Multithreading Prioritization Concurrently By using an
effective Dynamic Slicing Algorithm

Maysoon A. Mohammed" 2, Mazlina Abdul Majid', Mohammed Adam Ibrahim', Balsam A. Mustafa'

! Faculty of Computer Systems & Software engineering, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

2 Mechanical Engineering Department, University of Technology, Karrada, Baghdad, Iraq

E. mails: saiftrt@yahoo.com, mazlina@ump.edu.my, adamibrahim@ump.edu.my, balsam@ump.edu.my

Abstract: Lately, multithreading evolved into a standard way to enhance the
processor usage and program cfficiency. The dynamic program slice can be
that component of an application that ‘“‘affects” the working out of an
adjustable regarding interest throughout program performance over a certain
system input. Dynamic program slicing describes an amount of program
slicing techniques that depend on program execution and may even
significantly decrease the size of an application slice simply because run-time
data, accumulated during program execution, is used in order to figure out
system slices. Three related methods to multithreading prioritization are
introduced in this paper. One of the problems with multithreading is the
concurrent of the operations where in this research we expand an effective
dynamic slicing algorithm to priorities multithreaded concurrently. The
algorithm would compute exact slices in multithreaded execution
circumstances. The similar priority threads having the highest priority might
perform in a synchronized way with no deadlock with another thread. The
results of this work would help the threads with the same priorities to be
executed simultaneously and reduce processing time.

Keywords: Dynamic slicing, multithreading, prioritization, and CPTA.
1. INTRODUCTION

Multitasking is a task covering concurrent execution of several
programs at the same time. In programming term this phenomena is
called multithreading. Nowadays, the computers became very fast for
a human to handle the interpretation of the switching mechanism over
the parallel execution of several threads on a single processor. So the
interpreter would do the switching among the threads. A multi-
threaded program starts with one thread of execution, and alternative
threads could also be created afterward. Generally, a multithreaded
program consists of one main (global) thread and many other threads.
The other threads are initiated by the main thread. For example, a
multithreaded program consists of one main thread and other threads
named X, Y and Z. The main thread considers the start and initial
execution point that the threads created by it. Furthermore, the local
threads X, Y and Z could be a main thread to other threads and so on,
this illustrated in figure 1 below:

The Main
Thread
Thread X Tend Y Thread Z
Figure 1: Thread Initialization

Most of the applications that we use through the PC or even mobile are
multi-threaded, that means more than one task will be implemented
concurrently. For example, when using the Internet, the network
browser implemented by more than one thread which may be a thread
to display the images and another thread to retrieve data from the
network. Another example, the Microsoft word application could have
multi threads for displaying graphics, responding to keystrokes from
the user, and performing spelling and grammar checking in the
background. Also, For instance, when a user wants to print and read a
document from files in the same time, this can perform by executing
multiple threads in a parallel execution. Thus, one thread would target
at printing of the document and another thread would correspond to the
process of reading a document from a file. One of the solutions of the
concurrent operations is to divide the complex program to segments or
simpler tasks and execute them in parallel. This would assist to speed
up the execution of the complex program to decrease the execution
rate extremely. CPU would process the execution threads that have
priorities in a sequential order. Depending on the nature of the
processing of the thread there are three given degrees of priority
maximum, normal and minimum priority. For example, background
tasks such as screen personalize should be assigned with lowest
priority and an error detecting or file updating tasks is given the
highest priority. Normally, thread with the highest priority would be
run first followed by the thread with the lowest priority. In the case of
more than one thread have the maximum priority the CPU time cannot
partitioned among threads having the same priority leading to blocking
situation. So we expand a dynamic slicing algorithm called Concurrent
Priority Threads Algorithm (CPTA) to guarantee three things: smooth
execution of multiple threads, speed up the work of CPU, and prevent
the CPU from harm due to the influx of multithreaded with the same
priority, In this paper we focuses on the smooth run of multiple threads
to reduce the processing time.

