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ABSTRACT 
 

Bearing is one of the vital parts in any rotating machinery. Failure of this particular part 

can affect the machinery performance and in time will cause major failure to the 

machinery. Due to this crucial problem, on-line monitoring has become an alternative in 

prevention maintenance. The objective of this project is to study the trend of frequency 

spectrum from different bearing defects and to apply clustering approach using Principle 

Component Analysis, PCA on frequency domain signals. A set of good condition 

bearing is used along with four types of defective bearing which are inner race defect, 

corroded defect, contaminated defect and lastly roller defect. The signals are acquired 

using a PCB piezoelectric accelerometer and a National Instrument Data Acquisition 

System (NI-DAQ). The bearing will be run on three speed rotation which is 440, 1480 

and 2672 RPM. The data is acquired by using DASYLab software, for both the time 

domain and frequency domain signals. The data then analyzed using PCA method 

through MATLAB software. Data is then plotted on scatter plot. After that, the data  will 

be clustered using Agglomerative Hierarchical Clustering where a dendrogram is used to 

show a cluster of data in which the respective data for all types of bearing tested remain 

in their cluster. Finally, this method is suggested as an alternative in bearing fault 

detection, especially online monitoring. 
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ABSTRAK 
 

Galas adalah salah satu komponen penting terdapat di dalam mesin. Kegagalan 

komponen ini boleh memberi kesan pada prestasi mesin dan apabila tiba masanya akan 

mengakibatkan kegagalan lebih besar kepada mesin berkenaan. Akibat daripada ini, 

pemantauan atas talian menjadi pilihan alternative dalam servis pencegahan. Objektif 

projek ini adalah untuk mengkaji isyarat getaran daripada galas yang berkeadaan baik 

dan juga galas rosak melalui senser accelerometer. Set galas berkeadaan baik digunakan 

bersama-sama dengan empat jenis galas rosak iaitu cela permukaan dalam, karat, galas 

tercemar dan cela pada pengguling . Data diperolehi menggunakan PCB piezoelectrik 

accelerometer dan Sistem Penerimaan Data National Instrument (NI-DAQ). Galas akan 

di uji menggunakan tiga jenis kelajuan iaitu 440, 1480 dan 2672 RPM. Kemudian data 

diperoleh dengan menggunakan perisian DASYLab. Data kemudian diplot membentuk 

taburan data plot. Selepas itu, data akan di guguskan menggunakan Agglomerative 

Hierarchical Clustering di mana dendrogram akan digunakan untuk menunjukkan 

gugusan data di mana semua data jenis-jenis galas ujian akan berada di dalam gugusan 

mereka sendiri. Akhir sekali, kaedah ini dicadangkan sebagai alternatif di dalam 

pengesanan galas rosak, terutama sekali di dalam pemantauan dalam talian. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

 A bearing is a mechanical device that supports the moving parts of a machine 

and to guide or to confine its rotational or linear motion, while preventing motion in 

the direction of applied load, i.e., reducing the friction and handling stress. Its 

primary purpose is to reduce friction with a minimum loss of energy between the 

surface of the bearing and the surface it’s rolling over and at the same time 

controlling the rate of wear.  

 

 Generally, bearings are used in a wide, diverse range of general industrial 

applications, including electrical switch gears, solenoids, textile machinery, food 

processing equipment, traffic restrictor and pipe hangers, among many others. Due to 

their low friction and extended wear life, they are also used in an extensive variety of 

manufacturing equipment in applications such as bending presses, multi-ram press 

guides and machine tool slide-ways, as well as injection molding, and industrial 

solder machines, heat treating units and cable winding and braiding machines. 

 

 The faults or defects of bearing in rotating machineries can be extremely 

critical because these may lead to crucial machinery damage, production losses and 

serious personnel injury. Hence, it is a very important duty for the maintenance 

department to detect these faults right during in their initial stage.  
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1.2 PROBLEM STATEMENT 

 

 In industries, especially the manufacturing field industries, safety is the main 

concern. Safety here of course is mainly referring to the staff’s safety and also the 

machinery tools. Furthermore, one of the main responsible of an engineer is to make 

sure the safety in certain production plant is well performed and assured.  

 

 On September 23, 2005, a motor coach incident probable caused by 

insufficient lubrication in the right-side tag axle wheel bearing assembly of the motor 

coach ended 23 passengers were fatally injured. An aviation disaster of LOT Polish 

Airlines Flight 5055, on 9 May 1987, the cause of the crash was the disintegration of 

an engine shaft due to faulty bearings inside engine No. 2, which seized, causing 

extensive heat and caused all 184 passenger perished. (Gero and David, 1997).  

 

 Based on crucial causes and incidents that previously revealed, it is obviously 

that the need of a proper bearing maintenance or condition monitoring method is 

really indeed required to look for and hence to avoid or minimize any unwanted 

incidents to be happen again.   

 

 Previously, to solve the bearing defect and bearing maintenance problems, 

normal practices in industries were mainly using manual inspections which are using 

visual inspection, statistical method (bearing life estimation), bearing condition 

monitoring by crack size detection, lubrication and simply changing the defect 

bearings in order to overcome bearing faults (Hirani, 2000). This seems that the 

bearing defects were detected only when the defects had shown obvious sound and 

vibration signals. Manual inspections are not only expensive, but also connected with 

a risk of accidentally causing damages when reassembling a machine. Thus there is a 

clear need for non-destructive methods for predicting bearing damages early enough 

to wait with bearing replacements until next scheduled stop for machine maintenance 

(Ericsson et al., 2005). 

 

 The most successful such methods in use today are all based on vibration 

analysis (Wowk, 1991). They do, however, require special competence from the user, 
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whereas, as the industry optimizes there is less personnel and time available for 

condition monitoring. Moreover, to hire special competence from outsource involved 

huge cost. Thus important information to support decisions is lost and there is a 

demand for more automatized and supportive bearing monitoring software. 

 

 Bearing monitoring is then crucial in order to study the trend of defect 

bearing vibration signals. Classical bearing monitoring methods can usually be 

classified as either time domain methods (Braun, 1980; Dyer and Stewart, 1978; 

Logan and Mathew, 1996) or frequency domain methods (McFadden, 1984; 

Shiroishi, 1997; Taylor, 1980; Wang and Kootsookos, 1998). These methods look for 

periodically occurring high-frequency transients, which however is complicated by 

the fact that this periodicity may be suppressed. Moreover, classical Fourier methods 

tend to average out transient vibrations (such as those typical for defect bearings), 

thus making them more prone to drown in the background noise of harmless 

vibrations. 

 

 In order to help those incompetency users, clustering can be considered the 

most important unsupervised learning problem; so, as every other problem of this 

kind, it deals with finding a structure in a collection of unlabeled data. A loose 

definition of clustering could be the process of organizing objects into groups whose 

members are similar in some way. A cluster is therefore a collection of objects which 

are similar between them and are dissimilar to the objects belonging to other clusters. 

 

 The goal of clustering is to determine the intrinsic grouping in a set of 

unlabeled data. A good clustering can be shown that there is no absolute best 

criterion which would be independent of the final aim of the clustering. 

Consequently, it is the user which must supply this criterion, in such a way that the 

result of the clustering will suit their needs (Zaiane, 1999). Hence, with a reference 

done by a profession, the signal of faulty bearing can be grouped in a certain cluster 

and identified easily by incompetence users. 

 

 Referring to the problems mentioned above, it is found that the defect in 

bearings is hard to be detected by using direct observations. Hence, it is crucial for 
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this research to identify and detecting major bearing faults as they are in the early 

stage. This can help to prolong bearing’s service life span and also able to avoid any 

unwanted accidents that can make great losses. The need of clustering is that it is 

able to assist untrained or unprofessional users in order to identify the types of 

potential bearing defects based on the clustering data. 

 

1.3 RESEARCH OBJECTIVE 

 

 The objectives of a research project summarize what is to be achieved by the 

study. Corresponds to the project background and problem statements, the objectives 

of this research are: 

  

(i) To study the trend of frequency spectrum from different bearing faults. 

(ii) To apply clustering approach using Principal Component Analysis, PCA on 

frequency domain signals. 

 

1.4 SCOPE OF THE RESEARCH 

 

 The scope of research is the areas covered in the research. This part of the 

research paper will tell exactly what was done. The type of information that would be 

included in the scope of a research project would include facts and theories about this 

research. To achieve the above objectives mentioned in part 1.3, the scopes need to 

be considered as follow: 

 

(i) Study defects on cylindrical roller bearings. Rolling element bearings are one 

of the most common components in rotating machinery including electric 

motors.  

(ii) Types of bearing faults to be study are corrosion, contamination, inner race 

and roller defects.  

(iii) Experimental RPM range used were 440 rpm (15%), 1480 rpm (50%) and 

2672 rpm (90%).  

(iv) Method of signal analysis will be used is Principle Component Analysis, 

PCA.  
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1.5 EXPECTED OUTCOME 

 

 In the end of this research, the expected outcomes are, firstly, able to perform 

signal clustering to ease bearing fault detection. Secondly, to contribute in develop 

an advanced signal processing technique for bearing defect monitoring system. 

Lastly is making bearing defect detection becomes easier for untrained or 

incompetence users. 

 

1.6 SIGNIFICANCE OF THE RESEARCH 

 

 The significance of this research is the development of an advanced signal 

processing technique to recover the source signal corrupted during the transmission 

process, where detection of a small failure is made difficult due to the heavy 

background noise. Current techniques are inefficient to detect defective bearing 

signals in the presence of extraneous noise. By applying clustering method, it is 

believed that this able to help by to identify defects in bearing. The PCA method 

allows providing directly the redundancy relations between the variables without 

identifying the state representation matrix of the system. This task is often difficult to 

achieve (Ramahaleomiarantsoa et al., 2012).  

