FINITE ELEMENT BASED FATIGUE ANALYSIS OF ALUMINIUM TAILOR WELDED BLANKS

CHE AZRAL IZZUDDIN BIN CHE RUDI

Report submitted in partial fulfillment of requirements for award of the Degree of Bachelor of Mechanical Engineering

> Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

> > JUNE 2013

EXAMINERS APPROVAL DOCUMENT

UNIVERSITI MALAYSIA PAHANG FACULTY OF MECHANICAL ENGINEERING

I certify that report entitled "Finite Element Based Fatigue Analysis of Aluminium Tailor Welded Blanks" is written by Che Azral Izzuddin Bin Che Rudi with matric number MH09013. I have examined the final copy of this report and in my opinion, it is fully adequate in terms of language standard, and report formatting requirement for the award of the degree of Bachelor in Mechanical Engineering with Automotive Engineering. I herewith recommend that it be accepted in fulfillment of the requirements for the degree of Bachelor Engineering.

Signature:

Examiner: DR. SITI RABIATUL AISHA BT IDRIS

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this report and in my opinion this report is satisfactory in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering with Automotive Engineering.

Signature:

Name: DR. MD. MUSTAFIZUR RAHMAN Position: ASSOCIATE PROFESSOR Date:

STUDENT'S DECLARATION

I hereby declare that the work in this project report "Finite Element Based Fatigue Analysis of Aluminium Tailor Welded Blanks" is my own except for quotations and summaries which have been duly acknowledged. The report has not been accepted for any degree and is not contently submitted in candidate of any other degree.

Signature:

Name: CHE AZRAL IZZUDDIN BIN CHE RUDI ID Number: MH09013 Date:

TABLE OF CONTENTS

Page

EXAMINER APPROVAL FORM	i
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xiii

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objectives of Project	3
1.4	Scope of the Study	3
1.5	Organization of Study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	5
2.2	Tailor Welded Blanks	5
2.3	Finite Element Method	7
2.4	Fatigue Behavior	10
2.5	Fatigue Life Analysis	11

CHAPTER 3 METHODOLOGY

3.1	Introduction	14
3.2	Structural Modeling	14
3.3	Material Properties	19
3.4	Combination of Aluminium Type	20
3.5	Variable Amplitude Loading	21
3.6	Fatigue Life Prediction Method	23
	3.6.1 Stress Life Method3.6.2 Strain Life Method	23 24
	5.0.2 Suam Life Method	24

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	26
4.2	Finite Element Modeling and Analysis	26
4.3	Validation of FEM	27
4.4	Stress Analysis	28
4.5	Fatigue Life Prediction	32

CHAPTER 5 CONCLUSIONS AND RECOMMENDATION

5.1	Introduction	39
5.2	Conclusion	39
5.3	Recommendation	40

REFERENCES

41

LIST OF TABLES

Table No	. Title	Page
3.1	Monotonic and Cyclic properties of selected aluminiums	20
3.2	Properties of welding filler ER 5356	20
3.3	Combination of aluminium in analysis	21
4.1	Fatigue life prediction with different type of loading	38

LIST OF FIGURES

Figure No	o. Title	Page
2.1	Automotive part that use TWB	6
2.2	Load time histories	9
2.3	Dimension of specimen	10
3.1	Rectangular specimen with straight weld (Specimen 1)	15
3.2	Rectangular specimen with slanted weld (Specimen 2)	16
3.3	Cylindrical specimen with straight weld (Specimen 3)	17
3.4	Cylindrical specimen with slanted weld (Specimen 4)	18
3.5	Type of amplitude loading graph	22
4.1	Load and constrain applied on specimen	27
4.2	Convergence of mesh	27
4.3	Stress distribution on rectangular specimen	29
4.4	Stress distribution on cylindrical specimen	30
4.5	Stress analysis on rectangular specimen	31
4.6	Stress analysis on cylindrical specimen	32
4.7	Contour of fatigue life by stress life method	34
4.8	Contour of fatigue life by strain life method	35
4.9	Effect of loading variables on fatigue stress life method	36
4.10	Effect of loading variables on fatigue strain life method	37

LIST OF SYMBOLS

ε'a	Fatigue ductility coefficient
ε _a	Total strain amplitude
$\sigma'_{\rm f}$	Fatigue strength coefficient
σ'_{m}	Mean stress
b	Fatigue strength exponent
c	Fatigue ductility exponent
Е	Modulus of elasticity
N_{f}	Fatigue life
S _a	Alternating stress
\mathbf{S}_{f}	Reversed fatigue limit
\mathbf{S}_{m}	Mean stress

S_u Ultimate tensile strength

LIST OF ABBREVIATIONS

ASAME Automated Strain Analysis and Measurement Environment AISI American Iron and Steel Institute ASTM American Society for Testing and Material CAD Computer Aided Design CM Coffin Mansion FEA Finite Element Analysis FEM Finite Element Method FLC Forming Limit Curve FLD Forming Limit Diagram HAZ Heat Affected Zone HCF High Cycle Fatigue HSS High Strength Steel LCF Low Cycle Fatigue LDH Limiting Dome Height NVH Noise, Vibration, Harshness S-N Total Life SAE Society of Automotive Engineers **SAETRN** Tensile Mean Loading History SAESUS Compressive Loading History SAEBKT Zero Mean Loading SWT Smith-Watson-Topper Tetrahedral 10 TET10 TWB Tailor Welded Blanks