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ABSTRACT 

 

 This thesis deals with the study of fuel spray structure via computational 

(simulation) method. The main objective of this thesis to perform a computational study 

of pure gasoline fuel sprays structure development where it covers to parts; to determine 

the pure gasoline fuel spray angle and spray penetration depth characteristics using 

sing-hole port fuel injector (PFI) and to determine the impact of different injection 

pressure on the spray structure of pure gasoline fuel. The spray simulations are done 

completely by using Computational Fluid Dynamics (CFD) ANSYS CFX software with 

three nozzle tip diameter; 0.2mm, 0.3mm and 0.4mm. The Computational Aided Design 

(CAD) model for each nozzle was drawn using the SolidWorks software, the nozzle is 

attached with 110mm bore and 125mm stroke combustion chamber. In the ANSYS 

CFX software, the ready CAD model is imported into the design modeler and under 

goes meshing process with fine relevance center, 4     m min size, 4     m max 

face size and 8     m max size. There are three types of boundary conditions applied 

to the meshed geometry model, the first is inlet boundary condition with various 

injection pressure of 100bar, 150bar, 200bar and 250bar. Opening boundary condition is 

then place at the combustion chamber with atmospheric pressure value that is 101325Pa 

and the third boundary condition is wall. The iteration calculation is solved until the 

convergence approached to the desired residual value and the result is obtained and 

analyzed. The first comparison made is between penetration depth versus injection 

pressure and the other is between spray angle versus injection pressure, the results are 

then compared between nozzle diameter for each injection pressure. The results show 

that as the injection pressure increased, the penetration depth is also increased as well as 

the spray angle. The conclusion has shown that the nozzle tip diameter is also effecting 

the overall spray structure because wider nozzle tip diameter will released more fuel 

quantity compared to the smaller nozzle tip diameter. 
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ABSTRAK 

 Tesis ini adalah berkaitan dengan kajian struktur semburan bahan api melalui 

kaedah pengiraan (simulasi). Objektif utama projek ini adalah untuk melakukan kajian 

pengiraan pembangunan struktur semburan bahan api petrol tulen di mana ia meliputi 

bahagian-bahagian berikut; menentukan ciri-ciri sudut semburan dan kedalaman 

semburan bahan api petrol tulen dengan satu-lubang port penyuntik bahan api (PFI) dan 

menentukan kesan tekanan suntikan yang berbeza pada struktur semburan bahan api 

petrol tulen. Simulasi semburan dilakukan sepenuhnya dengan menggunakan 

Computational Fluid Dynamics (CFD) perisian ANSYS CFX dengan tiga diameter 

muncung yang berbeza; 0.2mm, 0.3mm dan 0.4mm. Model Computational Aided 

Design (CAD) untuk setiap muncung telah dilukis dengan menggunakan perisian 

SolidWorks, muncung telah dilukis bersama kebuk pembakaran berukuran 110mm 

diameter dan 125mm strok. Dalam perisian ANSYS CFX, model yang telah siap CAD 

diimport ke dalam reka bentuk pemodel dan melalui proses penjaringan dengan pilihan 

pusat relevan yang baik, 4     m saiz minimum, 4     m saiz muka makimum dan 

8     m saiz maksimum. Terdapat tiga jenis keadaan sempadan yang digunakan 

terhadap model geometri, yang pertama adalah keadaan sempadan masuk dengan 

pelbagai tekanan suntikan seperti 100bar, 150bar, 200bar dan 250bar. Keadaan 

sempadan pembukaan kemudian meletakkan di kebuk pembakaran dengan nilai tekanan 

atmosfera, 101325Pa dan keadaan sempadan ketiga ialah dinding. Pengiraan lelaran 

diselesaikan sehingga penumpuan nilai lelaran mendekati nilai baki yang dikehendaki 

dan keputusan pengiraan diperoleh dan dianalisis. Perbandingan pertama yang dibuat 

adalah diantara kedalaman semburan berbanding tekanan suntikan dan perbandigan 

diantara sudut semburan berbanding tekanan suntikan, keputusan pengiraan jiga 

dibandingkan diantara diameter muncung dan setiap tekanan suntikan. Keputusan 

menunjukkan bahawa apabila tekanan suntikan meningkat, kedalaman semburan dan 

sudut semburan juga meningkat. Kesimpulannya menunjukkan bahawa diameter 

muncung juga memberi kesan terhadap keseluruhan struktur semburan kerana semburan 

muncung diameter yang lebih luas akan dikeluarkan kuantiti bahan api yang lebih 

banyak berbanding dengan muncung diameter yang lebih kecil. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

