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ABSTRACT 

 

This paper presents optimization of the grinding progress of ductile cast iron using 

water-based SiO2 nanocoolant. Conventional and water-based nanocoolant grinding was 

performed using a precision surface grinding machine. The study is aimed to investigate 

the effect of table speed and depth of cut on the surface roughness and material removal 

rate (MRR). Mathematical modeling is developed using the response surface method. 

An artificial neural network model is developed for predicting the surface roughness 

and MRR. Multi-layer perception and a batch back propagation algorithm are used. 

MLP is a gradient descent technique to minimize the error through a particular training 

pattern in which it adjusts the weight by a small amount at a time. From the experiment, 

the depth of cut is directly proportional to the surface roughness, but the table speed is 

inversely proportional to the surface roughness. The higher the value of the depth of cut, 

the lower the value of MRR, and vice versa for the table speed. It is concluded that the 

surface quality together with the material removal rate are the most affected by the 

depth of cut(s) and table speed. 

 

Keywords: Grinding, water based nanocoolant; SiO2, surface roughness; material 

removal rate; multi-layer perception; back propagation. 

 

INTRODUCTION 

  

Grinding is a manufacturing process with unsteady process behavior, whose complex 

characteristics determine the technological output and quality (Krajnik, Kopac, & Sluga,  

2005; Malkin & Guo,  2007). Grinding is actually a finishing process used to improve 

surface finish, abrade hard materials, and tighten the tolerance on flat and cylindrical 

surfaces by removing a small amount of material. A cylindrical grinding machine 

rotates the workpiece as the cutting tool feeds into it. The material removal rate (MRR) 

depends largely on the machine current and the spark on time in the cutting process 

(Hussein, Sharma, Bakar, & Kadirgama,  2013; Khan, Rahman, Kadirgama, & Bakar,  

2012b; Krajnik et al.,  2005; Najiha, Rahman, Kamal, Yusoff, & Kadirgama,  2012). 

The speed of the material removal rate is specified on the rate of material that is being 

removed. The MRR is influenced by the melting temperature of the workpiece, where a 

lower melting temperature will gave faster MRR (Kadirgama, Abou-El-Hossein, Noor, 

Sharma, & Mohammad,  2011; Khan, Rahman, Kadirgama, Maleque, & Ishak,  2011; 

Noor, Kadirgama, Habeeb, Rahman, & Mohammad,  2010; Yusoff, Mohamed Suffian, 

& Taib,  2011). The quality of a machined surface is characterized by the accuracy of its 
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manufacture with respect to the dimensions specified by the designer. Every machining 

operation leaves characteristic evidence on the machined surface. This evidence is in the 

form of finely spaced micro irregularities left by the cutting tool. Each type of cutting 

tool leaves its own individual pattern which can therefore be identified. This pattern is 

known as surface roughness. Surface roughness is one of the most important factors for 

evaluating workpiece quality during the finishing process because the quality of surface 

affects the functional characteristics of the workpiece, such as fatigue and fracture 

resistance and surface friction (Samhouri & Surgenor, 2005). 

Nanofluids have the potential to be the next generation of coolants due to their 

significantly higher thermal conductivities (Najiha, Rahman, & Yusoff,  2013; Najiha, 

Rahman, Yusoff, & Kadirgama,  2012; Rahman & Kadirgama,  2014; Rahman, Yusoff, 

& Kadirgama,  2012). Nanofluids are formed by dispersing nanoparticles in base fluids 

such as water. It has been reported that the thermal conductivities of nanofluids increase 

dramatically due to the high thermal conductivity of solid particles suspended in the 

heat transfer fluid (Ding et al.,  2007; Hussein, Bakar, Kadirgama, & Sharma,  2013b; 

Hussein, Bakar, Kadirgama, & Sharma,  2014). Nanofluids/nanoparticles are particles 

that have one dimension that is 100 nanometers or less in size. The properties of many 

conventional materials change when formed from nanoparticles. This is typically 

because nanoparticles have a greater surface area per weight than larger particles; this 

causes them to be more reactive to certain other molecules. Nanoparticles are used, or 

being evaluated for use, in many fields, especially in medication and engineering fields. 

The machining process is very complex, thus experimental and analytical 

models that are developed by using conventional approaches such as the statistical 

regression technique combined with the response surface methodology (Boersma) have 

remained as an alternative in the modeling of the machining process. RSM is practical, 

economical and relatively easy to use. The experimental data was utilized to build the 

mathematical model for a first-and-second order model using the regression method. 

