FINITE ELEMENT ANALYSIS ON MULTI-PLANE DEFECTS OF ASTM 106 STEEL PIPE

CHEONG KOK SOON

Report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

JUNE 2013

UNIVERSITI MALAYSIA PAHANG

	BORANG PENG	GESAHAN STATUS TESIS 🔶	
JUDUL:	JUDUL: FINITE ELEMENT ANALYSIS ON MULTI-PLANE DEFECTS		
	<u>OF A</u>	STM 106 STEEL PIPE	
	SESI F	PENGAJIAN: 2012/2013	
Saya	CHEONG	G KOK SOON (880328-05-5047)	
mer Perp	ngaku membenarkan tesis (Sar pustakaan dengan syarat-syarat	jana Muda/ Sarjana / Doktor Falsafah)* ini disimpan di t kegunaan seperti berikut:	
1. 2. 3. 4.	Tesis adalah hakmilik Universi Perpustakaan dibenarkan men Perpustakaan dibenarkan men pengajian tinggi. **Sila tandakan ($$)	siti Malaysia Pahang (UMP). nbuat salinan untuk tujuan pengajian sahaja. nbuat salinan tesis ini sebagai bahan pertukaran antara institusi	
(SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)	
(TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)	
(TIDAK TERH	AD	
		Disahkan oleh:	
 T)	'ANDATANGAN PENULIS)	(TANDATANGAN PENYELIA)	
Ala	mat Tetap:		
<u>NO</u> TA SEI	.844, JLN BUKIT GALENA MAN BUKIT GALENA, 702 REMBAN NEGERI SEMBII	16,NASRUL AZUAN BIN ALANG200,(Nama Penyelia)LAN.	
Tar	ikh: 27 JUNE 2013	Tarikh: : <u>27 JUNE 2013</u>	
CATATAN:	 Potong yang tidak Jika tesis ini SUL berkuasa/organisa dikelaskan sebaga Tesis dimaksudka Penyelidikan, atau penvelidikan, atau 	k berkenaan. IT atau TERHAD, sila lampirkan surat daripada pihak Isi berkenaan dengan menyatakan sekali tempoh tesis ini perlu It atau TERHAD. In sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara It disertasi bagi pengajian secara kerja kursus dan It Laporan Projek Sarjana Muda (PSM).	

UNIVERSITI MALAYSIA PAHANG FACULTY OF MECHANICAL ENGINEERING

I certify that the project entitled "*Finite Element Analysis on Multi-Plane Defects of ASTM 106 Steel Pipe*" is written by *Cheong Kok Soon*. I have examined the final copy of this project and in my opinion, it is fully adequate in terms of language standard and report formatting requirement for the award of the degree of Bachelor of Mechanical Engineering.

Dr. DANDI BACHTIAR Examiner

Signature

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this report and in my opinion this report is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:
Name	: NASRUL AZUAN BIN ALANG
Position	: LECTURER
Date	: 18 th JUNE 2013

STUDENT'S DECLARATION

I hereby declare that the work in this project report "*Finite Element Analysis On Multi-Plane Defect of ASTM 106 Steel Pipe*" is my own except for quotations and summaries which have been duly acknowledged. The report has not been accepted for any degree and is not contently submitted in candidate of any other degree.

Signature	:
Name	: CHEONG KOK SOON
ID Number	: MA09115
Date	: 27 th JUNE 2013

TABLE OF CONTENTS

	Page
EXAMINER'S DECLARATION	ii
SUPERVISOR'S DECLARATION	iii
STUDENT'S DECLARATION	iv
DEDICATIONS	v
ACKNOWLEDGEMENTS	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	XX

CHAPTER 1 INTRODUCTION

1.0	Background	1
1.1	Problem Statement	2
1.2	Objectives	2
1.3	Scopes	2

CHAPTER 2 LITERATURE REVIEW

2.1	Material Properties of ASTM	
2.2	Specification of ASTM A106	
2.3	Application of ASTM A106	6
2.4	Types of failure/defects	7
	2.4.1 Corrosion defect on pipeline2.4.2 Full scale burst tests of real and artificial corrosion	8 10
	defects	