 



 

 

 

CHAPTER 2 

 

 

 LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

  

 This chapter covers the findings of information about the bearing types, 

bearing faults, the bearing fault detection techniques and follow-up by basic 

vibration theory. Chapter two also covers about vibration based condition monitoring, 

Principle Component Analysis (PCA) and its relative steps and lastly is the signal 

clustering for this research.  

 

2.2 BEARINGS 

 

 Bearings are made to support radial loads, thrust loads, or combined radial-

thrust loads. In order to serve all these functions, bearings make use of a relatively 

simple structure: a roller with internal and external smooth metal surfaces, to aid in 

rolling. The roller itself carries the weight of the load—the force of the load’s weight 

is what drives the bearing’s rotation. However, not all loads put force on a bearing in 

the same manner. There are two different kinds of loading: radial and thrust.  

 

 A radial load, as in a pulley, simply puts weight on the bearing in a manner 

that causes the bearing to roll or rotate as a result of tension. A thrust load is 

significantly different, and puts stress on the bearing in an entirely different way. If a 

bearing is flipped on its side and subject to complete force at that angle, this is called 

thrust load. A bearing that is used to support a bar stool is an example of a bearing 

that is subject only to thrust load.  
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2.3 TYPES OF BEARINGS 

 

 There are many types of bearings, each used for different purposes. These 

include ball bearings, roller bearings, ball thrust bearings, roller thrust bearings and 

tapered roller thrust bearings. 

 

 Ball bearings, as shown below, are one of the most common types of bearing. 

They are found in everything from inline skates to hard drives. These bearings can 

handle both radial and thrust loads, and are usually found in applications where the 

load is relatively small. In a ball bearing, the load is transmitted from the outer race 

to the ball and from the ball to the inner race. Since the ball is a sphere, it only 

contacts the inner and outer race at a very small point, which helps it spin very 

smoothly. But it also means that there is not very much contact area holding that load, 

so if the bearing is overloaded, the balls can deform or squish, ruining the bearing. 

Ball bearings are used in ways that are quite common, such as skateboards and roller 

blades, and some uses are not so common, such as military aircraft and oil drilling. 

Though ball bearings are useful, they are easily overloaded. By paying careful 

attention to the specifications of the type of ball bearing being used, this problem is 

minimized. Figure 2.1 shows the cutaway view of a ball bearing. 

 

 

 

Figure 2.1: Cutaway view of a ball bearing 

 

Source: The Timken Company, 2011 
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 Roller bearings like the one illustrated below are used in applications like 

conveyer belt rollers, where they must hold heavy radial loads. In these bearings, the 

roller is a cylinder, so the contact between the inner and outer race is not a point but a 

line. This spreads the load out over a larger area, allowing the bearing to handle 

much greater loads than a ball bearing. However, this type of bearing is not designed 

to handle much thrust loading. A variation of this type of bearing, called a needle 

bearing, uses cylinders with a very small diameter. This allows the bearing to fit into 

tight places. Roller bearings are used in power generation, wind turbines, gear drives, 

rolling mills, machine tool spindles, gear reduction units etc. The cutaway view of a 

roller bearing is illustrated in Figure 2.2. 

 

 

 

Figure 2.2: Cutaway view of a roller bearing 

 

Source: The Timken Company, 2011 

 

 Figure 2.3 shows a ball thrust bearing. Ball thrust bearings like the one shown 

below are mostly used for low-speed applications and cannot handle much radial 

load. Barstools and Lazy Susan turntables use this type of bearing. They are mostly 

used for low speed appliances and can't handle heavy loads, for example they can be 

found in swivel bar stools and turn tables. 
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Figure 2.3: Cutaway view of a ball trust bearing 

 

Source: The Timken Company, 2011 

 

 Roller thrust bearings like the one illustrated in Figure2.4 below can support 

large thrust loads. They are often found in gear sets like car transmissions between 

gears, and between the housing and the rotating shafts. The helical gears used in 

most transmissions have angled teeth -- this causes a thrust load that must be 

supported by a bearing. The applications of roller thrust bearings were blowout 

preventers, classifiers, extruders, gearboxes, metal mill work/back-up rolls, pre-

heater fans, pumps and screw conveyors (The Timken Company, 2011). 

 

 

 

Figure 2.4: Cutaway view of a roller trust bearing 

 

Source: The Timken Company, 2011 
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 Tapered roller bearings can support large radial and large thrust loads. 

Tapered roller bearings are used in car hubs, where they are usually mounted in pairs 

facing opposite directions so that they can handle thrust in both directions. They are 

used in many car hubs. The disadvantages to taper roller bearings are that they are 

usually quite expensive and they add more friction than a ball bearing. Typical 

tapered roller bearing is illustrated in Figure 2.5 below. 

 

 

 

Figure 2.5: Cutaway view of a tapered roller bearing 

 

Source: The Timken Company, 2011 

 

2.4 CYLINDRICAL ROLLER BEARING 

 

 Cylindrical roller bearings have exceptionally low friction torque 

characteristics that make them suitable for high speed operation. They also have high 

radial load carrying capacity. They are typically used in machine tools, transmissions, 

vibration machines and as wheel set bearings for rail vehicles. The surface finish of 

the tracks and rolling elements is critical to the running performance and noise 

characteristics of these bearings. Due to its ability to handle heavy radial loads and 

its important usage as discussed in Chapter 2.3, hence this type of bearing is then 

selected for this research.  

 

 There are numerous different kinds of bearings that are designed to handle 

radial load, thrust load, or some combination of the two. Because different 
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applications require bearings that are designed to handle a specific kind of load and 

different amounts of weight, the differences between types of bearings concern load 

type and ability to handle weight. 

 

 Being the typical bearing found in electric motors, the rolling element (or anti 

friction) bearing is made up of outer race, inner race, cage and rolling elements 

which is cylindrical roller as illustrated in Figure 2.6. 

 

 The inner race fits inside a larger outer race. Metal balls or rollers rest 

between the two races, enabling the inner race to rotate within the stationary outer 

race.  The outer race of the bearing will be stationary in a crankcase; the crankshaft 

ends will be inserted into the inner races of these bearings, and the crankshaft will 

spin with the inner race against the balls or rollers between the races. The cage's roles 

are to guide and drive the rolling body in the right rolling raceway; to separate the 

rolling body with equal distance, making it in the circle of raceway, so as to prevent 

mutual collision and friction when it works; to integrate the rolling body and ferrule 

together in the separation-bearing, so as to prevent rolling off (Schaeffler trading 

(China) Co. Ltd, 2012). 

 

 Figure 2.6 also shows the Pitch Diameter (Pd) which is the span between the 

centers of two opposite rolling elements (Felten, 2003). Together with this figure it 

shows and labels the basic components of the cylindrical roller bearing. 
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Figure 2.6: Rolling element bearing components 

 

Source: Felten, 2003 

 

 Roller bearings are designed to carry heavy loads as the primary roller is a 

cylinder, which means the load is distributed over a larger area, enabling the bearing 

to handle larger amounts of weight. This structure, however, means the bearing can 

handle primarily radial loads. Rolling element bearings are found widespread 

domestic and industrial applications. Proper functioning of the bearings depends 

greatly on the smooth and quiet running of the appliances. In industrial applications, 

the bearings are one of the critical mechanical components and a solely minor defect, 

unless it is detected in time, might causes malfunction and may lead to catastrophic 

machinery failure.  

 

 Roller bearings can support heavier loads than ball bearings of the same size 

because of having line contact between the rollers and rings as opposed to point 

contact for ball bearings. Line contact has more area supporting the load and thus 

less stress than ball bearing point contact. This feature also makes roller bearings a 

stiffer support to a shaft.  
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 There are many applications for cylindrical roller bearings. Examples include 

mining, petroleum production, power generation, power transmission, cement 

processing, aggregate crushing, and metal recycling. Some cylindrical roller bearings 

are used in briquetting machines, rubber mixing equipment, rolling mills, rotary 

dryers, or pulp and paper machinery. Others are used in construction equipment, 

crushers, electric motors, blowers and fans, gears and drives, plastics machinery, 

machine tools and traction motors and pumps. Ideal applications for cylindrical roller 

bearings are very large industrial machines such as presses, forges, conveyors, gear 

boxes and machine tool spindles. On vehicles, they are ideal axle bearings for dump 

trucks, cement mixers, bulldozers, load haulers, and lifts.  

 

2.5 BEARING FAULTS 

 

 Generally, a rolling bearing cannot rotate forever. Unless operating 

conditions are ideal and the fatigue load limit is not reached, sooner or later material 

fatigue will occur. The period until the first sign of fatigue appears is a function of 

the number of revolutions performed by the bearing and the magnitude of the load. 

The major bearing faults shall discuss here are namely corrosion, contamination, 

races defect and rolling elements defect. 

 

2.5.1 Corrosion 

 

 Rust is a film of oxide, hydroxide, or carbonate produced on a metallic 

surface by chemical action. Corrosion is the phenomena of oxidation or dissolution 

occurring on the surface and is produced by chemical action (electric chemical action 

including combination or cell restructuring) with acid or alkali (JTEKT Corporation, 

2009).  

  

 Corrosion or etching is one of the most crucial problems encountered in anti-

friction bearings. The high degree of surface finish on races and rolling elements 

makes them susceptible to corrosion damage from moisture and water if not 

adequately protected. Rust can be form if water or corrosive agents reaching to the 

inside of the bearing in such quantities that the lubricant unable to provide protection 
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for the steel surfaces, as illustrated in Figure 2.7. This process will soon lead to deep 

seated rust. The general appearances are greyish black streaks across the raceways, 

mostly coinciding with the rolling element spacing. As for at a later stage, pitting of 

raceways and other surfaces of the bearing may occurred (The Timken Company, 

2011).  