(Kalidass, Palanisamy, & Muthukumaran,  2012; Khan, Rahman, & Kadirgama,  

2012a)stated that when the response can be defined by a linear function of independent 

variables, then the approximating function is a first-order model. An artificial neural 

network is a system based on the operation of biological neural networks; in other 

words, it emulates a biological neural system. Implementation of an artificial neural 

network would be necessary because, although computing nowadays is truly advanced, 

there are certain tasks that a program made for a common microprocessor is unable to 

perform. Artificial neural networks (ANN) have been developed as generalizations of 

mathematical models of biological nervous systems (Abraham,  2005; Khan, Rahman, 

Kadirgama, Maleque, & Bakar,  2011)The objectives of this project are to investigate 

the experimental performance of grinding of ductile cast iron based on the response 

surface method, to develop an optimization model for grinding parameters using a 

neural network technique, and to investigate the effect of water-based SiO2 

nanoparticles on precision surface grinding. 

 

MATERIALS AND METHODS 

 

SiO2 Nanofluid Preparation  

 

Silicon-dioxide nanoparticle materials were selected because silicon is commonly added 

to the primary coolant to prevent corrosion. A two-step method was used to prepare the 

nanofluid; basically, nanoparticles are first produced as a dry powder, typically by inert 
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gas condensation, which involves the vaporization of a source material in a vacuum 

chamber and subsequent condensation of the vapor into nanoparticles through collisions 

with a controlled pressure of an inert gas. The resulting nanoparticles are then dispersed 

into a fluid in a second processing step. An advantage of this technique in terms of 

eventual commercialization of nanofluids is that the inert gas condensation technique 

has already been scaled up to economically produce tonnage quantities of nanopowders. 

Thus, the dispersed nanoparticles come in liquid form with a volume of one liter having 

25 % weight concentration, with 30-40 nm particle size, pH 9, and density equal to 2660 

kg/m³. This is diluted to 0.15 % volume concentration. The conversion of weight 

percent concentration to volume concentration can be expressed as in Eq. (1). The 

equation shows the dilution formula to determine how much distilled water is required 

to dilute the initial nanofluid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               (a) SiO2 nanoparticles                                         (b) Distilled water 

 
 

           (c) Ultrasonic homogenizer                         (d) Prepared SiO2 nanofluid 

 

Figure 1. Preparation of water-based SiO2 nanocoolants 
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where 

1 is the initial volume concentration 

  is the weight percent of nanoparticles 

w  is the density of water 

ZnO  is the density of nanoparticles 

 

For a two-phase system, some important issues have to be faced. One of the 

most important issues is the stability of nanofluids, and it remains a big challenge to 

achieve the desired stability. To achieve stability in dilution, it is necessary to stir the 

solution continuously for one hour with the mixer set to 1000 rpm. Figure 1 shows the 

preparation of water-based SiO2 nanocoolants. Nanoparticles have a tendency to 

aggregate. The important technique to enhance the stability of nanoparticles in fluids is 

the use of surfactants (Hussein, Bakar, Kadirgama, & Sharma,  2013a). However, the 

functionality of the surfactants under high temperature is also a big concern, especially 

for high-temperature applications. Therefore, no surfactant is applied in this study.  

 

Design of Experiments 

 

Design of experiments (DOE) techniques enable designers to determine simultaneously 

the individual and interactive effects of many factors that could affect the output results. 

Statistical experimental designs (response surface designs (RSM)) are most widely used 

in optimization experiments (Box & Draper,  1987; Khan et al.,  2012a; Rahman, Khan, 

Kadirgama, Noor, & Bakar,  2010). The central composite design (CCD) is the most 

popular of the many classes of RSM designs due to the following three properties 

(Rahman, Khan, Kadirgama, Noor, & Bakar,  2011b).  

  

Table 1. Design of experiment table 

 

Variable symbol and 

unit 

Independent 

variable 

Levels 

-1 0 +1 

Table speed (mm/s) X1 333.33 500.00 666.67 

Depth of cut (μm) X2 0.02 0.04 0.06 

 

Artificial Neural Network  

 