 The studies about fuel spray structure for both non-combustion and combustion 

process have been made multiple times, where most of the research focusing the dilute 

spray medium which is distant from the nozzle injector exit and the initial dispersed 

flow of the droplet breakup using common method such as observation, calculation, 

simulation and modeling are reasonably important due to tiny liquid volume fractions 

(Faeth, Hsiang and Wu, July 1995). Now a research is made to study the spray structure 

of a fuel focusing the whole medium, starts from the nozzle injector exit or known as 

dense spray medium until the dilute spray medium including the droplet features depend 

on various spray pressure using computational method. 

 General aspects that need to be include in this studies are divided into four 

categories, the first aspect is the spray structure in the dense spray medium where the 

spray liquid still not distributed right before and after the nozzle injector exit in order to 

investigate and define the initial spray properties such as liquid viscosity, pressure, 

temperature and volume (Faeth, Hsiang and Wu, July 1995). The second aspect is the 

properties of primary breakup, it is the initial conditions for the dense sprays medium 

including both spray structure properties and the hardware properties such as the nozzle 

injector exit. Every single thing such as pressure, viscosity and more are important and 

has the potential to influence the structural characteristics of the spray (Faeth, Hsiang 

and Wu, July 1995). 

 The third aspect is the properties of secondary breakup which will closely 

related with the rate controlling process of dense spray medium and structural 

characteristics of the droplet which also related with the rate controlling process of 
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dilute spray medium. Each characteristics of spray structure like spray distributions, 

position of spray structure and spray tip penetration are essential to observed in order to 

gain the perfect outcome (Faeth, Hsiang and Wu, July 1995). The last aspect is the 

properties of the droplet characteristics at the end of spray distribution such as droplet 

sizing, where the spray already passed through the nozzle injector exit, dense spray 

medium and dilute spray medium (Faeth, Hsiang and Wu, July 1995). 

 

 

 

Figure 1.1: Main physical parameters on spray structure 

 

 Figure 1.1 shows the main physical parameters on spray structure with the 

primary breakup and the secondary breakup, it illustrate a measured spray 

characteristics that are basically been classified into two categories. The first one is 

called as “Macroscopic Characteristics” that focus on both primary breakup and 

secondary breakup that containing the spray angle and spray tip penetration. The second 

one is called as “Microscopic Characteristics” which focus only on the secondary 

breakup containing droplet distribution (diameter), droplet velocity, air-fuel ratio and so 

forth. A real experiment would be more reliable because it is exposed to the real world 



3 
 

conditions such as pressure, temperature, humidity and any other properties that might 

be affecting the spray structure development. 

 

1.2 PROBLEM STATEMENT 

 

 Nowadays the development in automobile engine is sharply improved with the 

emergence of bio-fuel engine system, hybrid car system and many more (Anand, Madan 

Mohan & Ravikrishna, 2012). In order to know how pure gasoline can produce the 

maximum power output or result that can be matched with the advanced system, a 

computational study of fuel spray structure is essential. Spray fuel structure of pure 

gasoline is an important factor to be study and investigate due to differences in 

characteristics such as injection pressure, droplets size distribution, spray progression, 

position of spray structure and spray tip penetration may result in different power output 

of an internal combustion engine (Schmehl, Maier & Wittig, 2000). The competition 

between advanced fuel and pure gasoline in power output value is vastly intense due to 

differences chemical substances in each burning fuel. 

 Different fuel will provide different power output result, hence the 

computational study of fuel spray structure of pure gasoline is important to identify the 

characteristics of spray development, droplet size distribution and many more in order 

to increase the power output of an engine. Any factors that might be affecting the spray 

structure such as spray angle, depth, type of nozzle and injection pressure will be 

included in this study. The spray itself must obey air-fuel ratio to generate maximum 

heat energy that can be transform to mechanical work. Another problem why 

computational study on spray structure is essential because of incomplete burning of 

fuel will result in less energy for the mechanical work and at the same time will affect 

the condition inside the engine (Rossella Rotondi & Gino Bella, 2005). 

