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ABSTRACT 

 

This project was performed to propose ductile failure criteria as a function of the 

stress triaxiality for the API X42 steel pipes. The objective of this project is to determine 

the burst pressure of modeled pipe using strain based failure criteria. In this project, 

uniaxial tension test was performed using three types of specimen. The specimen extracted 

from API X42 5L steel pipe. The steel pipe was machined to desired dimension and obeys 

the international standard of ASTM-E8 specimen. Three type of specimen which is smooth, 

notch radius 1.5 mm, 3 mm and 6 mm prepared and undergoes uniaxial tension test. The 

engineering stress-stress data retrieved from the test converted to the true stress-strain 

curve. The true stress-strain data become as an input data to the simulation analysis. Initial 

and final diameter of specimen was taken to calculate the strain fracture of the pipe. Stress 

modified critical strain criteria were proposed by using the strain fracture. The findings of 

the main parameter which is burst pressure predictions precede by using FEA software. 

Finite Element analysis was performed by using MSC Patran/Marc 2008r1 software. In 

MSC Patran, the API X 42 steel pipes was modeled. Burst pressure predicted compared to 

the available industrial pipe design assessment in order to validate the obtained results. 
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ABSTRAK 

 

Projek ini telah dilaksanakan untuk mencadangkan kriteria kegagalan mulur sebagai 

tekanan fungsi triaxiality untuk paip keluli API X42. Objektif projek ini adalah untuk 

menentukan tekanan pecah paip dimodelkan menggunakan kriteria kegagalan berasaskan 

ketegangan. Dalam projek ini, ujian ketegangan ekapaksi dilakukan dengan menggunakan 

tiga jenis viiipecimen. Spesimen dikeluarkan dari API 5L X42 paip keluli. Ia telah dimesin 

untuk menjadi contoh dan menurut standard antarabangsa ASTM-E8. Tiga jenis 

viiipecimen yang licin, jejari bertakuk 1.5 mm, 3 mm dan 6 mm disediakan dan menjalani 

ujian ketegangan ekapaksi. Data tegasan-terikan kejuruteraan dari ujian, ditukar kepada 

graf tegasan-terikan benar. Data telah ditukar dijadikan sebagai input data untuk analisis 

simulasi. Diameter awal dan akhir viiipecimen telah diambil untuk mengira patah tekanan 

paip. Terikan kriteria tegasan kritikal yang diubahsuai telah dicadangkan dengan 

menggunakan tekanan patah. Hasil parameter utama iaitu tekanan ramalan pecah telah 

diteruskan dengan menggunakan perisian FEA. Analisis Unsur Terhingga dilakukan 

dengan menggunakan MSC Patran / Marc perisian 2008r1. Dalam MSC Patran, API X 42 

paip keluli telah dimodelkan. Bagi mengesahkan keputusan yang diperolehi, tekanan letus 

yang diramalkan, dibandingkan dengan penilaian reka bentuk paip industry. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1   RESEARCH BACKGROUND 

 

The long-distance pipeline for transportation of the natural gas, one of the green energy 

resources, is now under construction in the world wide range, due mainly to the expensive 

requirement of the energy resources. One of the major difficulties is that, usually, the 

production area is far from the usage area, resulting in higher transportation cost of the 

natural gas, although this has been known for many years.  

In additions, underground gas pipelines are often subject to damages due to 

surroundings environment such as corrosion, and the third party accidents such as dents and 

gouges. The negligence by the human factor will cause those defect. The high costs of 

maintenance have to be provided to ensure the smooth transportation of the gas.  

The installation cost for the thus steel gas pipe higher than the cost of the pipe itself. To 

minimize those excessive cost, lots of analysis have been proposed and running over a 

decade. Lots of efforts give to ensure the last longer of the gas transportation’s 

performance. 

