Improvement of Physico-Mechanical, Thermomechanical, Thermal and Degradation Properties of PCL/Gelatin Biocomposites: Effect of Gamma Radiation

Haydar U. Zaman, M.D.H. Beg

Faculty of Chemical & Natural Resources Engineering, University Malaysia Pahang, Gambang, Kuantan, Pahang Darul Makmur, Malaysia

ABSTRACT

This research was to study the effects of gelatin content variation and gamma radiation after the 2ethylhexyl acrylate (EHA) pre-treatment on the foundamental properties of gelatin film laminated polycaprolactone (PCL) biocomposites. PCL/gelatin film (PCL/GF) composites were fabricated by compression molding and their properties were studied by physico-mechanical, thermomechanical, thermal and degradation properties. The results from mechanical properties such as tensile modulus and impact strength of the composites increased with increasing of gelatin content up to 10 wt% and then decreased while the tensile strength and elongation at break decreased. EHA monomer (2– 8 wt%) was added to the gelatin solution and films were prepared by casting and found to increase the mechanical properties of the PCL/EHA blended gelatin film (PCL/EGF) composites. Treatment of the gelatin film with gamma radiation after the EHA pre-treatment showed the best mechanical properties of the resulting composites. Dynamic mechanical thermal analysis results showed that the storage modulus of the PCL/EGF and PCL/EHA blended gelatin film with gamma radiation (PCL/GEGF) composites was increased significantly. The degradation properties in water and soil were determined for the non-irradiated and irradiated composites. It was observed that the non-irradiated composite degrades more than that of the irradiated composites.

KEYWORDS : Gelatin; Polycaprolactone; Bio-composites; Gamma radiation; Mechanical properties

DOI: 10.1016/j.radphyschem.2014.12.011