 

1.3 OBJECTIVES 

 

 The main objective of this research is to perform a computational study of pure 

gasoline spray structure development where it will cover two parts: 

i. To determine the pure gasoline fuel spray angle and depth characteristics using 

single-hole port fuel injector (PFI). 
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ii. To determine the impact of different injection pressure on the spray structure of 

pure gasoline fuel. 

 

1.4 SCOPE OF STUDY 

 

 This project is focus on computational study of pure gasoline fuel spray structure 

development using suitable software that is Computational Fluid Dynamics (CFD). The 

entire computational study will be performing using several different amount of 

injection pressure and using a single-hole PFI. To complete this project, the actions are 

required: 

i. Study of spray angle and depth of gasoline fuel by using single-hole PFI. 

ii. Study the effect of different injection pressure on spray structure which is in the 

range of 100bar to 250bar. 

iii. Study the result of analysis from the simulation done. 



 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 Improving modern internal combustion engine efficiencies by increasing or 

decreasing the pressure levels of the combustion processes require sophisticated 

combustion concept and analysis method. The principles of modern internal combustion 

engine are the strategic characteristics to inject the liquid fuel and to mix it with the 

flow of compressed air. In order to study and understand the fuel spray structure, 

computational study is required than depending on previous experiments and researches 

(Schmehl, Maier & Wittig, 2000). 

 

2.2 DENSE AND DILUTE SPRAY STRUCTURE 

 

 Dense spray structure is a part of spray structure where it covers the medium 

between the nozzle injector exit and the dilute spray medium, a sketch of spray structure 

near the nozzle injector exit is illustrated in Figure 2.1. It is also a medium where the 

spray structure will come together and mix with the gas phase inside the combustion 

chamber. During practical combustion processes, the atomization of the spray breakup 

is the most important for the rapid mixing of the fuel and the oxygen where both of 

them existed in liquid and gas phase (Reitz & Bracco, 1982). Dense spray medium 

consist of two main multiphase flows, the first multiphase is the liquid core where the 

liquid are mostly does not mix with the oxygen. The second multiphase is the dispersed 

flow region where the liquid is already mixed with the oxygen and atomization or spray 

droplet had been developed. 
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Figure 2.1: Sketch of spray structure near the nozzle injector exit 

 

Source: Faeth, Hsiang and Wu, July 1995 

 

 The liquid core is similar to the potential core of a single phase nozzle injector 

exit although it is generally much longer. The Eq. (2.1) below represents the length of 

the liquid core, Lc, where d is the nozzle injector exit diameter, ρL and ρG are liquid and 

gas densities and Cc is an empirical constant in the range of 7-16. This visualizes that 

Lc/d in the range of 200-500 for a typical spray at atmospheric pressure, with this ratio 

generally being inversely proportional to the square root of pressure. Hence, liquid core 

is most visible feature of round pressure-atomized spray (Chehroudi, 1985). 

 

  
      

  
  

  
   

      (2.1) 

 

 Dispersed flow region take place at the end of the liquid core, it involves a 

developing multiphase mixing layers between the liquid and the gas, followed by a 

multiphase layers that evolves into spray droplets in dilute spray flow. It is a region 

which connected the dense spray medium and dilute spray medium, that shows the 

mixing of both liquid and gas had been happen. The dense spray medium generally 

related with the liquid core even though it is not totally accurate because at the end of 

dense spray medium is a dilute spray medium while the initial liquid core’s flow has a 

large liquid volume fractions. The properties and existence of the dense spray medium 
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are very dependent toward liquid flow properties such as disturbance levels and 

turbulence levels at the nozzle injector exit. 

 

2.3 SPRAY ANGLE AND SPRAY TIP PENETRATION 

 

 In definition, spray angle is the angle of opening of dispersed fluid flow that 

experienced transformation from laminar flow to turbulent flow under certain condition. 

Spray angle is determined by many factors such as opening dimension, pressure, 

viscosity and so forth, it is known that the spray angle does not holds for the entire 

spray propagation. It tends to collapse or diverge as it moves away from the nozzle tip. 

An assumption has been made where the spray angle will remain constant throughout 

the spray distance travelled, but in actual situation the angle will not remain constant 

throughout the spray distance travelled. Figure 2.2 illustrate the difference between 

actual and theoretical spray angle. Spray tip penetration or spray depth is the total length 

of fluid spray structure between the nozzle tip and the end of spray propagation, the 

distance is determined by the injection pressure and also influenced by the opening 

dimension. 