The most basic and commonly used artificial neural network (ANN) is multi-layer 

perception (MLP) (Rahman, Khan, Kadirgama, Noor, & Bakar,  2011a).For this project, 

the gradient is determined using a technique called batch back propagation, one of the 

famous training algorithms for MLP, which involves performing computations 

backwards through the network. Once the network weights and biases are initialized, the 

network is ready for training. The network can be trained for function approximation, 

which is nonlinear regression, pattern association, and pattern classification. The 

training process requires a set of examples of proper network behavior network inputs 

and target outputs. During training, the weights and biases of the network are iteratively 

adjusted to minimize the network performance function. The performance function for a 
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feed forward network is mean square error, which means the average squared error 

between the network outputs and the target outputs. All these algorithms use the 

gradient of the performance function to determine how to adjust the weights to 

minimize performance. The objective of the developed ANN is to predict the surface 

roughness and MRR for conventional and nanocoolant grinding. The available data set 

from the experimental study was divided into two sets: training and testing sets. The 

experimental data set consists of 9 values representing grinding passes and types of 

coolant. The ANN model was trained using 5 randomly selected data (accounting for 

50% of the total data) while the remaining four data (accounting for 25% each) were 

utilized for testing and validation of the network performance. There are many 

variations of the batch back propagation algorithm. The simplest implementation of 

batch back propagation learning updates the network weights and biases in the direction 

in which the function decreases most rapidly, the negative of the gradient (Khan et al.,  

2012b). There are two different ways in which this gradient descent algorithm can be 

implemented: incremental mode and batch mode. In incremental mode, the gradient is 

computed and the weights are updated after each input is applied to the network and 

before the weights are updated. In batch mode, the weights and biases of the network 

are updated only after the entire training set has been applied to the network. The 

gradients calculated for each training example are added together to determine the 

change in the weights and biases. The primary objective in batch back propagation is to 

explain how to use the batch back propagation training functions in the toolbox to train 

the feed forward neural networks to solve specific problems. The architecture of the 

developed ANN model is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of the developed ANN model 

 

RESULTS AND DISCUSSION 

 

Mathematical Modeling 

 

After conducting the conventional coolant and SiO2 nanocoolant grinding with single 

and multiple grinding patterns, the experimental data were used to find parameters 

appearing in the postulated second order model. RSM comprises a body of methods for 

exploring for the optimum operating conditions through experimental methods. Table 2 
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and Table 3 present the ANOVA results for second-order modeling of MRR for 

conventional coolant and SiO2 nanocoolant grinding respectively. The R
2
 is 0.98 and the 

RMSE is just 0.0075. The P-values for the lack of fit for both cases are more than 0.005. 

Therefore, both models are adequate and fit for analysis. The regression equation’s low 

P-value (<0.05) indicates that the model is considered to be statistically significant 

(Fristak, Remenarova, & Lesny, 2012). A value of P < 0.0001 indicates the statistical 

significance of a quadratic model. On the basis of this investigation, the relationship 

between the independent variables (table speed, depth of cut) and the response (surface 

roughness, MRR) can be explained according to the regression model. The goodness of 

the model can be confirmed by the coefficients of determination R
2 

which are close to 1, 

which are very high and indicate a high correlation between the experimental and 

predicted values. Figure 3(b) shows the result of single pass and multi pass conventional 

and water based silicon oxide nanocoolant grinding (Khan et al.,  2012a). The predicted 

values are found to be in good agreement with the experimental readings.  

 

Table 2. ANOVA results of second-order model for conventional grinding. 

 
Source Degree of freedom Sum of sq. F-static P-value 

Single pass grinding 

Model 5 0.01334571 47.3250 0.0012 

Error 4 0.00022560   

C total 9 0.01357131   

Lack of fit  3 0.00013807 0.5258 0.7383 

Pure error 1 0.00008753   

Total error 4 0.00022560   

Multiple pass grinding 

Model 5 0.01279319 52.9849 0.0010 

Error 4 0.00019316   

C total 9 0.01298635   

Lack of fit  3 0.00006303 0.1615 0.9114 

Pure error 1 0.00013013   

Total error 4 0.00019316   

 

Table 3. ANOVA results of second-order model for SiO2 nanocoolant. 

 

Source Degree of freedom Sum of sq. F-static P-value 

Single pass grinding 

Model 5 0.00342293 4.1484 0.0964 

Error 4 0.00066010   

C total 9 0.00408303   

Lack of fit  3 0.00027741 0.2416 0.8625 

Pure error 1 0.00038269   

Total error 4 0.00066010   

Multiple pass grinding 

Model 5 0.00761519 11.7096 0.0168 

Error 4 0.00052027   

C total 9 0.00813546   

Lack of fit  3 0.00043078 1.6046 0.5125 

Pure error 1 0.00008949   

Total error 4 0.00052027   
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The mathematical model of the material removal rate for conventional coolant 

and SiO2 nanocoolant with single pass and multiple pass grinding is as follows: 

 

