	Test		41
4.3	Resul	t and Discussion	44
	4.3.1	Fluid flow through smooth pipe with high and low flow rate	44
	4.3.2	Fluid flow through rough pipe with high and low flow rate	45
	4.3.3	High flow rate fluid flow in smooth pipe and rough pipe	46
	4.3.4	Low flow rate fluid flow in smooth pipe and rough pipe	47
	4.3.5	Average RMS values for smooth and rough pipe	48
	4.3.6	Bangi Number	49
CHAP	FER 5	CONCLUSION AND RECOMMENDATIONS	
5.1	Concl	usion	58
5.2	Recor	nmendation	59
REFE	RENCES	5	61
APPE	NDICES		57
A1	Table	data of rough surface pipe	63
A2	Point	of Sensor versus 90° opened valve (rough pipe)	64
A3	Point	of Sensor versus 360° opened valve (rough pipe)	65
A4	RMS	value for each valve opening (rough pipe)	66
B1	Table	data of smooth surface pipe	67
B2	Point	of Sensor versus 90° opened valve (smooth pipe)	68

B3	Point of Sensor versus 360° opened valve (smooth pipe)	69
----	--	----

RMS value for each valve opening (smooth pipe)

B4

C1	Acoustic Emission Detector-2000V Rough Pipe , Point 10, 90°	71
C2	Acoustic Emission Detector-2000V Rough Pipe , Point 10, 360°	72
C3	Acoustic Emission Detector-2000V Smooth Pipe , Point 10, 90°	73
C4	Acoustic Emission Detector-2000V Smooth Pipe ,Point 10, 360°	74

70

LIST OF TABLES

Table No	. Title	Page
2.1	Internal roughness (e) of common pipe materials	5
4.1	Value of flow rate in several valve opening	43
4.2	Average value of RMS for smooth inner surface	48
4.3	Average value of RMS for rough inner surface	49
4.4	Bangi number values for each point	50
4.5	Description of each point of surface roughness	54
5.1	Result of the analysis between the different type of pipe and flow	59
	rate	
5.2	Bangi number (AB) for rough and smooth pipe	59

LIST OF FIGURES

Figure N	o. Title	Page
2.1	Laminar and Turbulent flow	5
2.2	The source of acoustic emission signal	10
2.3	Burst signal	11
2.4	Continuous signal	11
2.5	Parameter of AE signal	12
3.1	Acoustic Emission System	31
3.2	Piping system	32
3.3	Hydraulic Bench	33
3.4	Volume water indicator	33
3.5	AED2000V	34
3.6	Integral preamp AE sensor	35
3.7	Grease	35
3.8	Computer built-in with ADC card and Physical Acoustic AE win software	36
3.9	Acoustic Emission Detector Software	36
3.10	Rough pipe	37
3.11	Point location of sensor	38
3.12	Controlled the value of 90° opened position	37

3.13	Controlled the valve of 360° opened position	39
4.1	RMS value for smooth pipe at each valve opening	41
4.2	RMS value for rough pipe at each valve opening	42
4.3	The fluid flow through smooth pipe with high flow rate and low flow rate	44
4.4	The fluid flow through rough pipe with high flow rate and low flow rate	45
4.5	The high flow rate fluid flow in smooth pipe and rough pipe	46
4.6	The low flow rate fluid flow in smooth pipe and rough pipe	47
4.7	Bangi number plot for RMS	51
4.8	Point location of point 1 and point 10	52
4.9	Bangi number (AB) from point 3 to point 7	53
4.10	Inner surface of smooth pipe	54

LIST OF SYMBOLS

μ	Viscosity
Č	Roughness
D	Diameter
d	Inner diameter
е	Inner roughness
f	Friction fator
g	Gravity acceleration
L	Length
Q	Volume flow rate
V	Velocity
ρ	Density
A	Cross Sectional Area
mm	Millimetre
h_f	frictional resistance
S	Second

t Thickness

kurt(X) Kurtosis

 R_e Reynolds number

LIST OF ABBREVIATIONS

AB	Bangi number
AE	Acoustic Emission
ADC	Analogue to Digital Converter
AED	Acoustic Emission Detector
AET	Acoustic Emission Testing
FE	Finite Element
FEA	Finite Element Analysis
NASA	National Aeronautic and Space Administration
NDT	Non-destructive Test
PC	Personal Computer
REACT	Research Engineering Applications Certificate Training
RMS	Root Mean Square
SCC	Stress Corrosion Cracking
X-ray	Radiographic