 

 

 

Figure 2.2: Illustration of spray angle 
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2.4 FLOW STRUCTURE OF DENSE SPRAY MEDIUM 

 

 In order to evade the significant effect of the degree of turbulence development 

at the nozzle injector exit, further information about dense spray properties will be 

limited to condition where there is fully-developed turbulence flow at the nozzle 

injector exit (Tseng, 1992). Time-average liquid volume fractions were predicted at 

various pressure levels, this prediction are based on the turbulence model under the 

locally-homogenous flow (LHF) approximation. For a complete explanation of this 

model prediction, the relative velocities between the phases are assumed to be very 

small in comparison to the mean flow velocities (Ruff, 1989). 

 Estimated liquid volume fractions near the nozzle injector exit are unity 

followed by rapid reduction of the liquid volume fractions due to spray breakup 

development. As the pressure increases, the initial reduction of liquid volume fractions 

becomes smaller and indicating faster mixing rates at higher ambient gas densities 

(Ricou & Spalding, 1961). With this condition, LHF predictions generally are good 

because separated flow effect due to relative velocity differences between liquid and gas 

are not very prominent when the flow is mostly in liquid phase. Although the variation 

on liquid volume fractions suggests a relatively short liquid core, this is not completely 

related in terms of mixture fractions. 

 

2.5 PRIMARY BREAKUP 

 

 In primary breakup, the most important process spray structure development is 

the droplets formation near the liquid surfaces because it initiates the atomization 

process, controlling the liquid core length and provides the initial condition of the 

dispersed flow region. Due to problems of observing the primary breakup in the dense 

spray medium and effects of secondary breakup, the current information and 

understanding of primary breakup is limited. Other than that, the effects of flow 

development and liquid disturbances such as turbulence at the nozzle injector exit 

provide an unusual large impact on the primary breakup properties. With the present of 

pulsed holography technique, it have provided a chance to observe the properties of 

dense spray medium for making the progress move forward and at the same time 

gaining a better understanding of primary breakup process (Wu & Faeth, 1993). 



9 
 

2.5.1 Onset of Breakup 

 

 All spray properties that have been established by the past studies including 

criteria for the onset of breakup are strongly affected by the degree of flow development 

and the disturbance such as turbulence at the nozzle injector exit. Based on early studies 

of pressure atomization shows that both mixing rates and atomization quality are not the 

same for laminar and turbulence flow at the nozzle injector exit (Lee & Spencer, 1933). 

Further studies conclude that turbulence generated in the flow has a small effect on the 

spray droplet properties. After that, another studies shows that spray breakup could be 

suppressed entirely for super-cavitations flows where liquid jet neither separates from 

the injector route wall near the end of the contraction section and does nor reattach 

(Karasawa, 1992). 

 Other studies also have discover that liquid phase flow properties have 

dominated observations of primary breakup in pressure-atomized spray and the 

aerodynamics effect does not very crucial at the liquid or gas density ratios at normal 

pressure and temperature. The breakup of the liquid jet in an air at atmospheric pressure 

was related with the presence of turbulent boundary layers along the injector route walls 

near the nozzle injector exit (Hoyt & Taylor, 1977). Other than that, large changes in 

the aerodynamics environment including both counter-flowing and co-flowing air result 

a small effect on the breakup properties. In a reality, the actual properties of the 

turbulent boundary layers along the injector route walls will be ignore in any 

experimental condition (Hoyt & Taylor, 1977). 

 

2.5.2 Breakup Outcomes 

 

 Once the condition for the onset of turbulent primary breakup is determined, the 

breakup outcomes that cover the variation of spray droplet velocity and size distribution 

with increasing length from the nozzle injector exit will be review. After the turbulent 

primary breakup, the spray droplet sizes satisfy the universal root normal distribution 

and the spray droplet distribution is uniform. According to the previous turbulent 

primary breakup experiment, there are three types of turbulent primary breakup (Wu & 

Faeth, 1993): 

1. Non-aerodynamics turbulent primary breakup. 
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2. Aerodynamically-enhanced turbulent primary breakup, observed at the onset 

conditions. 

3. Aerodynamic turbulent primary breakup, which involves unification of turbulent 

primary and secondary breakup. 

