NUMERICAL SIMULATION OF FLOW PATTERN AND HEAT TRANSFER MECHANISM FROM A HEATED CYLINDER IN CROSS FLOW

ABANG MA’ARUF BIN ABANG BUSSRI

BACHELOR OF MECHANICAL ENGINEERING
UNIVERSITI MALAYSIA PAHANG
UNIVERSITI MALAYSIA PAHANG

FACULTY OF MECHANICAL ENGINEERING

We certify that the project entitled *Numerical Simulation of Flow Pattern and Heat Transfer Mechanism from a Heated Cylinder in Cross Flow* is written by Abang Ma'aruf Bin Abang Bussri. We have examined the final copy of this project and in our opinion; it is fully adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering. We herewith recommend that it be accepted in partial fulfilments of the requirements for the degree of Bachelor of Mechanical Engineering.

Mr. Devarajan Ramasamy
Examiner

…………………………
Signature
NUMERICAL SIMULATION OF FLOW PATTERN AND HEAT TRANSFER MECHANISM FROM A HEATED CYLINDER IN CROSS FLOW

ABANG MA’ARUF BIN ABANG BUSSRI

Report submitted in fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering
UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2009
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature
Name of Supervisor: Muhamad Zuhairi Sulaiman
Position: Lecturer
Date:
STUDENT’S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature
Name: Abang Ma’aruf Bin Abang Bussri
ID Number: MA06083
Date:
TABLE OF CONTENTS

SUPERVISOR’S DECLARATION .. ii
STUDENT’S DECLARATION .. iii
ACKNOWLEDGEMENTS .. iv
ABSTRACT .. v
ABSTRAK .. vi
TABLE OF CONTENTS ... vii
LIST OF FIGURES .. ix
LIST OF SYMBOLS ... xi
LIST OF ABBREVIATIONS ... xiii

CHAPTER 1 INTRODUCTION

1.1 Project Background .. 1
1.1.1 Lattice Gas Automata 1
1.1.2 Molecular Dynamics 2
1.1.3 Lattice Boltzmann Method 2
1.2 Problem Statement .. 3
1.3 Objective .. 3
1.4 Scope of Work .. 3
1.5 Process Flow Chart ... 4

CHAPTER 2 LITERATURE REVIEW

2.1 Governing Equation ... 6
2.1.1 Macroscopic Equation for Isothermal 7
2.1.2 Macroscopic Equation for Thermal 7
2.2 Bhatnagar-Gross-Krook (BGK) 8
2.3 Lattice Boltzmann Equation 9
2.4 Discretization of Microscopic Velocity 10
CHAPTER 3 METHODOLOGY

3.1 Introduction 14
3.2 LBM Algorithm 14
 3.2.1 Initialization 15
 3.2.2 Collision Step 16
 3.2.3 Streaming Step 17
 3.2.4 Boundary Condition 18
 3.2.5 Prescribe Density and Velocity 21

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Introduction 24
4.2 Isothermal Poiseuille Flow 24
4.3 Flow Past a Square Cylinder in Cross Flow 30
4.4 Thermal Flow of a Heated Square Cylinder 37

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion 40
5.2 Recommendation 40

REFERENCES 42

APPENDICES 44
A Variable Representation 44
B Isothermal Poiseuille Flow Source Code 45
C Isothermal Flow of Square Cylinder in Cross Flow 60
D Thermal Flow of Heated Square Cylinder in Cross Flow 70
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The relationship between macroscopic and microscopic</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Project flowchart</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>9-discrete velocity model</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>4-discrete velocity model</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>D2Q9 model</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Bounceback boundary condition</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>3x3 matrixes boundary condition</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>A typical sequence of LBM algorithm</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Initialization in main program</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Collision step in LBM algorithm</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Streaming step for fluid propagation for rest and right motion</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Bounce back rule in FORTRAN code</td>
<td>20</td>
</tr>
<tr>
<td>3.6</td>
<td>Periodic BC. Particle leaving from the left side re-enter at right or inlet</td>
<td>21</td>
</tr>
<tr>
<td>3.7</td>
<td>Code for periodic BC. It implemented along with streaming step</td>
<td>22</td>
</tr>
<tr>
<td>3.8</td>
<td>Prescribe density and velocity</td>
<td>23</td>
</tr>
<tr>
<td>3.9</td>
<td>Numerical implementation for manual summation</td>
<td>24</td>
</tr>
<tr>
<td>4.1(a)</td>
<td>Vector plot of Poiseuille flow</td>
<td>26</td>
</tr>
<tr>
<td>4.1(b)</td>
<td>Closer look of Vector Plot of Poiseuille flow</td>
<td>26</td>
</tr>
<tr>
<td>4.2(a)</td>
<td>Streamline function plot for the streamline</td>
<td>27</td>
</tr>
</tbody>
</table>
4.2(b) Closer look of Streamline function plot for the streamline

4.3(a) Streamslice function plot for Poiseuille flow

4.3(b) A closer look of Streamslice function plot which has arrows to indicate flow directions

4.4 Graph of channel width versus velocity of every time step

4.5 Schematic diagram of square cylinder

4.6 The vortex shedding behind a square cylinder

4.7 Vortex shedding at Re = 2000

4.8 Instability occur such Re = 100000

4.9 Density contour all range of Reynolds number

4.10 Pressure contour for all range of Reynolds number.

4.11 Vorticity contour plot

4.12 Temperature contour plot

4.13 Instability in thermal flow such at high Rayleigh number
LIST OF SYMBOLS

\(\Omega \) Collision operator
\(\rho \) Density
\(\rho_f \) Body force
\(\nu \) Kinematic viscosity
\(\tau \) Single relaxation time
\(\chi \) Thermal diffusity
\(c \) Macroscopic velocity
\(t \) Time step
\(f \) Density distribution function
\(F \) Forcing terms
\(f^{eq} \) Equilibrium density distribution function
\(g \) Internal energy distribution function
\(G \) Pressure gradient
\(g^{eq} \) Equilibrium internal energy distribution function
\(P \) Pressure
\(Ra \) Rayleigh Number
\(Re \) Reynolds Number
\(Pt \) Prandtl Number
LIST OF ABBREVIATIONS

BC Boundary Condition
BGK Bhatnagar-Gross-Krook
LBE Lattice Boltzmann equation
LBM Lattice Boltzmann Method
LGA Lattice Gas Automatta
MD Molecular Dynamics