).-(DOC)+ DOC.(TS) + TS.(DOC*+ TS

DOC .TS + . + . =ingle

002280006870015560

037620025070069440MRR pass s-Conv


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             (1) 
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(a)           (a)        (b) 

      
           (c)                (d) 

 

Figure 3. (a) Conventional-single pass; (b) SiO2-single pass; (c) conventional-multiple 

pass; (d) SiO2-multiple pass 
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Artificial Neural Network Modeling 

 

The ANN model is developed for predicting the surface roughness and MRR. The 

predictions of the trained ANN for depth of cut and table speed are selected. To develop 

the ANN model, the network is processed through two stages, which are the training 

stage and testing/validation stage. In the training stage, the network is tested to stop or 

continue training it, and it is used to predict an output. It is also used to calculate 

different measures of error. The network training process is stopped when the testing 

error is within the tolerance limits. Figure 4 shows the actual versus predicted values for 

conventional-single pass by ANN analysis. The blue line indicates the experimental 

output and the red line indicates the prediction output (target). The ANN prediction 

yields the statistical coefficients, giving the correlation coefficient (R
2
) value 0.99 for 

both cases. The regression coefficients obtained from testing of the ANN were perfect 

and within the acceptable limits in both cases. As the correlation coefficient approaches 

1, the accuracy of the prediction advances. Thus, the correlation coefficient range is 

very close to 1. Consequently, it indicates excellent agreement between the 

experimental and the ANN predicted results. Tables 4 and 5 present the architecture 

search for conventional coolant and SiO2 nanocoolant with multiple pass grinding 

respectively. ID 2 is selected for surface roughness and MRR prediction due to the 

highest R
2
 values.  

 

Table 4. Architecture search for conventional coolant with multiple pass grinding 

 

ID N F TrE VE TE C R-S SR 

Surface roughness 

1 1 0.883953 0.022513 0.004986 0.013174 0.986941 0.883953 AID 

2 18 0.998321 0.002172 0.012646 0.028586 0.999780 0.998321 AID 

3 11 0.988417 0.007610 0.016988 0.029194 0.998375 0.988417 AID 

4 7 0.979744 0.010036 0.013179 0.029276 0.997141 0.979744 AID 

5 15 0.989209 0.007556 0.020554 0.030841 0.998260 0.989209 AID 

6 13 0.987268 0.008047 0.005581 0.028366 0.997699 0.987268 AID 

7 16 0.993438 0.004869 0.009234 0.029381 0.999467 0.993438 AID 

8 17 0.989079 0.006394 0.005369 0.035876 0.998707 0.989079 AID 

MRR 

1 1 0.991968 0.001431 0.006565 0.023644 0.998313 0.991968 AID 

2 18 0.997905 0.000689 0.005742 0.019354 0.999538 0.997905 AID 

3 11 0.997393 0.000797 0.005898 0.020232 0.999374 0.997393 AID 

4 7 0.995553 0.001062 0.005858 0.021403 0.998847 0.995553 AID 

5 15 0.997747 0.000720 0.002203 0.016833 0.999494 0.997747 AID 

6 13 0.996744 0.000884 0.001452 0.016369 0.999219 0.996744 AID 

7 16 0.996340 0.000959 0.000725 0.010336 0.999101 0.996340 AID 

8 14 0.997379 0.000795 0.002581 0.015343 0.999381 0.997379 AID 

Note: N= Neurons, F= Fitness, TEr= Training error, VE= Validation error, TE= Testing 

error, C= Correlation, R-S= R-square, SR= Stop reason, AID = All iterations done 

 

Optimization  

 

From the experimental and analysis results for single and multi pass conventional 

grinding, the minimum surface roughness and maximum MRR were chosen from all of 
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the data. From the data, two values of the lowest surface roughness were carried out 

from each analysis since surface roughness is most prior than MRR which is 0.204 and 

0.250 for 1
st
 order of RSM, 0.186 and 0.247 for 2

nd
 order of RSM, and also 0.237 and 

0.317 for RBF. Of the two values of the surface roughness, the one with the higher 

MRR value was chosen. So, we can conclude that the table speed 666.67mm/s with 0.02 

µm depth of cut is the best optimized value that can be used for single pass conventional 

grinding. Comparisons between the RSM model and ANN for conventional coolant and 

SiO2 nanocoolant are presented in Tables 6 and 7 respectively. 