2. BASIC PRINCIPLES

Traditionally such reactive software systems have been designed as
shared-memory multi-process or multi-threaded programs [1]. One of
the available options for the user depending on the scale of the
experiment is to create a control scheme from scratch, using a
programing language and operating system of choice, with the use of
helpful guides and various libraries [2]. The program P has all the
statements that belong to a program slice which affect the value of
variable v at proper point p [3].



Dynamic- Slicing is more benefit in program debugging, testing,
program understanding, software maintenance, and present with
android systems (e.g., [4], [5], [4], [6]) and [7].

This paper is focused on modifying an effective dynamic slicing
algorithm for multithreaded programs with the same priority threads.
The algorithm would help in effective way of more than two threads
that have been supported with the maximum priority. Multithreaded
programs that require locking and unlocking of the critical section
resources run in a synchronized way. The algorithm would compute
precise slices by taking dynamic execution traces in the multithreaded
program. The slices would correspond to those statements in the
program that are affected by the dynamic slicing criterion. Dynamic
slicing is a beneficial technique that would help in the
synchronization of multithreaded programs and would catalyze the
rate of execution with thread priority at the top side.

3. RELATED WORK

This section presents the methods that related with multithreading
prioritization and make a comparison among these methods in respect
to four categories (time, aspect, accuracy and kind of system) as
illustrated in table 1.

a. ACE Method

The ACE method is depending on three resources the Application, the
Control Unit, and External data. The idea is each thread has its own
priority and the issue unit serves the threads according to their
priorities. The priority p of a thread i is computed as follows: pi =
min(ai, ei) + ri when ri = min(mi, bi + si). bi is the lowest or base
priority of thread i; mi is the highest priority and si is an offset to
adapt the current priority by the application, user defined, or the
Control Unit. ei is an external data limited by ai to the priority
assumed by application and control unit, even to a new bounded but
higher maximum value. When the operating system want to rapid run
to external interrupt routines or to release a critical resource as fast as
could, then the feature of arise a priority boost for a short time will be
useful in this case [8]. Figure 2 shows the range for single and
multiple threads priority can use at run time.

)
:
mi+8
my 3
: : Pi
Appicaton
* b1
sources Thread number

Figure 2: Range of Priority for single and multiple threads [8]
b. Semaphore coprocessor

It is an extension for the ACE method by putting some sort of
semaphore coprocessor since yet another impact in which threads
affect each other and also which usually makes use of the external
input pertaining to handling the thread priority. Selecting the
semaphore coprocessor covers the two factors, thread stalls due to
synchronization between software threads and also synchronization
that has a hardware unit. Equally are usually related in numerous parts

of embedded systems and also servers [9]. The semaphore
coprocessor, shown in figure 3, handles a configurable variety of
resources. Each resource has a queue plus a token Si, i € 0..k. The
lock and also unlock instructions usually are put into the instruction
set of the processor so the issue unit passes all instructions towards
the coprocessor. A certain token is requested by a lock instruction.
When the instruction arrives and if the token is available then the
coming instruction will be served at once. Else, it is buffered and the
thread is paused until the occupying thread releases the token. If a
thread asks for a token and this token is allocated by another thread,
then to avoid the long pause for the waiting thread the priority of the
allocation thread will be raised. There are two directions to modify
the priority:

1. A static value ei would increases the priority so that the priority of
a thread is always will be the highest if there is at least one thread
requiring the same token, or

2. It is increased by a dynamic value ei. In this case, ei depends on the
number of threads waiting for the token. So, ei = ¢ * #queue where ¢
is constant and #queue is the current queue length [9].

Semaphore Coprocessor

Figure 3: Semaphore coprocessor [9]
c¢. DYNAMIC SLICINGTHREADS

The programming languages which have an object-oriented base are
more suitable than the other languages to dynamic slicing technique.
A dynamic slicing criterion specifies the input, and takes into account
different occurrences of a statement in an execution trace [10]. The
input and the program statement are belongs to the run trace which in
turn belongs to dynamic slicing criterion. The technique works by
computing of slices on a special type of graph called System
Dependence Graph based on a particular slicing criterion <s, V>,
where s is the program statement and V is the program variable for
which the slice is being computed [11].