 

 

 

Figure 2.7: Heavy corrosion on the race 

 

 Source: The Timken Company, 2011 

 

 Deep seated rust is referring to a thin protective oxide film forms on clean 

steel surfaces when exposed to the air. However, this film is not impenetrable and if 

water or corrosive elements make contact with the steel surfaces, patches of etching 

will form. This development soon leads to deep seated rust. Deep seated rust is a 

great danger to bearings since it can initiate the phenomena of flaking and cracks. 

Acid liquids corrode the steel quickly, while alkaline solutions are less dangerous. 

The salts that are present in fresh water constitute, together with the water, an 

electrolyte which causes galvanic corrosion, known as water etching. Salt water, 

such as sea water, is therefore highly dangerous to bearings (SKF Bearing 

Corporation, 1994).  

 

 Based on Ciprian Radu, 2010, his study shows that the main failure cause is 

the inappropriate lubrication of the bearing rolling elements (approximately 80% of 

the cases), which this lead to the formation of rust in such of corrosion or etching.  
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 Lubricants are used between contact surfaces to keep the parts in continuous 

motion. The main purpose of rolling bearing lubrication is to avoid or reduce the 

metal-to-metal friction between the rolling and sliding contact surfaces. This is not 

the only function of rolling bearing lubrication. The supplementary functions are: 

heat dissipation from the bearing, removal of solid wear particles and contaminants 

from the rolling contact surfaces, corrosion protection, and increase of the sealing 

effect of the bearing seals. Lubrication is crucial for bearing life. In heavy duty 

applications, such as rolling mill machines, furnaces, ovens or high temperature fans, 

rolling bearings may be exposed to higher-than-normal temperatures. For these 

applications, appropriate selection of the lubricant and lubrication method is very 

important. In industrial applications there are two types of lubricants suitable for high 

temperature use: grease and oil. In special cases, bearings are lubricated with solid 

dry lubricants (FAG Bearing Corporation, 2002).  

 

2.5.2 Contamination 

 

 Contaminate carry the meaning of to make a substance or place dirty or no 

longer pure by adding a substance that is dangerous or carries disease. It is also 

definite as to make a place or substance dirty or harmful by putting something such 

as chemicals or poison in it.   

 

 Contamination is one of the leading causes of bearing failure. Despite their 

study mechanical appearance, rolling element bearings are actually precision 

components with internal tolerances on the order of millionths of an inch – more 

precise than an expensive wristwatch. Contamination of the bearing shows up as 

scratches, pitting and scoring along the raceways, with corresponding marks on the 

ball and roller surfaces. Unlike brinelling, these small indentations are scattered, 

rather than centralized, on the bearing surface. Symptoms of contamination are 

particle denting of the rolling elements and raceways, resulting in high vibration and 

abrasive wear. The effect of contamination on bearing life depends on bearing type 

and size, relative lubricant film thickness and the size, hardness and distribution of 

solid contaminant particles. Although foreign matter can enter the bearing during 

mounting, the most direct and sustained area of entry is the housing seals and 
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lubricant. Bearing manufacturers realize the damaging effect of dirt and take extreme 

precautions to assemble and deliver clean bearings. Some even assemble their 

bearings in air-conditioned clean rooms.  

 

 When seals or shields are defective it is not hard for abrasive particles, dirt, or 

dust to get into the bearing. There can even be dirt or dust in the lubricant. Wherever 

foreign material enters into the bearing by way of contaminated lubricant, the 

particles are pressed into the metal surface. Small dents and pits are formed which 

roughen the load-carrying surface. Severe roughness will result in flaking and 

premature bearing failure. Contamination can also be caused by improper cleaning of 

the housing or shaft, or by using dirty tools and hands during mounting and assembly 

(SKF Bearing Corporation, 1994). Typical contaminated defect on bearing is 

illustrated in Figure 2.8. 

 

 

 

Figure 2.8: Hard particles caused contamination bruising on this roller bearing 

 

Source: The Timken Company, 2011 

 

2.5.3 Races Defect 

 

 Other common defects are the races defects, including inner race, as 

illustrated in Figure 2.9 and outer race, Figure 2.10, of the bearing. Generally, the 

races defects are mostly caused by wear. The appearances of such defect are small 
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indentations and depression around the raceways. Wear may, however, occur as a 

result of the ingress of foreign particles into the bearing or when the lubrication is 

unsatisfactory. Vibration in bearings which are not running also gives rise to wear. 

Raceways may become dented if the mounting pressure is applied to the wrong ring, 

or if the bearing is subjected to abnormal loading while not running. Foreign 

particles in the bearing also cause indentations.  

 

 Apart from these, smearing is also another defect on races defect. When two 

inadequately lubricated surfaces slide against each other under load, material is 

transferred from one surface to the other. This is known as smearing and the surfaces 

concerned become scored, with a ‘torn’ appearance. Smearing happened in raceways 

is caused by roller rotation being retarded in the unloaded zone, where the rollers are 

not driven by the rings. Consequently their speed of rotation is lower than when they 

are in the loaded zone. The rollers are therefore subjected to rapid acceleration and 

the resultant sliding is so severe that it may produce smearing. 

 

 It can be said that most of the races defects are mainly caused by improper 

load and unsatisfactory lubrication. Other causes including housing misalignment or 

shaft bending the inner ring tilts as opposed to the outer ring and high moment loads 

result. In roller bearings this leads to a constraining force in the cage pockets and to 

more sliding in the raceways as well as the balls running on the shoulder edge. Hence, 

the bearing setup and its lubrication are extremely important in order to prolong the 

bearing service lifespan (SKF Bearing Corporation, 1994). 
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Figure 2.9: Defects on inner race of roller bearing 

 

Source: Amarnath, 2004 

 

 

 

Figure 2.10: Defects on outer race of roller bearing 

 

Source: Amarnath, 2004 

 

2.5.4 Rolling Elements Defect 

 

 During cycling, the material of the raceways and rolling elements is subject to 

a continuous pulsating stress. This leads to failure patterns like those resulting from 
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the fatigue of mating parts under bending stress: fatigue fractures develop. In rolling 

bearings these fractured areas run largely parallel to the surface and lead to material 

flaking and are referred to as fatigue damage, flaking, pitting, spalling, grey 

stippiness, micro pitting, steel pitting etc. As fatigue ball bearings react more 

sensitively to contamination than roller bearings, and bearings with small rolling 

elements more sensitively than those with large ones. The rolled-up material plays a 

very important role where the indentation of foreign particles is concerned.  Like 

foreign particle indentations, rolling element indentations develop due to the 

bearing's high static overload and their rolled-up edges lead to failure. Figure 2.11 

shows the defect found on the roller of a bearing. 

 

 The common symptoms are subsurface cracks of raceway and rolling 

elements, material flaking (relatively deep pitting), undamaged areas of the raceway 

indicate good lubrication in the early stage of damage, while more or less a lot of 

indentations by cycled fractured parts. 

 

 The major causes for such defects are static overload or shock impacts, 

mounting or dismounting forces, change in geometry of components in rolling 

contact due to wear in the case of contaminated lubricant applied via rolling elements 

(incorrect mounting order, unsuitable accessories) (Schaeffler Group Industrial, 

2012).  

 

 

 

Figure 2.11: Defects on roller of roller bearing 

 

Source: Amarnath, 2004 
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 Hence, the defects mentioned in above and previous sections shall be study in 

this research. The variety of types of bearing defects shall include in this research is 

to vary the research outcome in order to cover much more bearing related defects.  

 

2.6 FAULT DETECTION TECHNIQUES 

 

 Typically, the previous defects mostly arise during the operation of a bearing. 

Therefore, the detection of these defects at an early stage without machine 

disassembly is pivotal for condition monitoring, quality inspection, and predictive 

maintenance. Various methods are used for the diagnosis of bearing defects. The 

methods are broadly classified as acoustic measurements, current and temperature 

monitoring, wear debris detection, and vibration analysis. 

 

 The most effective acoustic-based bearing health monitoring is acoustic 

emission. It is a transient impulse generated by the rapid release of strain energy in 

solid material under mechanical or thermal stress. The detection of cracks is the 

prime application of acoustic emission; therefore, this technique can be used as a tool 

for condition monitoring of bearing faults and shaft cracks. The measurement of a 

machine’s sound can also be employed for detecting defects in bearings. Typically, 

the accuracy of these methods depends on sound pressure and sound intensity data. 

 

 Bearing distributed defects generate excessive heat in the rotating 

components. Monitoring the temperature of a bearing housing or lubricant is the 

simplest method for fault detection in rotary machines. 

 

 The operating conditions of a machine can be monitored by analyzing the 

spectrum of the motor current. The changes in the electric background noise are 

associated with the changes in the mechanical components of the machine; therefore, 

fault signatures can be detected by motor current signal processing techniques. 

 

 In this method, the presence of metallic particles in the lubricant is detected 

by sensitive sensors. Furthermore, the spectrographic analysis of the different 

metallic elements in the lubricant can facilitate the location of the fault. 
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 Since the abnormal vibration of rotary machines is the first sensory effect of 

rotary component failure, vibration analysis is widely employed in the industry. The 

fault vibration signal generated by the interaction between a damaged area and a 

rolling surface occurs regardless of the defect type. Consequently, a vibration 

analysis can be employed for the diagnosis of all types of faults, either localized or 

distributed. Furthermore, low-cost sensors, accurate results, simple setups, specific 

information on the damage location, and comparable rates of damage are other 

benefits of the vibration measurement method (Ghafari, 2007). 

 

2.7 VIBRATION 

 

 Noise and vibration are constantly present in our high-tech society. Noise 

causes serious problems both at home and in the workplace, and the task of reducing 

community noise is a subject currently focused on by authorities in many countries. 

Similarly, manufacturers of mechanical products with vibrations causing acoustic 

noise, more and more find themselves forced to compete on the noise levels of their 

products. Such competition has so far occurred predominantly in the automotive 

industry, where the issues with sound and noise have long attracted attention.  