2.5	Gouges and dents defect on pipeline	
	2.5.1 Burst tests of full-scale pipes with gouge defect	14
2.6	Material and specimen geometry	15
2.7	Stress modified fracture strain	16
	2.7.1 Proposed ductile failure simulation method	17
2.8	Tensile test and results	18
	2.8.1 Finite Element Analysis for tensile test2.8.2 Comparison between experimental and analysis results	19 21
2.9	Finite Element Analysis of defect pipeline	23

CHAPTER 3 METHODOLOGY

3.1 In	troduction	28
3.2 Fl	ow chart Description	29
3.1	2.1 Literature review	30
3.	2.2 Specimen Preparation	30
3.	2.3 Machining Process	33
3.	2.4 Check the notched dimension	36
3.	3.5 Tensile Test	38
3.	3.6 Experiment Apparatus	38
3.	3.7 Experiment Material	39
3.	3.8 Experiment Procedure	41
3.	3.9 Spectrometer Analysis	42
3.1	3.10 Measuring final diameter	43
3.	3.11 Experiment procedures	44
3.	3.12 Development of failure criteria equation	45
3.	3.13 Structure modeling	46
3.3.14 3.3.15	3.14 Modeling procedure	47
	3.15 Simulation	53
3.3 Ga	antt Chart	54

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	55
4.10	Tensile Test Result	56
	4.1.1 Analysis of tensile data	56
4.2	Results	57
	4.2.1 Comparison of burst pressure of different defect thickness of the case 3 between stress modified criteria	57

		strain model (SMCS) and von Mises stress results	
	4.2.2	Comparison of burst pressure of different defect	58
		thickness of the case 2 between stress modified criteria	
		strain model (SMCS) and von Mises stress results	
	4.2.3	Comparison of burst pressure of different defect	60
		thickness of the case 3 between stress modified criteria	
		strain model (SMCS) and von Mises stress results	
	4.2.4	Summary of burst pressure with different defect	61
		thickness and same defect width for stress modified	
		criteria strain model (SMCS) and von Mises stress results	
	4.2.5	Comparison of burst pressure of different defect width of	63
		the case 1 between stress modified criteria strain model	
		(SMCS) and von Mises stress results	
	4.2.6	Comparison of burst pressure of different defect width of	64
		the case 2 between stress modified criteria strain model	
		(SMCS) and von Mises stress results	
	4.2.7	Comparison of burst pressure of different defect width of	66
		the case 3 between stress modified criteria strain model	
		(SMCS) and von Mises stress results	
	4.2.8	Summary of burst pressure with different defect width	67
		and same defect thickness for stress modified criteria	
		strain model (SMCS) and von Mises stress results	
4.3	Finite	element analysis result	68
	431	Finite element analysis (FEA) defect deformation of	68
		strain in comparison with different defect thickness and	00
		same defect width	
	432	Finite element analysis (FEA) defect deformation of	72
	1.3.2	strain in comparison with different defect width and same	12
		defect thickness	
	433	Finite element analysis (FEA) defect deformation of	75
		stress in comparison with different defect thickness and	10
		same defect width	
	434	Finite element analysis (FEA) defect deformation of	78
		stress in comparison with different defect width and same	
		defect thickness	
	4.3.5	Finite element analysis (FEA) defect deformation in	81
		comparison with method stress modified criteria strain	01
		model (SMCS) and von Mises stress at same defect	
		thickness	
	_		

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Introduction	84
5.2	Conclusion	84
5.3	Recommendation for future researcher	85

REFERENCES	87
APPENDIX A1	89
APPENDIX A2	90
APPENDIX A3	91

LIST OF TABLE

Table :	Title	Page
2.1	Chemical properties of ASTM A106	5
2.2	Mechanical properties of ASTM A106	6
3.1	Machining parameters	35
3.2	Experimental parameters	42
3.3	Dimension parameters	48
3.4	Material data for ASTM A106	54
4.1	Burst pressure for different thickness of SMCS and von Mises stress of case 1	58
4.2	Burst pressure for different thickness of SMCS and von Mises stress of case 2	61
4.3	Burst pressure for different thickness of SMCS and von Mises stress of case 3	64
4.4	Burst pressure for different depth of SMCS and von Mises stress of case 1	69
4.5	Burst pressure for different depth of SMCS and von Mises stress of case 2	72
4.6	Burst pressure for different depth of SMCS and von Mises stress of case 3	75