The study was focusing on API X42 steel pipe material. Three type of sample specimen 

were machine according to the Tensile testing standard requirement. Tensile test has been 

performed on the selected material to determine the engineering stress – strain curve. Then, 

detailed elastic–plastic, finite element analyses perform to simulate tensile tests specimens 

and thus to determine variations of the triaxial stress and strain.  
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1.2  PROBLEM STATEMENT 

Nowadays, the fitness-for-service analyses of underground gas pipelines, engineering 

assessment methods against possible effects need to be developed, it will prevent such as 

corrosion, gouges and dents defects type. Thus possible causes may not distress in a day, 

but it will bounce on results in few years which consist of extraordinary maintenance cost.  

Nothing that, typical gas pipelines are made of sufficiently ductile materials, the net-

section limit load approach can be used, where a damaged pipe is assumed to fail at the 

load when the net section is in the fully plastic state. Meanwhile, design of pipelines is one 

of the important processes in developing the engineering structure. During design stage, 

few processes were involved such as analysis of deflections, stress analysis, cost reliability 

and others.  

Stress analysis appears as a crucial process for many engineering structure fail due to 

lack of consideration on the analysis. One of the important parameters involve in stress 

analysis is uniaxial fracture strain. The failure on engineering structure normally predicted 

based on maximum stress that withstand the structure. Unfortunately, the fracture strain 

becomes critical to be determined. 

 

1.3  PROJECT OBJECTIVES 

 

 The research proposes ductile failure criteria as a function of the stress triaxiality for 

the API X42 steel pipes. Smooth and notched tensile rods with three notch radii are tested 

to determine parameter of ductile failure criteria. The strain based failure criteria will be 

applied for failure prediction of the defective API steel pipes. For this purpose, the strain-

based criterion will be developing in advance. Otherwise, the burst pressure will be 

determined for different defect dimension. 
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1.4  SCOPES OF STUDY 

The scopes of research are as follows: 

i. Preparation of both smooth and notched specimens 

ii. Uniaxial Tension test- at room temperature obey the ASTM E8  

iii. Finite Element Analysis 

 MSC PATRAN/MARC 

 Non-linear 

 Homogeneous material 

iv. Validations - Compare result between equation and available industrial codes 

for pipelines defect assessment. 



 

 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1  INTRODUCTION  

 This chapter will provide the detail descriptions literature review done accordingly 

to tittle of ductile failure analysis of API steel pipe on strain-based failure criteria. 

Literature regarding any development or experiment about fracture strain and state of stress 

is useful in this project. This chapter will explain about the fundamentals of API X42 steel 

pipes, pipelines, engineering stress-strain curve, true stress-strain curve, finite element 

analysis, and failure criteria that available in this project. 

 

2.2  FUNDAMENTAL OF X 42 API STEEL PIPES  

 The material used in this study was API X42 steel. Specimens for uniaxial tensile 

test were extracted in longitudinal direction from pipe. Table 2.1 and 2.2 shows the 

chemical compositions and mechanical properties of API X42 
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Table 2.1: Chemical composition of API X42 steel pipe 

Sources: N.A.Alang (2009) 

 

 C P Mn S Fe 

Experimental 

API SPEC 5L 

0.03 

0.28(max) 

0.01 

0.08(max) 

0.98 

1.3(max) 

0.003 

0.03(max) 

98.6 

Balance 

 

 

Table 2.2: Mechanical Properties of API X42 steel pipe in room temperature. 

 

 Young Modulus, 

 E (GPa) 

Poisson Ratio, 

V 

Yield 

Strength,  

σy (Mpa) 

Tensile stress, 

σs (MPa) 

Experimental 207 0.3 284.7 464.4 

 

 

2.3  PIPELINES 

API pipeline tubes belong to ANSI (American National Standard Institute) 

Petroleum standards. The function of line pipe is to pump the oil, gas, water from field to 

the refinery. Pipeline tubes include seamless tube and welded tube. The development of 

pipeline steel plate technology and welding technique widen the application scope of 

welded pipe. Each of pipe type have their own mechanical properties which as vary it from 

each other.  