 

2.7.1 Vibration Model 

 

 The basic vibration model of a simple oscillatory system consists of a mass, a 

massless spring, and a damper. The spring supporting the mass is assumed to be of 

negligible mass. Its force-deflection relationship is considered to be linear, following 

Hooke's law, F=kx where displacement x is measured in meter and the stiffness k is 

measured in newton/meter. 

 

 The viscous damping, generally represented by a dashpot, is described by a 

force proportional to the velocity, or F=cx. The damping coefficient c is measured in 

newton/meter/second. 
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where  =displacement,  ̇=velocity,  ̈=acceleration,  =spring constant,  =mass, 

Δ=distance travel and  =weight 

 

Figure 2.12: Spring-mass system and free-body diagram 

 

Source: Bhave, 2010 

 

2.8 VIBRATION BASED CONDITION MONITORING 

 

 Under radial and misaligning loads bearing vibration is an inherent feature of 

rolling bearings even if the bearing is geometrically perfect and is not therefore 

indicative of poor quality. This type of vibration is often referred to as variable 

compliance and occurs because the external load is supported by a discrete number 

of rolling elements whose position with respect to the line of action of the load 

continually changes with time. 

 

 As the bearing rotates, individual ball loads, hence elastic deflections at the 

rolling element raceway contacts, change to produce relative movement between the 

inner and outer rings. The movement takes the form of a locus which under radial 

load is two dimensional and contained in a radial plane, whilst under misalignment it 

is three-dimensional. The movement is also periodic with base frequency equal to the 

rate at which the rolling elements pass through the load zone. Frequency analysis of 

the movement yields the base frequency and a series of harmonics. For a single row 

radial ball bearing with an inner ring speed of 1800 rev/min a typical ball pass rate is 

100 Hz and significant harmonics to more than 500 Hz can be generated. 
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 Variable compliance vibration is heavily dependent on the number of rolling 

elements supporting the externally applied load; the greater the number of loaded 

rolling elements, the less the vibration. For radially loaded or misaligned bearings 

running clearance determines the extent of the load region, and hence, in general, 

variable compliance increases with clearance. Running clearance should not be 

confused with radial internal clearance (RIC), the former normally being lower than 

the RIC due to interference fit of the rings and differential thermal expansion of the 

inner and outer rings during operation. Variable compliance vibration levels can be 

higher than those produced by roughness and waviness of the rolling surfaces. 

However, in applications where vibration is critical it can be reduced to a negligible 

level by using ball bearings with the correct level of axial pre-load (Lacey, 2008). 

 

 The majority of the research on the diagnosis and prognosis of bearings is 

based on signal processing techniques, independent of bearing vibration 

characteristics. In these works, first a localized or distributed defect is created on a 

bearing by means of grinding, acid etching, drilling, overloading, or over speeding to 

intentionally introduce defects in the bearing components. After a vibration signal is 

measured usually, by accelerometers, different signal processing techniques are 

employed to extract the fault sensitive features to serve as the monitoring indices. 

This procedure is quite similar among the published literature. The reported signal 

processing methods are categorized as time domain, frequency domain, and time-

frequency domain (Ghafari, 2007).  

 

2.8.1 Time Domain Analysis 

 

 Time-domain analysis is directly based on the time waveform itself. 

Traditional time-domain analysis calculates characteristic features from time 

waveform signals as descriptive statistics such as mean, peak, peak to peak interval, 

standard deviation, crest factor, high-order statistics: root mean square, skewness, 

kurtosis, etc. These features are usually called time-domain features. 

 

 Time domain analysis has been widely employed. Successful results of Root 

Mean Square (RMS) (Tandon, 1994; Downham, 1980), Kurtosis (Dyer and Stewart, 
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1978; Stronach et al., 1984; Williams et al., 2001; White, 1984), skewness, peak 

value (Mathew and Alfredson, 1984), Crest Factor (CF) (Ingarashi et al., 1980), and 

synchronous averaging (Hemmings et al., 1976; McFadden and Toozhy, 2000) have 

been reported in the low frequency range of <5 kHz. Band pass filtering has also 

been conducted in the time domain. It is based on the fact that the strike between the 

damage and the rotating component can excite high frequency resonances (10-100 

kHz). The generated energy from this impact is not sufficient to excite the entire 

rotor’s assembly, but is enough to excite vibration sensor resonance. Monitoring the 

vibration amplitude at the resonant band pass filtered frequency is the principle of the 

shock pulse method (Mathew and Alfredson, 1984; Tandon and Nakara, 1992; Butler, 

1973; Smith, 1982). It is implemented in shock pulse meters which are the most 

accepted diagnostic instrument in the industry. Time domain analysis has the 

advantage of simple calculations, straightforward signal pre-processing, and speed 

independency. However, insensitivity to early stage faults and deeply distributed 

defects are drawbacks of this approach. 

 

2.8.2 Frequency Domain Analysis 

 

 Frequency-domain analysis is based on the transformed signal in frequency 

domain. The advantage of frequency-domain analysis over time-domain analysis is 

its ability to easily identify and isolate certain frequency components of interest. The 

most widely used conventional analysis is the spectrum analysis by means of fast 

Fourier transform (FFT). The main idea of spectrum analysis is to either look at the 

whole spectrum or look closely at certain frequency components of interest and thus 

extract features from the signal. 

 

 Perhaps, frequency domain, also called spectral analysis, is the most reported 

signal processing method for bearing diagnosis. Each bearing component has a 

characteristic frequency, which is calculated from the kinematics of the rotating parts. 

Monitoring these frequencies or their harmonics at a low frequency range (<5 kHz) 

has been successful in bearing diagnosis (Dyer and Stewart, 1978; Igarashi and 

Hamada, 1989; Taylor, 1980). To decrease the effect of the noise level and frequency 

side bands, some researchers have adopted the amplitude demodulated or enveloped 
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signal. The spectral analysis of a low and/or high frequency range enveloped signal 

is repeatedly reported as an efficient method for bearing diagnosis (Kadushin, 1991; 

McMohan and Scott, 1991; Milne et al., 1991; Martin and Thrope, 1992). A number 

of frequency domain features, based on simple or complex signal processing 

methods such as power cepstrum (Tandon, 1994), adaptive noise cancellation (Ho 

and Randall, 2000; Jianfang et al., 1989), and denoising (Bolaers et al., 2004), are 

also proposed for bearing diagnosis. The frequency domain approach is sensitive and 

robust to detect bearing defects and to identify the localized damage location. 

However, the accuracy of this method highly depends on the bearing dimensions and 

rotational speed. In addition, all the frequency domain methods require an intelligent 

selection of the frequency band in order to be effective. 

 

 The time domain vibration signal is typically processed into the frequency 

domain by the application of Fourier transform, usually in the form of fast Fourier 

transform (FFT) algorithm. The principal advantage of the method is that the 

repetitive nature of the vibration signals is clearly displaced as peaks in the frequency 

spectrum at the frequency where the repetition takes place. The FFT provides the fast 

and convenient means of computing the discrete Fourier Transform of vibration data 

and a window function can be used to force the vibration data to appear periodic, 

which reduces leakage from one frequency component to another. A smooth estimate 

of power spectrum computed from stationary random data can be obtained by 

averaging the spectrum obtained by equation over a number of windowed data record 

and is often referred to as the Welch method of power spectrum estimation. One of 

the main purposes in computing power spectra of vibrating data is to identify major 

frequency component which can be found in spectrum and then use these 

components and their amplitude for the trending purposes. The results taken from 

FFT and envelope analysis and conclude that FFT is more suitable for finding the 

fault whereas envelope analysis give excellent results in predicting the damage 

(Spyridon et al., 2009). 
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2.9 PRINCIPAL COMPONENT ANALYSIS (PCA) 

 

 Principle Component Analysis, PCA has been used for a number of 

applications including signal analysis and especially dynamic (acceleration) signal 

analysis (Moniz et al., 2005; Nichols et al., 2006; Choi and Lee, 2004; Trendafilova 

et al., 2007). In its dynamics applications it is indeed most frequently used for 

vibration-based damage and fault detection (Baydar et al., 2001; Moniz et al., 2005; 

Nichols et al., 2006; Trendafilova et al., 2007). A number of articles suggest its 

application for structural damage detection (Moniz et al., 2005; Nichols et al., 2006; 

Trendafilova et al., 2007). The case of structural damage and its detection from 

vibration measurements is somewhat similar to the detection of roller bearing faults. 

The presence of a fault can be seen to change some frequency ranges and the lines in 

these frequency ranges are further used as variables, which are subjected to PCA 

(Nichols et al., 2006; Trendafilova et al., 2007). In the present study a similar 

approach is taken by first applying the wavelet transform, which actually selects the 

frequency range containing the variability due to the presence of a fault, and then 

subjecting the already selected frequency lines to PCA to choose and weight properly 

only those that are responsible for the biggest part of the between-class variance. 

 

 PCA method is a way of identifying patterns in data, and expressing the data 

in such a way as to highlight their similarities and differences. Since patterns in data 

can be hard to find in data of high dimension, where the luxury of graphical 

representation is not available, PCA is a powerful tool for analyzing data. 

 

 The other main advantage of PCA is that once have found these patterns in 

the data, and compress the data, i.e. by reducing the number of dimensions, without 

much loss of information.  
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2.9.1 STEPS IN PCA 

 

 

 

Figure 2.13: General steps in PCA analysis 

 

 According to Figure 2.13, vibration data, which is the frequency domain data, 

can be getting from data acquisition devices. For PCA to work properly, each of the 

data dimensions have to subtract the mean. The mean subtracted is the average 

across each dimension. So, all the data values,   have  ̅ (the mean of the   values of 

all the data points) subtracted, and all the   values have  ̅ subtracted from them (for 

a two dimensional as example). This produces a data set whose mean is zero. 