The execution of many threads concurrently started with a global
thread can be done by abstraction of two kinds of dependence named
Dynamic thread dependence graph (DTDG) and Priority
multithreaded dependence graph (PMDG).

Table 1: Comparison among multithreading prioritization methods

Methods ACE Semaphore Dynamic Slices
Findings Coprocessor
Time Reduce time with Reduce time with Reduce time
very low cost Tesource increasing processing
Aspect SW., MW. and HW. SW.
HW.
Accuracy YES YES, with more needs | YES
for processor resources
as for semanhore




In this-researcn we focused on the fourth method which is dynamic
slicing threads.

4. PROPOSED ALGORITHM

The slicing algorithm for the multithreaded programs based on
priority takes the execution trace of the program at run time. The
algorithm computes all the threads that have the maximum priority for
CPU scheduling task. The threads with the minimum priority are
executed last after the high priority threads. The algorithm is called
Concurrent Priority Threads Algorithm (CPTA) and would be
computing all the threads in the multithreaded program with the same
assigned priority. The threads would be synchronized sequentially for
the processing by the CPU scheduler. The dynamic slicing criterion
taken for this algorithm is <S, v, E, i> where S is the statement in the
program, v is the variable or object used in the specified statements, E
is the execution trace with the input i provided dynamically at run
time [12]. This algorithm makes sure that the threads having
maximum priorities are processed equally by the CPU by concurrent
suspending and resuming of threads. The threads can also be sent to
the sleep state for a specified period of time in milliseconds.

Concurrent Priority Threads Algorithm steps:

Input: Threads in a priority based multithreaded program, dynamic
slicing criterion <S, v, E, i>. Output: Processed Threads with highest
equal priorities.

Step 1: Construct the PMDG of the given priority based multithreaded
program

Step 2: Take the slicing criterion <S, v, E, i>, where the input i is the
maximum priority thread taken dynamically at run time and repeat the
following:

(a) Repeat while threadX.stop(); and thready.stop();

(b) threadX.start(); and thready.start();

(¢) for X=1to 5and Y=1to0 5;

(d) if(threadX==MAX_PRIORITY)

(e) then Print thread X processing

() if(threadY==MAX_PRIORITY)

(g) then Print threadY processing

(h) if(threadX and threadY=—MAX PRIORITY)

(i) then Print threadX and threadY processing

(j) else Print threadX pre-empted; threadX.suspend()

(k) else Print threadY pre-empted; threadY.suspend()

Step 3: Resume the suspended threads

(a) threadX.resume();Print threadX processed

(b) threadY .resume();Print threadY processed

Step 4: End
5. EXPEREMINTAL RESULTS

The purpose of the experiment of the algorithm for Priority
Multithreading dependence graph is to reduce the processing time of
the CPU by taking just the statements that have effect on the thread
segment. Also, for the execution stage of the thread the algorithm will
increase the run rate in respect to the highest priority threads.

Figure 4 is a bar graph represents the threads with the corresponding
priorities; we can see that the threads starts from the highest for thread
7 and decreases for all threads until reach the lowest priority for
thread A (i.e. the execution is sequential). The statements for this
graph in the program take the code:

1z z

73 class ThreadPriorityDemo

74 i

public static void main{5tring args[])

7610 1

7 A threadi=new A(});

78 B threadB=new Bi);

il C threadC=new C(};

20 X threadX=new X{}:

81 Y threadY=new ¥{);

22 Z thresdZ=new Z{};

B3 threadZ.setPriority (mzead.ﬁf}.x_f’!?: ORITY);

24 thready¥.setPriority(threadX.getPriority()+1);
85 threadX.setPriority{threadC.getPriority()+1);
26 threadC.setPriority(threadB.getPriority()+1);
87 threadB, setPriority(threadA.getPriority{)+1};
threadA.setPriority(Thread NN PRIORITY):

Priority

1 2 3 2

Threads (Z, Y, X,C,B,A)

Figure 4: priorities of the threads

Moreover, if we have two threads with the same maximum priority as
thread Z with thread X, the code and the graph would be as below.

