FLOW STRAIGHTENING ANALYSIS IN AN OPEN CHANNELS FLUME

IRWAN BIN MISALAM

A report submitted in partial fulfilment of the requirements for the award of the degree of Bachelors of Mechanical Engineering

> Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

> > JUNE 2013

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Overview of Energy Extraction From Tidal Energy	1
1.3	Tidal Energy Testing Facility	2
1.4	Problem Statement	2
1.5	Project Objectives	2
1.6	Scopes of Project	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	4
2.2	Flume	4
2.3	Open Channel Flow	4
2.4	General Flume Design Data	5
2.5	5 Reynolds Number	
2.6	The Entrance Region	7
	2.6.1 Entry Lengths	8

Page

2.7	Flow Straightener 10				
2.8	Losses in Flow Straightener 12				
2.9	Current Research In Flow Straightener 13				
2.10	Material	14			
2.11 Analysis		14			
	2.11.1 Definition of CFD	14			
	2.11.2 Application of CFD	15			

CHAPTER 3 METHODOLOGY

3.1	Introduction 10	
3.2	Flow of The Project	
3.3	Flow Straightener Design	18
	3.3.1 Honeycomb Design	18
	3.3.2 Vane Tube Design	19
	3.3.3 Rectangular Design	21
	3.3.4 Design Justification	22
3.4	Hydraulic Radius and Reynolds Number for Non	22
	Circular Cross Section	
3.5	Design Simulation	24
3.5	Boundary Condition	
	3.5.1 Inlet	26
	3.5.2 Outlet	26
	3.5.3 Top Opening	26

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction 2'	
4.2	2 Honeycomb Design	
	4.2.1 Pressure Drop of Honeycomb Design	29
4.3	Vane Tube Design	30
	4.3.1 Pressure Drop of Vane Tube design	31
4.4	Rectangular Design	33

	4.4.1 Pressure Drop Rectangular Design	34
4.5 Comparison Between Design		35
4.6	Relation Between contact Surface and Ratio of40	
	Length Over Diameter	

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Introduction	43
5.2	Conclusion	43
5.3	Recommendation for Future Research	44

REFFERENCES

APPENDIX A

LIST OF TABLES

Table No.		Page
3.1	Dimension for Hexagonal Shape	19
3.2	Dimension for Rectangular Shape	22
4.1	Design Ratio (L/D)	27
4.2	Number of Cells and the Wall Thickness	28
4.3	Pressure Drop of Honeycomb Design (Pa)	26
4.4	Number of Cells and the Wall Thickness	31
4.5	Pressure Drop of Vane Tube Design (Pa)	28
4.6	Number of Cells and the Wall Thickness	33
4.7	Pressure Drop of Rectangular Design (Pa)	31
4.8	Vane Tube surface contact area for every design (m ²)	41

LIST OF FIGURES

Figure No.

Natural open channel flow

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Test section facility for open channel flow 6 8 Entrance region analysis diagram Hydrodynamic of entry length 9 Several types of flow straightener 11 Example analysis of flow straightener 13 Flow chart of the project 17 Honeycomb straightener 18 Honeycomb straightener entrance 18 19 Vane tube straightener Vane tube straightener entrance 20 Rectangular straightener 21 Rectangular straightener entrance 21 23 Area and wetted parameter for different shapes Few of simulation result 25

3.10Boundary condition regulation254.1Honeycomb flow straightener284.2Pressure drop graph for honeycomb flow straightener design29

Page

5

4.3	vane tube flow straightener	30
4.4	Pressure drop graph for vane tube flow straightener design	32
4.5	Rectangular flow straightener	33
4.6	Pressure drop graph for rectangular flow straightener design	34
4.7	Pressure drop graph comparison for 6 inch diameter	36
4.8	Pressure drop graph comparison for 8 inch diameter	37
4.9	Pressure drop graph comparison for 10 inch diameter	38
4.10	Pressure drop graph comparison for 12 inch diameter	39
4.11	Surface contact graph comparison between all three designs	42

LIST OF SYMBOLS

Pa	Pascal
т	meter
ρ	Density
m/s^2	Meter / Second ²
∆P	Pressure loss
A	Area (m ²)
f	Friction Factor
V	Velocity
L	Length
g	Gravity
D	Diameter
Re	Reynolds Number
μ	Dynamic Viscosity
Q	Volume flow rate
R	Hydraulic Radius
L_h	Hydrodynamic entry length
H_{L}	Head Loss

LIST OF ABBREVIATIONS

- I.D Internal diameter
- O.D Outer diameter