 

 A useful way to get all the possible covariance values between all the 

different dimensions is to calculate them all and put them in a matrix. So, the 

definition for the covariance matrix for a set of data with   dimensions is: 

Get some data 

Subtract the mean 

Calculate the covariance matrix 

Calculate the eigenvectors and eigenvalues of the 
covariance matrix 

Choosing components and forming a feature vector 

Deriving the new data set 
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 (             (         )),           (2.1) 

 

where    
is a matrix with   rows and   columns, and      is the  th dimension. 

All that this formula says is that if have an  -dimensional data set, then the matrix 

has   rows and columns (so is square) and each entry in the matrix is the result of 

calculating the covariance between two separate dimensions. For example, the entry 

on row 2, column 3, is the covariance value calculated between the 2nd dimension 

and the 3rd dimension.    

  

 An example, the covariance matrix for an imaginary 3 dimensional data set, 

using the usual dimensions  ,   and    . Then, the covariance matrix has 3 rows and 

3 columns, and the values are: 

 

    (

                        

                        
                        

)            (2.2) 

 

 Some points to note: Down the main diagonal, it is noticed that the 

covariance value is between one of the dimensions and itself. These are the variances 

for that dimension. The other point is that since                  , the matrix is 

symmetrical about the main diagonal. 

 

 Since the covariance matrix is square, the eigenvectors and eigenvalues for 

this matrix can be calculated. These are rather important, as they tell useful 

information about the data. For example as below: 
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Theoretically, multiplication of two matrices together is possible, provided they are 

compatible sizes. Eigenvectors are a special case of this. Consider the two 

multiplications between a matrix and a vector above. In the first example (2.3), the 

resulting vector is not an integer multiple of the original vector, whereas in the 

second example (2.4), the example is exactly four times the vector that began with. 

The vector is a vector in two dimensional spaces. The vector (
 
 
) (from the second 

example multiplication) represents an arrow pointing from the origin,       to the 

point     . The other matrix, the square one, can be thought of as a transformation 

matrix. If multiply this matrix on the left of a vector, the answer is another vector 

that is transformed from its original position. 

 

 It is the nature of the transformation that the eigenvectors arise from. Imagine 

a transformation matrix that, when multiplied on the left, reflected vectors in the 

line     . Then if there were a vector that lay on the line    , it’s reflection it 

itself. This vector (and all multiples of it, because it wouldn’t matter how long the 

vector was), would be an eigenvector of that transformation matrix. 

 

 First know that the property of these eigenvectors is that eigenvectors can 

only be found for square matrices. And, not every square matrix has eigenvectors. 

And, given an   x   matrix that does have eigenvectors, there are    of them. Given 

a    x   matrix, there are 3 eigenvectors. Another property of eigenvectors is that 

even if scales the vector by some amount before multiply it, will still get the same 

multiple of it as a result, as below: 
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)  (

 
 
)               (2.5) 
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)  (
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)              (2.6) 

 

This is because if scale a vector by some amount, all are doing is making it longer, 

not changing its direction. Lastly, all the eigenvectors of a matrix are perpendicular, 

i.e. at right angles to each other, no matter how many dimensions they have. By the 
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way, another word for perpendicular, in math’s talk, is orthogonal. This is important 

because it means that the data can express in terms of these perpendicular 

eigenvectors, instead of expressing them in terms of the   and   axes. 

 

 Another important thing to know is that when mathematicians find 

eigenvectors, they like to find the eigenvectors whose length is exactly one. This is 

because, the length of a vector doesn’t affect whether it’s an eigenvector or not, 

whereas the direction does. So, in order to keep eigenvectors standard, whenever 

getting an eigenvector, usually scale it to make it have a length of one, so that all 

eigenvectors have the same length. Here’s a demonstration from previous example 

above. (
 
 
) is an eigenvector, and the length of that vector is 

 

   √        √                (2.7) 

 

then divide the original vector by this much to make it have a length of 1: 

 

   (
 
 
)  √   (

 √  ⁄

 √  ⁄
)             (2.8) 

 

 Eigenvalues are closely related to eigenvectors, in fact, in examples 

mentioned previously. In both those examples, the amount by which the original 

vector was scaled after multiplication by the square matrix was the same. In that 

example, the value was 4. Hence, value 4 is the eigenvalue associated with that 

eigenvector. No matter what multiple of the eigenvector took before multiplied it by 

the square matrix, would always get 4 times the scaled vector as our result. So the 

eigenvectors and eigenvalues always come in pairs. 

 

 Here is where the notion of data compression and reduced dimensionality 

comes into it. If look at the eigenvectors and eigenvalues from the previous section, 

it is noticed that the eigenvalues are quite different values. In fact, it turns out that the 

eigenvector with the highest eigenvalue is the principle component of the data set. In 

our example, the eigenvector with the larges eigenvalue was the one that pointed 



31 
 

down the middle of the data. It is the most significant relationship between the data 

dimensions. 

 

 In general, once eigenvectors are found from the covariance matrix, the next 

step is to order them by eigenvalue, highest to lowest. This gives the components in 

order of significance. The components of lesser significance can be ignoring. By 

doing so, some information will lose, but if the eigenvalues are small, information 

doesn’t lose much. If some components being leave out, the final data set will have 

fewer dimensions than the original. To be precise, if originally have   dimensions in 

the data, and so calculate   eigenvectors and eigenvalues, and then choose only the 

first   eigenvectors, then the final data set has only   dimensions. What needs to be 

done now is to form a feature vector, which is just a fancy name for a matrix of 

vectors. This is constructed by taking the eigenvectors that want to keep from the list 

of eigenvectors, and forming a matrix with these eigenvectors in the columns. 

 

                                                  (2.9) 

 

 This is the final step in PCA, and is also the easiest. Once chosen the 

components (eigenvectors) that wish to keep in the data and formed a feature vector, 

simply take the transpose of the vector and multiply it on the left of the original data 

set, transposed. 

 

                                                        (2.10) 

 

where                    is the matrix with the eigenvectors in the columns 

transposed so that the eigenvectors are now in the rows, with the most significant 

eigenvector at the top, and                 is the mean-adjusted data transposed, 

i.e. the data items are in each column, with each row holding a separate dimension. 

           is the final data set, with data items in columns, and dimensions along 

rows. 

 

 It will give the original data solely in terms of the vectors chose. The original 

data set had two axes,   and    , so data was in terms of them. It is possible to 
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express data in terms of any two axes. If these axes are perpendicular, then the 

expression is the most efficient. This was why it was important that eigenvectors are 

always perpendicular to each other. After changed the data from being in terms of the 

axes   and    , and now they are in terms of 2 eigenvectors. In the case of when the 

new data set has reduced dimensionality, i.e. leaving some of the eigenvectors out, 

the new data is only in terms of the vectors that decided to keep. 

 

 In the case of keeping both eigenvectors for the transformation, the plot is 

basically the original data, rotated so that the eigenvectors are the axes. This is 

understandable since no information lost in this decomposition. 

 

 The other transformation is by taking only the eigenvector with the largest 

eigenvalue. The data resulting from that is found only has a single dimension. If 

compare this data set with the one resulting from using both eigenvectors, it is 

noticed that this data set is exactly the first column of the other. So, if plot this data, 

it would be 1 dimensional, and would be points on a line in exactly the   positions of 

the points in the plot, which have effectively thrown away the whole other axis, 

which is the other eigenvector. 

 

 Basically by transformed the data so that is expressed in terms of the patterns 

between them, where the patterns are the lines that most closely describe the 

relationships between the data. This is helpful because by classified the data point as 

a combination of the contributions from each of those lines. Initially had the simple   

and   axes. This is fine, but the   and   values of each data point don’t really tells 

exactly how that point relates to the rest of the data. Now, the values of the data 

points tell exactly where (i.e. above/below) the trend lines the data point sits. In the 

case of the transformation using both eigenvectors, the data was simply altered so 

that it is in terms of those eigenvectors instead of the usual axes. But the single-

eigenvector decomposition has removed the contribution due to the smaller 

eigenvector and left with data that is only in terms of the other (Smith, 2002). 
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2.9.2 THE SIGNIFICANCE OF USING PCA METHOD  

 

 The aim of PCA is to reduce the quantity of spectral data, and thereby avoid 

over fitting problems, without discarding any useful information (Osborne et al., 

1993). PCA uses projections to extract from a large number of variables, a much 

smaller number of new variables, which account for most of the variability between 

samples. Each of the new variables (principal components) is a linear combination of 

the original measurements and therefore contains information from the entire 

spectrum. PCA fits new axes (variables) in the data space. The first axis is chosen in 

the direction of maximum variability. This way the amount of information in the first 

new variable is maximized. The second axis is chosen to be orthogonal to the first, so 

the second new variable is uncorrelated with the first one. This operation is 

continued until a sufficient amount of variation is explained by the new variables. 

The higher a loading of a variable on a principal component, the more the variable 

has in common with this component. The loadings can be interpreted as correlations 

between the variables and the components. The score of the object is the value on the 

principal component axis, where the object is projected (Jorgensen, 2000). 

 

 PCA method is accurate and useful for vibration signal analysis (Ding et al., 

2010; Bellino, 2010; Zimroz and Bartkowiak, 2012; Lu and Li, 2007). When the 

state information changes, the energy of non-stationary vibration signal are also 

change, this can be indicated accurately by the eigenvectors which is composed of 

PCA signals (Lu and Li, 2007).  

 

2.10 SIGNAL CLUSTERING 

 

 A clustering is a type of classification imposed on a finite set of objects. The 

relationship between objects is represented in a proximity matrix in which rows and 

columns correspond to objects. There are two major categories of clustering types 

namely hierarchical and partitional clustering. The goal of clustering is to determine 

the intrinsic grouping in a set of unlabeled data. There is no absolute best criterion 

which would be independent of the final aim of the clustering. Consequently, it is the 
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user which must supply this criterion, in such a way that the result of the clustering 

will suit their needs (Alexander and Daniel, 2000). 