Pipelines have been employed as one of the most practical and low price method for 

large oil and gas transport since 1950. The pipe line installations for oil and gas 

transmission are drastically increased in last three decades. Consequently, the pipeline 

failure problems have been increasingly occurred. The economic and environmental and 

eventually in human life considerations involve the current issue as structural integrity and 

safety affair. 
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2.3.1  Defects on Pipes 

 

 The explosive characteristics of gas provide high wakefulness about the structural 

integrity. Therefore, the reliable structural integrity and safety of oil and gas pipelines 

under various service conditions including presence of defects should be warily evaluated. 

The external defects, corrosion defects, gouge, foreign object scratches, and pipeline 

erection activities are major failure reasons of gas pipelines. 

 

 

Figure 2.1: External corrosion defect on pipe 

 

Source: M.Hadj, 2010 

 

 A typical external of a corrosion defect is given in Figure 3.1. Several types of 

pipes failures can be distinguished as longitudinal, circumferential or helicoidally failures 

(M.Hajd,Y.G Matvienko, G. Pluvinage, 2010 ) . These types depend mainly on pipe 

diameter. For small diameter pipes, where bending stresses are the major, circumferential 

failure occurs. For large diameters, hoop stresses are more important than bending stresses 

and longitudinal failure appears. When bending and hoop stresses are of the same 

importance, fracture path becomes spiraled. Pipe steels have yield stress up to 700 MPa for 

the most recent quality in order to ensure enough ductility and weld ability. 

Defects occurring during the fabrication of a pipeline are usually assessed against 

recognized and proven quality control limits. However, a pipeline will regularly contain 
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larger defects at some stage during its life and these will require a fitness- for-purpose 

assessment to determine whether or not to repair the pipeline. 

 

Line pipe steels is generally tough and ductile. Initiation and propagation of a part-

wall flaw through the wall occurs under a ductile fracture mechanism, involving some 

combination of plastic flow and crack initiation and ductile tearing, involving a process of 

void nucleation, growth and coalescence. The relative importance of plastic flow and crack 

initiation and tearing depends on the toughness of the material and the geometry of the 

defect.  

 

As the toughness decreases the burst strength of a defect will decrease. As the 

toughness increases the burst strength of a defect will increase, but tending towards an 

upper limit corresponding to the plastic collapse limit state, where failure occurs due to 

plastic flow .Therefore, if the toughness is greater than some minimum value then the 

failure of a defect will be controlled by plastic collapse and only knowledge of the tensile 

properties of the material is required to predict the burst strength. 

 

Corrosion is an electrochemical process. It is a time dependent mechanism and 

depends on the local environment within or adjacent to the pipeline. Corrosion usual 

appears as either general corrosion or localized (pitting) corrosion. There are many different 

types of corrosion, including galvanic corrosion, microbiologically induced corrosion, AC 

corrosion, differential soils, differential aeration and cracking. Corrosion causes metal loss.  

 

It can occur on the internal or external surfaces of the pipe, in the base material, the 

seam weld, the girth weld, and or the associated heat affected zone (HAZ). Internal and 

external corrosion are together one of the major causes of pipeline failures. Figure 2.2 

shows example of worse corrosion effect on the pipeline. It will cause higher maintenance 

cost and wasting time. 
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Figure 2.2: Corrosion on the pipeline 

 

Sources: M.Hajd, 2010 

 

Corrosion in a pipeline may be difficult to characterize. Typically, it will have an 

irregular depth profile and extend in irregular pattern in both longitudinal and 

circumferential directions it may occur as a single defect or as a cluster of adjacent defects 

separated by full thickness (uncorroded) material. 

 

There are no clear definitions of different types of corrosion defects. The simplest 

and perhaps most widely recognized definitions are as pitting corrosion. It defined as 

corrosion with a length and width less than or equal to three times the uncorroded wall 

thickness. While, general corrosion, defined as corrosion with a length and width greater 

than three times the uncorroded wall thickness. 
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Figure 2.3: The irregular length, width and depth of a typical corrosion defect. 