T sk R
Refactor Run Debug Profile Tesm Tools Window Help
BRI Nt
= i
CASSBEIF eI H0 00 &

Vot 1| fjseves (TR oga .

Thresd z:h=s

Thresd Xomes
=iz 2z
Exir X




Here, first we specify the priorities for the threads so that gave thread
Z and X the maximum priorities, the other threads with lower
priorities. Second, we could get this result that the two threads Z and
X with the maximum priorities will be executed concurrently and then
the other threads with the lower priorities after two times of
execution.

1 z

2 s 5

Threads{Z X,Y,C,BA)

Figure 5: priorities concurrently for threads Z and X
6. CONLUSION AND FUTURE WORK

Dynamic slicing algorithm would help the threads with the same
priorities to be executed simultaneously, where the CPU allocate
equal time for execution to the threads with the highest priorities. It
guarantees the rapid execution rate to the program, and less time
consuming by providing the critical resources for the threads. Also it
has the flexibility to change the priorities of the threads without harm
the CPU or slow down the path of running. Moreover, the occurrence
of deadlocks is belittled to an estimable track that would not impede
the path of execution. Thus, the slicing algorithm proves to be an
enhancement for the multithreaded programs using synchronization
mechanism for its efficient usage of resources. For the future work,
we attend to add more threads with two CPUs, and make the threads
dependable on each other.

7. REFERENCES

[1] M. Emmi, A. Lal, and S. Qadeer, "Asynchronous
programs with prioritized task-buffers,” in
Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of
Software Engineering, 2012, p. 48.

N. Sinenian, A. B. Zylstra, M. J.-E. Manuel, J. A.
Frenje, A. D. Kanojia, J. Stillerman, et al., "A
multithreaded modular software toolkit for control
of complex experiments," Computing in Science
& Engineering, vol. 15, pp. 66-75, 2013.

S. Gutz, A. Story, C. Schlesinger, and N. Foster,
"Splendid isolation: A slice abstraction for
software-defined networks," in Proceedings of the
first workshop on Hot topics in software defined
networks, 2012, pp. 79-84.

D. Binkley, S. Danicic, T. Gyiméthy, M. Harman,
A. Kiss, and B. Korel, "Theoretical foundations of
dynamic program slicing," Theoretical Computer
Science, vol. 360, pp. 23-41, 2006.

(2]

3]

[4]

[5]

[6]

(71

(8]

[]

[10]

[11]

[12]

R. Gupta, M. J. Harrold, and M. L. Soffa, "An
approach to regression testing using slicing," in
Software Maintenance, 1992. Proceerdings.,
Conference on, 1992, pp. 299-308.

K. B. Gallagher and J. R. Lyle, "Using program
slicing in software maintenance," Software
Engineering, IEEE Transactions on, vol. 17, pp.
751-761, 1991.

L. LIU, R. GU, and B. XU, "Design and
Implementation of Multi-Thread Interaction Based
on Android," in International Conference on
Management and Engineering (CME 2014), 2014,
p- 11.

A. Doring and M. Gabrani, "On networking
multithreaded processor design: hardware thread
prioritization," in Circuits and Systems, 2003
IEEE 46th Midwest Symposium on, 2003, pp.
520-523.

C. Albrecht, A. C. Doring, F. Penczek, T.
Schneider, and H. Schulz, "Impact of coprocessors
on a multithreaded processor design using
prioritized threads," in Parallel, Distributed, and
Network-Based Processing, 2006. PDP 2006. 14th
Euromicro International Conference on, 2006, p. 7
Pp-

N. Sasirekha, A. E. Robert, and D. M. Hemalatha,
"Program slicing techniques and its applications,"
arXiv preprint arXiv:1108.1352, 2011.

N. Walkinshaw, M. Roper, and M. Wood, "The
Java system dependence graph," in Source Code
Analysis and Manipulation, 2003. Proceedings.
Third IEEE International Workshop on, 2003, pp.
55-64.

D. P. Mohapatra, R. Mall, and R. Kumar, "An
overview of slicing techniques for object-oriented
programs,” Informatica (Slovenia), vol. 30, pp.
253-2717, 2006.