 

 A hierarchical clustering is a sequence of partitions in which each partition is 

nested into the next partition in the sequence. An agglomerative algorithm for 

hierarchical clustering starts with the disjoint clustering, which places each of the n 

objects in an individual cluster. The clustering algorithm being employed dictates 

how the proximity matrix should be interpreted to merge two or more of these trivial 

clusters, thus nesting the trivial clustering into a second portion. The process is 

repeated to form a sequence of nested clustering in which the number of clusters 

decreases as the sequence progresses until a single cluster containing all n objects, 

called the conjoint clustering, remains. A divisive algorithm performs the task in the 

reverse order. Two specific hierarchical clustering methods are now defined called 

the single- link and the complete-link methods. 

 

 Partitional clustering, on the other hand, attempts to directly decompose the 

data set into a set of disjoint clusters. The criterion function that the clustering 

algorithm tries to minimize may emphasize the local structure of the data, as by 

assigning clusters to peaks in the probability density function, or the global structure. 

Typically the global criteria involve minimizing some measure of dissimilarity in the 

samples within each cluster, while maximizing the dissimilarity of different clusters. 

A commonly used partitional clustering method, K-means clustering, will be 

discussed in some detail since it is closely related to the SOM algorithm. In K-means 

clustering the criterion function is the average squared distance of the data items 

from their nearest cluster centroids. 

 

 Clustering can be used to reduce the amount of data and to induce a 

categorization. In exploratory data analysis, however, the categories have only 

limited value as such. The clusters should be illustrated somehow to aid in 

understanding what they are like. For example in the case of the K-means algorithm 

the centroids that represent the clusters are still high-dimensional, and some 

additional illustration methods are needed for visualizing them. 

 



35 
 

2.10.1 Distances and Similarities 

 

 After getting the eigenvectors from the PCA analysis, an important concept is 

to consider the distance between object points (data points) as a measure of similarity 

of the objects. Based on the distances, clusters of objects and outliers can be detected.  

 

 A fundamental idea in multivariate data analysis is to regard the distance 

between objects in the variable space as a measure of the similarity of the objects. 

Distance and similarity are both inverse: a large distance means a low similarity. 

Two objects are considered to belong to the same category or to have similar 

properties if their distance is small. 

 

 Feature vector from chapter 2.10.1 discussed previously shall be bring in into 

this section for clustering purposes. Let two objects be defined by the vectors xx 

(with components=variables      
      

      
       

  and xy (with 

components=variables      
      

      
       

 . Most used is the Euclidean 

distance, d(Euclid)—equivalent to distance in daily life. Applying Pythagoras’ rule 

gives: 
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 The Euclidean distance is based on squared differences            
 

     
 of the variables. The City Block distance (or Manhattan distance) is the sum of 

the absolute differences of the variables. 

 

            ∑ |     
      

| 
             (2.12) 

 

  

 



36 
 

 In general, the Minkowski distance is defined by 

 

                (∑       
      

   
   )

  ⁄
         (2.13) 

 

 The cosine of the angle a between the object vectors is a similarity measure; 

it is independent from the vector lengths and therefore only considers relative values 

of the variables. 
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          (2.14) 

 

 This measure is equivalent to the correlation coefficient between two sets of 

mean centered data—corresponding here to the vector components of eigx and eigy.  

 

 A similarity measure, sxy, between objects x and y, based on any distance 

measure, dxy, can be defined as 

 

                  ⁄            (2.15) 

 

with dmax the maximum distance between objects in the used data set. 

 

 The Mahalanobis distance considers the distribution of the object points in 

the variable space (as characterized by the covariance matrix) and is independent 

from the scaling of the variables. The Mahalanobis distance between a pair of objects 

eigx and eigy is defined as  

 

                [           
                 ]

   
         (2.16) 

 

It is a distance measure that accounts for the covariance structure, here estimated by 

the sample covariance matrix C. Clearly, one could also take a robust covariance 

estimator. The Mahalanobis distance can also be computed from each observation to 

the data center, and the formula changes to 
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  (    )  [(   
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   (        ̅̅ ̅̅ )]
   

                        (2.17) 

 

Here, eigj is an object vector, and the center is estimated by the arithmetic mean 

vector    ̅̅ ̅̅ , alternatively robust central values can be used. 

 

 Points with a constant Euclidean distance from a reference point (like the 

center) are located on a hyper sphere (in two dimensions on a circle); points with a 

constant Mahalanobis distance to the center are located on a hyper ellipsoid (in two 

dimensions on an ellipse) that envelops the cluster of object points. That means the 

Mahalanobis distance depends on the direction. Mahalanobis distances are used in 

classification methods, by measuring the distances of an unknown object to 

prototypes (centers, centroids) of object classes.  

 

 The most widely used distance measure for cluster analysis is the Euclidean 

distance. The Manhattan distance would be less dominated by far outlying objects 

since it is based on absolute rather than squared differences. The Minkowski distance 

is a generalization of both measures, and it allows adjusting the power of the 

distances along the coordinates. All these distance measures are not scale invariant. 

This means that variables with higher scale will have more influence to the distance 

measure than variables with smaller scale. If this effect is not wanted, the variables 

need to be scaled to equal variance. 

 

 The cosine of the angle between object vectors and the Mahalanobis distance 

are independent from the scaling of the variables. The latter accounts for the 

covariance structure of the data, but considering the overall covariance matrix of all 

objects might result in poor clustering. Thus usually the covariance for the objects in 

each cluster is taken into account (Varmuza and Filzmoser, 2009).  

 

2.10.2 Linkage 

 

 The basic information for splitting or merging clusters is the similarity or 

distance between the clusters.  Let us denote   
   

 and   
   

for i=1,…,n as all 
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observations that have been assigned to cluster j and l, respectively, with the cluster 

sizes nj and nl. Then the distance between the two clusters with index j and l can be 

determined by various methods, where the following are most frequently used: 

 

COMPLETE LINKAGE =     ‖  
   

   
   

‖            (2.18) 

SINGLE LINKAGE =     ‖  
   

   
   

‖            (2.19) 

AVERAGE LINKAGE =         ‖  
   

   
   

‖           (2.20) 

CENTROID METHOD = ‖     ‖             (2.21) 

WARD’S METHOD = ‖     ‖  
√     

√     
            (2.22) 

 

 Complete linkage takes the maximum of all pairwise distances between those 

objects that belong to cluster j and those that belong to cluster l. So, if even only two 

objects in both clusters are far away, the distance between both clusters will be large. 

In contrast, single linkage uses the minimum of the pairwise distances. Thus, the 

distance between two clusters will be small as soon as there exists one object in one 

cluster that is close to one or another object in the other cluster, independent on how 

far the remaining objects are. Average linkage computes the average distance 

between all pairs of objects in the two clusters, i.e., it computes the sum of all 

pairwise cluster distances and divides by the number of pairs      . The centroid 

method uses the distance between the cluster centroids cj and cl. This, however, does 

not lead to strictly increasing distances within the clustering procedure, and thus a 

visualization of the results is difficult. This problem is corrected by the factor used in 

Ward’s method. The other methods are based on averages or on distances between 

the cluster centroids, and are thus somewhere in between single and complete linkage. 

Complete linkage usually results in homogeneous clusters in the early stages of the 

agglomeration, but the resulting clusters will be small. Single linkage is known for 

the chaining effect, because even quite inhomogeneous clusters can be linked just by 

chance as soon as two objects are very similar. Hence, single linkage is chosen for 

this research.  

 

 



39 
 

 The outline an algorithm for agglomerative clustering: 

 

1. Define each object as a separate cluster and compute all pairwise distances. 

2. Merge those clusters (or objects) with the smallest distance into a new cluster. 

3. Compute the distances between all clusters using complete linkage, single 

linkage, average linkage, or other methods. 

4. Merge those clusters with smallest distance from step 3. 

5. Proceed with steps 3 and 4 until only one cluster remains. 

 

 The algorithm starts with linking pairs of objects (visualized by the 

connecting lines) into new clusters of size 2. Then single objects are merged to the 

clusters, and finally clusters are merged. This merging is indicated by the ellipses, 

where the increasing line thickness corresponds to higher levels in the hierarchy. 

 The results of hierarchical clustering are usually displayed by a Dendrogram. 

This tree-like diagram shows the objects as leaves at the bottom, and branches merge 

according to the order given by the algorithm. This presentation is appropriate 

because the objects in clusters of a lower level of the hierarchy are always a subset of 

the objects in clusters of a higher level of the hierarchy. The dendrogram shows the 

evolution of the cluster tree from bottom to top, in the scale of the cluster distance 

measure. It can be used for identifying the number of clusters that is most likely 

inherent in the data structure. If such a number, say k, exists, expect k clear branches 

of the complete tree, i.e., when merging the k clusters to k – 1 clusters, the cluster 

distance (height) will increase considerably. A given number of clusters can be 

achieved by cutting the tree at a certain height. 

 



 

 

 

CHAPTER 3 

 

 

RESEARCH METHODOLOGY 

 

 

3.1 RESEARCH DESIGN 
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Figure 3.1: Research flow chart 
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 Figure 3.1 shows the entire research flow chart for this study. Beginning with 

brainstorming for the design of experiment and experiment set up. Followed by data 

acquisition and data analysis which involving the software application such as 

DASYLab and MATLAB. Once  the result validated and satisfied, the research flow 

continued for discussion and conclusion.  

 

3.2 EXPERIMENT LAYOUT 

 

 An experimental test rig built to predict defects in antifriction bearings is 

shown in Figure 3.2 and Figure 3.3. The test rig consists of a shaft with central rotor, 

which is supported on two bearings. An induction motor coupled by a flexible 

coupling drives the shaft. Defect cylindrical roller bearing is mounted at driver end 

and healthy cylindrical roller bearing is mounted at free end. The cylindrical roller 

bearing is tested at certain constant speed of motor. Cylindrical roller bearing type 

FAG NU203-E-TVP2 used for analysis. 