LIST OF FIGURES

Table :	Title	Page
2.1	Etched microstructure of the ASTM A106 steel	4
2.2	SEM micrographs of the specimens treated at 710 $^{\rm o}{\rm C}$ for various duration	5
2.3	Gas pipeline failure that caused by third-party damage	7
2.4	Third-party interference in the pipeline crossing project	7
2.5	A heavily corroded pipeline	9
2.6	Buried pipeline started to corrode	9
2.7	Test set-up defect and failure of full-scale burst test for pipe	11
2.8	Bursting that performed on a pipe cut from an actually corroded pipeline	11
2.9	The arrow indicates the location along the adjacent parallel gouge	12
2.10	Gouge defect that found in pipeline	12
2.11	Dent defect that found in pipeline	13
2.12	Dent marks was surrounded by a number of cracks	13
2.13	Schematic illustration of a full-scale pipe with gouge defect	14
2.14	Gouge defect (a) before the test and (b) after the test	14
2.15	(a) smooth tensile bars; (b) and (c) notched tensile bars	15
2.16	Sample notched 1.5R mm specimen	15
2.17	Experiment engineering stress-strain data for smooth and notched tensile bar tests.	18
2.18	FE meshes for notched tensile bar (a) notched=0.2R, (b) notched=1.5R and (c) notched=3R	19
2.19	True stress-strain data for present FE analysis	20

2.20	(a) notched bar with 3 mm notched radius and (b) notched bar with 6 mm notch radius	21
2.21	(a) Stress triaxiality distributions and (b) Equivalent strain distributions for smooth and notched tensile bars at the failure initiation point	22
2.22	(a) Based on the critical location and (b) based on the section average criterion	23
2.23	Finite Element mesh of a burst test simulation	23
2.24	Finite element model of the (a) soil formation with tectonic fault, (b) soil coss-section and (c) steel pipeline	25
2.25	Deformation of the pipeline-soil system after fault displacement	26
2.26	Plan view of deformed shape of a pipeline and (b) distribution of longitudinal normal strain	26
2.27	Transition from a smooth configuration to a wavy pattern and (b) local buckling formation	27
2.28	Variation of equivalent plastic shear strain at the critical pipeline area : (a) transition from a smooth configuration to uniform wavy patter and (b) local buckling formation	27
3.1	Research flow chart	29
3.1	Tensile specimen of 1.5R notched	31
3.2	Tensile specimen of 3R notched	31
3.3	Tensile specimen of 6R notched	32
3.4	Smooth tensile specimen	32
3.5	Lathe machine that used for turning	35
3.6	Specimens from left is cut from hydraulic bend saw then is milling and finishing by turning	35
3.7	HSS cutting tool for 6R	36
3.8	On progress of doing 6R notch in the specimen	36
3.9	Profile projector to measure the notched dimension	37
3.10	Instron 3369 Universal Testing machine	38

3.11	1.5R specimen for tensile test	39
3.12	3R specimen for tensile test	40
3.13	6R specimen for tensile test	40
3.14	Smooth specimen for tensile test	41
3.15	Spectrometer analysis machine – Foundary Master	42
3.16	Specimen for spectrometer analysis	43
3.17	Measuring Microscope Mahvision MM 320 – Mahr	43
3.18	Quadra-chek 300	44
3.19	Configuration before starting the MSC Patran	47
3.20	Points and lines created	48
3.21	Surfaces and normal forces in x-axis	48
3.22	Full design of a quarter of the pipe	49
3.23	Multi defects on pipeline	49
3.24	Surfaces and normal forces in x-axis	50
3.25	Boundaries conditions that applied	50
3.26	Reduce integration	51
3.27	True strain and true stress values	51
3.28	Material properties	52
3.29	Setting of analysis	53
4.1	Engineering stress strain curve of ASTM A106	56
4.2	True stress strain curve of ASTM A106	57
4.3	Comparison graph of burst pressure versus defect thickness for SMCS and von Mises case 1	58
4.4	Comparison graph of burst pressure versus defect thickness for SMCS and von Mises case 2	59