 
(a) Surface roughness 

 

 
(b) MRR 

 

Figure 4. Actual versus predicted values for SiO2-single pass 
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Table 5. Architecture search for SiO2 nanocoolant with multiple pass grinding 

 
ID N F TrE VE TE C R-S SR 

Surface roughness 

1 1 0.952358 0.008931 0.018053 0.037088 0.984222 0.952358 AID 

2 18 0.995183 0.002422 0.024921 0.031183 0.999099 0.995183 AID 

3 11 0.984284 0.005360 0.016197 0.013763 0.996549 0.984284 AID 

4 7 0.982542 0.005600 0.020976 0.022371 0.996423 0.982542 AID 

5 15 0.990264 0.003976 0.020695 0.024468 0.998350 0.990264 AID 

6 13 0.990996 0.003833 0.022881 0.017140 0.998422 0.990996 AID 

7 14 0.989989 0.004026 0.009807 0.025953 0.998105 0.989989 AID 

8 12 0.988438 0.004399 0.007814 0.011753 0.998019 0.988438 AID 

MRR 

1 1 -0.315868 0.028451 0.006431 0.028397 0.160204 0.315868 AID 

2 18 0.628088 0.014661 0.005098 0.042006 0.913600 0.628088 AID 

3 11 0.790516 0.011528 0.003650 0.055038 0.971231 0.790516 AID 

4 7 0.966930 0.004116 0.010974 0.073012 0.992002 0.966930 AID 

5 4 0.434784 0.019056 0.011107 0.048682 0.849345 0.434784 AID 

6 9 0.897173 0.008106 0.008975 0.066582 0.983870 0.897173 AID 

7 5 0.307026 0.020752 0.005979 0.043788 0.739724 0.307026 AID 

8 8 0.460940 0.019919 0.008800 0.042534 0.828332 0.460940 AID 

9 6 -0.51821 0.032062 0.009124 0.023176 0.551642 -0.51821 AID 

Note: N= Neurons, F= Fitness, TrE= Training error, VE= Validation error, TE= Testing error, C= 

Correlation, R-S= R-square, SR= Stop reason, AID = All iterations done 

 

Table 6. Comparison between RSM model and ANN for conventional coolant 

 

Table 

speed 

(mm/s) 

Depth 

of cut 

(μm) 

Surface roughness MRR 

Exp. 

RSM 

RBF Exp. 

RSM 

RBF 1
st
  

order 

2
nd

 

order 

1
st
 

order 

2
nd

 

order 

Single pass grinding 

666.67 0.02 0.151 0.186 0.170 0.164 0.046 0.074 0.049 0.041 

666.67 0.04 0.181 0.214 0.174 0.172 0.097 0.115 0.101 0.099 

Multiple pass grinding 

666.67 0.02 0.186 0.218 0.197 0.191 0.063 0.079 0.071 0.065 

666.67 0.04 0.189 0.219 0.199 0.193 0.113 0.130 0.121 0.115 

 

Table 7. Comparison between RSM model and ANN for silicon oxide nanocoolant 

 

Table 

speed 

(mm/s) 

Depth 

of cut 

(μm) 

Surface roughness MRR 

Exp. 

RSM 

RBF Exp. 

RSM 

RBF 
1

st
 order 

2
nd

 

order 

1
st
 

order 

2
nd

 

order 

Single pass grinding 

666.67 0.02 0.189 0.244 0.226 0.217 0.015 0.040 0.020 0.017 

666.67 0.04 0.245 0.350 0.317 0.307 0.03 0.026 0.008 0.006 

Multiple pass grinding 

666.67 0.02 0.238 0.281 0.240 0.246 0.107 0.153 0.112 0.109 

666.67 0.04 0.283 0.320 0.278 0.283 0.090 0.108 0.099 0.091 
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CONCLUSIONS 

 

It has become increasingly important for manufacturers to implement sustainability in 

tool and process design. In order to optimize the two parameters to yield the minimum 

surface roughness and the maximum material removal rate value in the process, a 

combination of knowledge of variable table speed and depth of cut parameters is 

crucial. The model was of an adequate fit and acceptable for sustainable grinding using 

0.25% volume concentration of silicon dioxide nanocoolant. The results clearly show 

that the parameters used were positively correlated with the surface roughness and 

MRR.  The SiO2 multiple pass grinding gives the best value of percentage error between 

the RSM and the experimental value is 0.4%. The grinding process with SiO2 

nanocoolant gives the best result for surface roughness and surface finish compared to 

conventional grinding. This paper quantifies the impact of water based SiO2 

nanoparticle coolant on the achieved surface quality. It is concluded that the surface 

quality has the greatest impact on the depth of cut(s) and table speed. 
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