 

 

 1-healthy cylindrical roller bearing; 2-rotor; 3-defect cylindrical roller; 

 bearing; 4-flexible coupling and 5-motor. 

 

Figure 3.2: Schematic diagram for experimental test rig 

 

Source: Amarnath, 2004 
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Figure 3.3: Experimental test rig 

 

 

Table 3.1: Experimental speed states 

 

 Speed States Shaft Speed (RPM) 

S1 440 or 15% 

S2 1480 or 50% 

S3 2672 or 90% 

 

 The experiment conducted by a variable speed (0-3000 RPM) D.C. motor, 

where three different of speed is chosen at 440 RPM (or 15% of motor speed), 1480 

RPM (or 50% of motor speed) and 2672 RPM (or 90% of motor speed) as listed in 

Table 3.1 above.   

 

 Four types of bearing defects, namely, inner race, contaminated, corroded and 

roller defects were studied. Experimental tests were carried out on four sets of 

bearings. Initially new bearing (good bearing) was fixed in the test rig and signals 

were recorded using FFT analyzer in DASYLab. The good bearing was replaced by 

defective bearing and signals were recorded for each one of the case separately under 

the same standard condition using frequency domain analysis were carried out. 
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Figure 3.4: Standard condition setup 
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Figure 3.5: Signal analysis flow chart 
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Figure 3.6: General flow for signal acquisition 

 

 Figure 3.4 shows standard condition setup for the experiment. The 

experiment and signal analysis involved is illustrated in the flow chart Figure 3.5. 

The sensor used is PCB piezoelectric sensor model 356B08 with the sensitivity of 

95.5 mV/g for x-axis, 96.6 mV/g for y-axis and 97.4 mV/g for z-axis. Since 

cylindrical roller bearing handles heavier radial loads, hence, the z-axis signal is then 

studied.  

 

 As illustrated in Figure 3.4, the number of samples chosen is typically a 

number like 51200. This is also the maximum sampling rate for NI-DAQ 9234 which 

having effective frequency of 1652 Hz to 51200 Hz. The block size of 32768 data is 

chosen, which is also the maximum block size available in DASYLab software. By 

choosing the bigger block size enable the result of FFT having smaller resolution 

between each data, which a resolution of 1.56 Hz is obtained.  

 

 Additionally, the integration of signals (producing a velocity or displacement 

signal from an accelerometer or a displacement signal from a velocity pickup) will 

tend to lose low frequency information and introduce noise. Integration of the input 

signal is generally best accomplished in analog circuits due to the limited dynamic 

range of the analog-to-digital (A/D) conversion process. Digital circuits typically 

Sensor 

A/D 

Conversion 

Analyzer Setup 
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introduce more errors and if there is any jitter at low frequency, it becomes 

magnified upon integration.  

 

 Leakage (or smearing) is the result of the FFT algorithm trying to handle 

discontinuities in the sample. The FFT sees the discontinuities as a modulating 

frequency. This can be overcome by applying windowing function. The windowing 

function applied in this research is Flat-Top that gives broader band shape but 

maximum amplitude error of 1% compared to Hanning which gives narrow band 

shape but maximum amplitude errors of 16%. Figure 3.6 shows the general flow for 

signal acquisition.  

 

3.3 BEARINGS CHARACTERISTIC 

 

 The bearing that going to use in this research is the cylindrical roller bearings 

NU203-E-TVP2, manufactured by the Schaeffler Group's FAG brand. The details for 

the bearing mentioned are list as below in Table 3.2 and Figure 3.7: 

 

Table 3.2: Cylindrical roller bearing details and dimensions (FAG NU203-E-TVP2)  

 

Annotation Details / Dimension 

Inner diameter,   17mm 

Outer diameter,   40mm 

Roller diameter,    6.5mm 

Pitch diameter,    10.4mm 

Bearing’s width,   12mm 

Number of rollers,    11pcs 

Contact angle,   0º 

 

Source: Schaeffler Group Industrial, 2012 
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 d= 17mm 

 D= 40mm 

 B= 12mm 

             D1= 32.5mm 

    F= 22.1mm 

    E= 35.1mm 

 

 

 

 

Figure 3.7: Cylindrical roller bearing geometry (FAG NU203-E-TVP2) 

 

Source: Schaeffler Group Industrial, 2012 

 

 The FAG brand started with an ingenious idea. In 1883, Friedrich Fischer 

designed a ball grinding machine in Schweinfurt, Germany that, for the first time, 

made it possible to produce absolutely round steel balls by grinding. This invention 

is regarded as the foundation for the entire rolling bearing industry. This is one of the 

reasons why FAG has long been considered to be a pioneer in rolling bearing 

technology. 

 

3.4 PREPARATION OF TEST BEARINGS 

 

 Discrete testing required the preparation of test bearings with discrete faults 

of a known width in one of the raceways. For this research a number of bearing faults 

were considered, namely inner race defect, outer race defect, rolling element defect, 

cage defect, corrosion and contamination defects. In order to develop the required 

library of vibration records, a set of bearings with faults of differing faults was 

required. Schweinfurt FAG NU203-E-TVP2 bearings were used in this research: 6 

were dismantled and used for discrete testing. About 40% of failures of electric 

motors are caused by bearings (Albrecht et al., 1986). In industrial applications, these 

bearings are considered as critical mechanical components and a defect in such a 
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bearing, unless detected in time, causes malfunction and may even lead to 

catastrophic failure of the machinery (Tandon and Choudhury, 1999). 

 

 The common causes of these faults are impropriate lubrication (Timken 

Company, 2011). The main failure cause is the inappropriate lubrication of the 

bearing rolling elements, which is approximately 80% of the cases (Radu, 2010).  

 

 To achieve getting a corroded test bearing, it is rather simple to prepare for it 

simply by applying water onto the bearing and let it be oxidized for a few days and 

the outcome is illustrated in Figure 3.8. For a faster oxidize reaction, the test bearing 

can be expose to acidic solution simply by apply some acidic solution on it. 

 

 

 

Figure 3.8: Corroded defect bearing specimen 

 

 For contamination fault, it can be achieve by applying some steel powder or 

burs together with lubricant in order to allow the steel powder to be evenly being 

applied throughout the bearing, as illustrated in Figure 3.9.  
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Figure 3.9: Contaminated defect bearing specimen 

  

 Figure 3.10 illustrate the inner race defect prepared for experiment purpose. 

To prepare an inner race defect bearing, simply by using a sharp triangular chisel tool 

to do filling on the inner race. Due to the reason that shape of inner race is cylindrical, 

the use of a G-clamp is needed in order to fix the inner race position while doing 

filing on it.  

 

 

 

Figure 3.10: Inner race defect bearing specimen 
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 As for preparing a rolling element defect, it can be achieve by applying the 

method that almost similar with the method applied on creating an inner race defect 

that discussed previously and is illustrated in Figure 3.11.  

 

 

 

Figure 3.11: Roller defect bearing specimen 

 

3.5 DATA ACQUISITION 

 

 Figure 3.12 shows that setup used for NI-DAQ software using NI-9234 

device. The sensitivity of the sensor used must be key in correctly correspond to the 

axes. Figure 3.13 shows setup for DASYLab software, including the windowing 

function used is Flattop shown in the figure and is applied throughout the whole data 

acquisition processes.   
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Figure 3.12: NI-DAQ software setup 

 

 

 

Figure 3.13: DASYLab software setup 
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3.6 SIGNAL ANALYSIS 

 

 Principle Component Analysis, PCA is the method used for signal clustering. 

The PCA method, which showed its effectiveness in the fault detection and isolation 

FDI, was implemented recently for the system diagnosis (Liu, 2006; Benaicha et al., 

2010; Huang, 2001).  

 

 

 

Figure 3.14: Applied PCA flow chart 

 

 Figure 3.14 shows the applied PCA flow chart. The software used to apply 

PCA is MATLAB. MATLAB coding in Figure 3.15 is the purpose to rearrange data 

into the correct time blocks while command in Figure 3.16 is to prepare the scatter 

plot. 

 

START 

Get some data 

Subtract the mean 

Get covariance matrix 

Get eigenvectors and eigenvalues 

Choosing components and forming 
a feature vector 

END 
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Figure 3.15: MATLAB coding to arrange data in time block 

 

 

 

Figure 3.16: MATLAB command for scatter diagram 
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3.7 SIGNAL CLUSTERING 

 

 Dendrogram is used for clustering display purposes. It is a tree-like diagram, 

the objects are as leaves at the right-hand side. The branches merge according to the 

linkage order given by the algorithm. Objects in clusters of a lower level of the 

hierarchy are always a subset of the objects in clusters of a higher level. Figure 3.17 

illustrate the flow involved for signal clustering using dendrogram and the command 

involved in MATLAB software illustrated in Figure 3.18. 

 

 

 

Figure 3.17: Flow chart for dendrogram clustering 
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Figure 3.18: MATLAB command for dendrogram plotting 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 4 

 

 

RESULT AND DISCUSSION 

 

 

4.1 INTRODUCTION 

 

 There are five groups of data which based on each type of bearing used for 

this project. Each of the group is known as healthy bearing, inner race defect bearing, 

contaminated bearing, corroded bearing, and lastly roller defect bearing. Each group 

of data contains three sets of data which was based on three speeds, which are 440 

RPM, 1480 RPM and 2672 RPM. The data is obtained using sampling rate 51200, 

block size 32768, applying flattop data window for FFT purpose. 