4.5	Comparison graph of burst pressure versus defect thickness for SMCS and von Mises case 3	61
4.6	Summary of graph burst pressure versus defect thickness for SMCS	62
4.7	Summary of graph burst pressure versus defect thickness for von Mises	62
4.8	Comparison graph of burst pressure versus defect width for SMCS and von Mises case 1	64
4.9	Comparison graph of burst pressure versus defect width for SMCS and von Mises case 2	65
4.10	Comparison graph of burst pressure versus defect width for SMCS and von Mises case 3	66
4.11	Summary of graph burst pressure versus defect width for SMCS	67
4.12	Summary of graph burst pressure versus defect width for von Mises	68
4.13	Defect deformation of strain to the defect width 10 mm strain model at 30MPa: a) thickness 3 mm, b) thickness 6 mm, c) thickness 9 mm	69
4.14	Defect deformation of strain to the defect width 20 mm strain model at 30MPa: a) thickness 3 mm, b) thickness 6 mm, c) thickness 9 mm	70
4.15	Defect deformation of strain to the defect width 30 mm strain model at 30MPa: a) thickness 3 mm, b) thickness 6 mm, c) thickness 9 mm	71
4.16	Defect deformation of strain to the defect thickness 3 mm strain model at 30MPa: a) width 10 mm, b) width 20 mm, c) width 30 mm	72
4.17	Defect deformation of strain to the defect thickness 6 mm strain model at 30MPa: a) width 10 mm, b) width 20 mm, c) width 30 mm	73
4.18	Defect deformation of strain to the defect thickness 9 mm strain model at 30MPa: a) width 10 mm, b) width 20 mm, c) width 30 mm	74
4.19	Defect deformation of stress to the defect width 10 mm stress model at 30MPa: a) thickness 3 mm, b) thickness 6 mm, c) thickness 9 mm	75
4.20	Defect deformation of stress to the defect width 20 mm stress model at 30MPa: a) thickness 3 mm, b) thickness 6 mm, c) thickness 9 mm	76
4.21	Defect deformation of stress to the defect width 30 mm stress model at 30MPa: a) thickness 3 mm, b) thickness 6 mm, c) thickness 9 mm	77

4.22	Defect deformation of stress to the defect thickness 3 mm stress model at 30MPa: a) width 10 mm, b) width 20 mm, c) width 30 mm	78
4.23	Defect deformation of stress to the defect thickness 6 mm stress model at 30MPa: a) width 10 mm, b) width 20 mm, c) width 30 mm	79
4.24	Defect deformation of stress to the defect thickness 9 mm stress model at 30MPa: a) width 10 mm, b) width 20 mm, c) width 30 mm	80
4.25	Comparison of defect deformation between stress and strain for defect thickness 3 mm with different defect width	81
4.26	Comparison of defect deformation between stress and strain for defect thickness 6 mm with different defect width	82

4.27 Comparison of defect deformation between stress and strain for defect 82 thickness 9 mm with different defect width

LIST OF ABBREVIATIONS

TTM	Trans Thailand-Malaysia
ASTM	American Society for Testing and Materials
FEA	Finite Element Analysis
PGU	Peninsular Gas Utilization
PLUS	North-South Expressway
SSGP	Sabah Sarawak Gas Pipeline
SOGT	Sabah Oil and Gas Terminal
LNG	Liquified Natural Gas
API	American Petroleum Institute
SCC	Stress-Corrosion Cracking
SMCS	Stress Modified Critical Strain
ASME	American Society of Mechanical Engineer
CAD	Computer Aided Design
HSS	High Speed Steel
2D	Two Dimension
3D	Three Dimension

LIST OF SYMBOLS

P_{y}	Internal pressure on the onset of yield
$\sigma_{\scriptscriptstyle 1}$	Ratio of the applied tensile force F to the metal area A
${\cal E}_i$	Strain at onset of instability
d	Pipe outer diameter
Т	Pipe wall thickness
k	Strength coefficient
W	Defect width
L	Pipe length
t	Defect thickness
$P_{\rm exp}$	Experimental pressure
$V_{\scriptscriptstyle Void}$	Volume of voids
$\sigma_{_y}$	Yield stress
$\sigma_{_0}$	Von Mises effective stress
$\sigma_{\scriptscriptstyle m}$	Hydrostatic pressure (mean stress)
$\sigma_{_{eq}}$	Von Mises effective stress
$\sigma_{_{eq}}$	Von Mises effective stress
α	Material constant
${\cal E}_f$	Fracture strain