 

Source: A.Cosham, 2007 

 

 

2.4  ENGINEERING STRESS-STRAIN CURVE 

 

Stress-strain curves are an extremely important graphical measure of an API steel 

pipe material’s mechanical properties. Perhaps the most important test of a material’s 

mechanical response is the tensile test. The engineering measures of stress and strain, 

denoted in this module as σe and ɛe respectively, are determined from the measured the load 

and deflection using the original specimen cross-sectional area A0 and length L0 as 

 

σe = 
 

  
       (2.1) 
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 ɛe = 
 

  
                     (2.2) 

   

When the stress σe is plotted against the strain ɛe, a typical engineering stress-strain curve 

such as that shown in figure 2.4 is obtained. 

 

 

 

Figure 2.4: Stress-strain curve 

 

Sources: David, 2001 

 

As strain is increased, many materials eventually deviate from this linear 

proportionality, the point of departure being termed the proportional limit. This nonlinearity 

is usually associated with stress-induced “plastic” flow in the specimen. Here the material is 

undergoing a rearrangement of its internal molecular or microscopic structure, in which 

atoms are being moved to new equilibrium positions. This plasticity requires a mechanism 

for molecular mobility, which in crystalline materials can arise from dislocation motion. 

Materials lacking this mobility, for instance by having internal microstructures that block 
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dislocation motion, are usually brittle rather than ductile. The stress-strain curves for brittle 

materials are typically linear over their full range of strain, eventually terminating in 

fracture without appreciable plastic flow. The stress needed to increase the strain beyond 

the proportional limit in a ductile material continues to rise beyond the proportional limit; 

the material requires an ever-increasing stress to continue straining, a mechanism termed 

strain hardening. 

 

These microstructural rearrangements associated with plastic flow are usually not 

reversed when the load is removed, so the proportional limit is often the same as or at least 

close to the material’s elastic limit. Elasticity is the property of complete and immediate 

recovery from an imposed displacement on release of the load, and the elastic limit is the 

value of stress at which the material experiences a permanent residual strain that is not lost 

on unloading. The residual strain induced by a given stress can be determined by drawing 

an unloading line from the highest point reached on the curve at that stress back to the strain 

axis.  

  

Until the neck forms, the deformation is essentially uniform throughout the 

specimen, but after necking all subsequent deformation takes place in the neck. The neck 

becomes smaller and smaller, local true stress increasing all the time, until the specimen 

fails. This will be the failure mode for most ductile metals. As the neck shrinks, the 

nonuniform geometry there alters the uniaxial stress state to a complex one involving shear 

components as well as normal stresses. 

 

2.5  TRUE STRESS STRAIN CURVE 

 

 While stress testing, the stress-strain curve is a graphical representation of the 

relationship between stress, obtained from measuring the load applied on the sample. 

Meanwhile, strain derived from measuring the deformation of the sample. The nature of the 

curve varies depends on the type of materials. Strain describes quantitatively the degree of 

deformation of a body. It is measured most commonly with extensometers and strain 

gauges. For uniaxial deformation strain can be expressed as 
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ɛe = 
      

  
     (2.3) 

Where 

 ɛe   = engineering strain 

    = original length of the undeformed specimen 

    = final length of the deformed specimen 

Based on this definition, if a sample were stretched such that Lf = 2L0, the tensile 

engineering strain would be 100%. On the other hand, if a sample were compressed to the 

limit such that Lf = 0, the compressive engineering strain would again be 100%. These 

extreme examples show that for large strain the definition of equation (2.3) is not 

meaningful.  

For purely elastic deformation stresses are uniquely defined by the final 

configuration of a material, regardless of how this final state is reached. Because of the 

presence of irreversible elements in the deformation a plastic analysis has to follow the path 

along which the final configuration is reached. So that, the total deformation is generally 

divide into small increments.  

Considering the uniaxial case, let dL be the incremental change in gauge length and L the 

gauge length at the beginning of that increment. Then, the corresponding strain increment 

becomes 

dɛ = 
  

 
      (2.4) 

and the total strain for a change of the gauge length from L0 to Lf 

   ɛ = ∫   
 

 
 = ∫

  

 

  
  

 = ln 
  

  
    (2.5) 