 

4.2 DATA ACQUISITION 

 

 Figure 4.1 to 4.3 shows the time domain graph obtained from five types of 

bearing with speed of 440 RPM, 1480 RPM and 2672 RPM. Healthy bearing (red) 

without defect has the lowest amplitude as observed. Contaminated (yellow) and 

roller (pink) defect bearings has a slightly higher amplitude range and has a 

characteristic spike on an each column of x-axis. This happen due to the rotating 

bearing hit the point defect on the bearing inner area (Qayyuum, 2012). Whereas for 

inner race (blue) and corroded (green) defect bearings, the spikes is much more 

visible than contaminated and roller defect bearings.  
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Figure 4.1: Time domain for speed 440 RPM 

 

 

 

Figure 4.2: Time domain for speed 1480 RPM 
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Figure 4.3: Time domain for speed 2672 RPM 

 

 Going through Figure 4.1 to 4.3, it is noticed that healthy, contaminated and 

corroded signals have spikes all over the graph. This could be explained as both 

contaminated and corroded detect were covered all over the bearing components. 

Inner race and roller signals show defect spikes in certain period as these two defects 

are considered as point defect which the faulty only occurred at specific one small 

part in the bearing component. The amplitude of spikes is noticed proportional to the 

operating RPM (Bhave, 2010).  

 

 Figure 4.4 to 4.6 are the corresponding frequency domain graph for the three 

different speeds in random block of signal. It is observed that the healthy bearing and 

roller defect bearing both having quite similar trend in terms of its amplitude values. 

Contaminated and inner race defect bearings both having higher amplitude trend 

compared to healthy and roller defect bearings. This is due to both contaminated and 

inner race defects are considered as heavy defects for bearings. Furthermore, the 

amplitude trend for corroded defect bearing is observed that having the highest value. 

This is due to corrosion all over the bearing, from inner race, roller to outer race.  
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Figure 4.4: Frequency domain graph for five types of bearing on speed of 440 RPM 

 

 

 

Figure 4.5: Frequency domain graph for five types of bearing on speed of 1480 RPM 
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Figure 4.6: Frequency domain graph for five types of bearing on speed of 2672 RPM 

  

 Going through Figure 4.4 to 4.6, it is observed that inner race and roller 

defect both having lump shaped signals in higher RPM. The corroded defect bearing 

signals has the highest spikes of amplitude (Qayyuum, 2012). Signals are observed 

that mostly having increase in amplitude with respect to experimental RPM. Signals 

trend and pattern having similar lump shaped (Suri, 2010).  

 

 From all of this result, there the uses of different types of bearing faults where 

the most severe defect creates higher amplitude in signal and the good bearing 

creates less vibration (Martin and Honarvar, 1994). 

 

4.3 PRINCIPAL COMPONENT ANALYSIS (PCA) RESULTS  

 

 The objective of PCA is to categorize the fifty data in their respective groups 

for each speed. Where, the plotted data must be separated from each other in the 

graph. 
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4.3.1 PCA Result for Speed of 440 RPM 

  

 Figure 4.7 shows the calculated principal component analysis (PCA) for five 

types of bearing that has been plotted based on two principal component analysis 

axis, PC-1 versus PC-2. This figure clearly shows the data are scattered in their own 

characteristic, where there is a thin separation of contaminated (yellow) data from the 

others. Inner race (blue) data share the same situation with contaminated data. As for 

corroded data, it scatters farthest away comparing to the rest of the defect data. While 

for healthy (red) and roller (purple) data, it is observed that both of the scatter within 

each group firmly and closed to each other. It also shows corroded data were not 

precisely distributed but the other four groups of data were noticed to be precisely 

distributed in their scatter group. 

 

 

 

Figure 4.7: PC-1 versus PC-2 PCA scatter diagram for speed 440 RPM 
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4.3.2 PCA Result for Speed of 1480 RPM 

 

 Figure 4.8 shows clearly the separation and grouping for all bearing types. It 

is noticed that all the group of data is considered grouped firmly in their 

corresponding cluster. Noticing inner race in the situation where it is greatly isolated 

and remain within their group. It is noticed that both healthy and contaminated data 

scattered much more precise compared to the other three types of bearing fault data. 

 

 

 

Figure 4.8: PC-1 versus PC-2 PCA scatter diagram for speed 1480 RPM 

 

4.3.3 PCA Result for Speed of 2672RPM 

 

 Figure 4.9 shows a result that is also clear in separation on grouped data 

except roller (purple) having some data that might lead to outliers. But, for all other 

data, their separation is clear even to the naked eye. Same as previous speed analysis, 

corroded (green) and inner race (blue) are separated from each other and all other 

data by quite a fine margin. It is noticed that besides roller defect data, the rest of the 

data group scattered precisely within each of their defect group. 
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Figure 4.9: PC-1 versus PC-2 PCA scatter diagram for speed 2672 RPM 

 

 To conclude the result in PCA, by referring to the scatter diagrams plotted, it 

shows that all of the bearing type data are scattered in their own groups and none of 

them intrude and became outliers to other groups (Widodo et al. 2007). 

 

4.4 AGGLOMEARATIVE HIERARCHICAL CLUSTERING 

 

 This is the final analysis in this research. For a clustered dendrogram to be 

successful, by observing for example, the data inner race defects lie in only a branch 

of the dendrogram. Meaning there is no other data in the branch and inner race defect 

data also do not intrudNie on other type data branches. 

 

4.4.1 Dendrogram for speed 440 RPM 

 

 Since the data plotted in scatter diagram mostly scattered in circular cluster, 

the distance use for dendrogram plotting purposes is Euclidean distance the most 
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suitable. While for the linkage involved, single linkage approach is used in order to 

get the minimum of the pairwise distances. 

 

 Figure 4.10 shows the complete view of dendrogram generated form 

MATLAB® software as a whole for speed of 440 RPM sorting from corroded, inner 

race, contaminated, healthy and lastly roller defect bearings data. By rough 

observation from the dendrogram, the grouped data is in their respective group or 

clustering by the type of bearing defects without any outliers occurred.  

 

 Overall, it is found that the healthy and the roller having the closest branch, 

followed by contaminated, then inner race and lastly corroded defect. This result is 

proven to be corresponding with scatter diagram Figure 4.7 where the corroded 

defect bearing data lies farthest in the plot. Followed by contaminated, then inner 

race and lastly corroded defect data.  

 

 Although healthy and roller data are observed clustered closed together but 

by applying dendrogram, all the data able to be separated with their corresponding 

group. Both defect data does not intrude in each other minimum and maximum range 

of data. 
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Figure 4.10: Dendrogram complete view for speed 440 RPM 

 

4.4.2 Dendrogram Speed 1480 RPM 

 

 Figure 4.11 shows the full view of dendrogram generated from MATLAB® 

software as a whole for speed of 1480 RPM sorting from roller, corroded, 

contaminated, healthy and lastly inner race defect bearing data. Roughly observation 

from the figure it is observed that the grouped data is in their respective group or 

branches by the type of bearing defects. 

 

 Generally, it is observed that the branch of roller and corroded defect data are 

much nearer (or similar) to each other. While contaminated and healthy data 

considered sharing the almost similar condition. Lastly, the inner race defect data 

having the farthest distance compared to other groups of data. This result is true by 

referring to the scatter diagram Figure 4.8 where it is clearly that the scatter for inner 

race defect data lay farthest in the plot.  
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Figure 4.11: Dendrogram complete view for speed 1480 RPM 

 

 In scatter diagram of Figure 4.8 it is observed that roller and corroded data 

are observed clustered closed together. By applying dendrogram, both the data are 

proved to staying closed together but it is clearly that that stay at each of own group 

without having any outliers data that intrude other group. All these showing the PCA 

analysis able to do clustering for the vibration signal data accordingly with respect to 

their branches without any outliers.  

 

4.4.3 Dendrogram Speed 2672 RPM 

 

 Figure 4.12 shows the complete view of dendrogram generated from 

MATLAB® software as a whole for speed of 2672 RPM sorting from top to the 

bottom are corroded, inner race, contaminated, roller and lastly healthy bearing data. 

Through rough observation, it is found that all the groups of data are able to stay in 

the same branch of each group of branch. 
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  Going through the dendrogram, it is noticed that with the healthy and roller 

defect data having the closest distances apart, followed by contaminated, then inner 

race and lastly is corroded data. This condition is proven true by referring to scatter 

diagram Figure 4.9, where the data of healthy bearing and roller defect bearing group 

were observed to scatter nearest with each other and while corroded group of data 

were scatter farthest correspond to other groups of data.  

 

 

 

Figure 4.12: Dendrogram complete view for speed 2672 RPM 

 

 All in all, according to the results obtained, all of the data are clustered in 

their own clusters and situated in their respective branches without any outliers, 

assimilation or intrudes of branches for all the speed studied. 



 

 

 

CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

5.1 CONCLUSION 

 

 Defect features was successfully detected on all of defective bearings and 

good condition bearing using frequency domain signal coupled with Principal 

Component Analysis to achieve signal clustering. Statistical parameters calculations 

are the basic of principal component analysis and finally the result are grouped in 

dendrogram of hierarchical clustering. Each of the defect bearings and healthy 

bearing has their own vibration trend when detail inspection is observed. By applying 

principal component analysis, the difference can be seen due to the presentation of 

the data using colors in a three dimensional plotting and finally clustering where the 

data remain in their own clusters without intertwining with other data. From the 

analysis, a monitored or tested system with all three variation of speed, results in a 

definite yet clear separation in principal component analysis and cluster of the defect 

bearings and good condition bearing all without any outliers. All of this shows that 

statistical analysis is effective in differentiating a multiple defect bearing with a good 

condition bearing at all three variation of speed of 440 RPM, 1480 RPM and 2672 

RPM that tested in this research. Clear differentiation of the bearings in any running 

speed has made it possible for online monitoring without interrupting the machine 

for checking and maintenance purposes. 

 

 

 

 

 



68 
 

5.2 RECOMMENDATION 

 

 For further continuation of this project, many aspect of the experiment can be 

improved, such as making use of a one-stop instrumentation system for both data 

acquisition together with signal analysis. This is believed able to simplify the 

monitoring system by both time and cost aspects.  

 

 Another suggestion to make here is such technique can expand its usage to 

other types of bearings in order to verify its wide utility in condition monitoring field. 
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