 

 The result from the previous experiment shows that the boundaries of these 

turbulent breakups are fixed by the liquid or gas density ratio, the breakup times used to 

determine types of turbulent primary breakup were based on the mean diameter of the 

spray after the primary breakup or after the primary breakup stage of combined primary 

and secondary breakup for condition outside the onset of breakup. 

 A major issue still uncover involves primary breakup of non-turbulent liquids 

and the relevance of the classical primary breakup theories (Taylor, 1963 and Levich, 

1962). Results show that it is hard to observe the non-turbulent primary structure. The 

main obstacles are effects of liquid disturbances such as turbulent, the invasion of 

secondary breakup and weak aerodynamics effects for most liquid at atmospherics 

temperature and pressure. 

 

2.6 SECONDARY BREAKUP 

 

 Based on the previous considerations of the spray structure of dense spray 

medium, the secondary breakup is essential with its effect on the spray droplet size 

distribution as the flow movement approaching the dilute spray medium. As reviewed 

before, primary breakup at the surface of the liquid core developed spray droplets that 

ate unstable to the formation and development of the secondary breakup. Other than 

that, both typical power and propulsion systems of high-pressure combustion involves 

situation where the surface tension of spray droplets becomes small due to the liquid 

surface move towards the thermodynamics critical point. 

 In previous findings, there have two limitations of define disturbances that cause 

the deformation and spray breakup droplets. The first limitations is the shock wave 

disturbances that provide changes in the ambient environment of a spray droplets at the 

end of the primary breakup, while the other limitations is the steady disturbances of 

freely-falling spray droplets in spray drying processes or in rainstorm. The shock wave 
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disturbances effects have become the major attention and approximate the secondary 

breakup environment in the dense spray medium. 

 

2.6.1 Deformation and Breakup Movements 

 

 Many studies and researches have made an assumption on the conditions and 

definitions for the onset of various deformation and breakup movements of spray 

droplets subjected to shock wave disturbances. When the liquid viscosity effects are 

relatively small, the observed breakup movement at the onset of breakup has been 

termed as ‘bag breakup’ illustrated in Figure 2.3. This ‘bag breakup’ is the deflection of 

the spray droplets into a thin disk normal to the flow path and the deformation of the 

middle of the disk (Wierzba & Takayama, 1988). 

 

 

 

Figure 2.3: Spray droplets deformation and ‘bag breakup’ 

 

Source: Schmehl, Maier & Wittig, 2000 

 

 

 

Figure 2.4: Shear breakup 

 

Source: Schmehl, Maier & Wittig, 2000 

 

 The observations of shear spray breakup as illustrated in Figure 2.4 have been 

made at high relative velocities where the shear spray breakup experienced a deflection 

of the edge of the disk in the downward path, deflection of the middle of the disk and 

the stripping of spray droplets from the edge of the disk. The conversion between the 

‘bag breakup’ and the shear breakup movement is a complex mixture where this 



12 
 

complex breakup mechanism can only be observed at high relative velocities and 

known as ‘catastrophic breakup’ (Reinecke & Waldman, 1970). 

 

2.6.2 Breakup Dynamics 

 

 The discussion about deformations and spray breakup movement transitions 

prioritize the importance of breakup times and identify its characteristics when the 

liquid viscosity forces are in huge comparison to the force of surface tension. The 

period before the onset of the spray breakup is the period where the spray droplets 

experienced significant deformation, the drops are initially drawn into a flat shape 

because of the presence of the relative motion of the gas phase. Certain researches have 

summarized a relatively large data base of maximum spray breakup droplets 

deformations for steady disturbances (Hsiang & Faeth, 1992). 

 

2.6.3 Breakup Outcomes 

 

 Secondary breakup can be treated using jump condition with the assumption of 

spray breakup times and distances are relatively small compared to the characteristics of 

dense spray medium. To fulfill this approach, information about spray breakup droplets 

size and velocity distributions right after the secondary breakup take place are essential. 

Measurement information for the ‘bag breakup’ movement is limited to provide enough 

guidance about the spray breakup droplets sizes as the result obtained from the 

secondary breakup (Gel’fand, 1963). Further research used the pulsed holography 

technique and obtained a complete description of the secondary breakup outcomes for 

shock wave disturbances conditions (Hsiang & Faeth, 1993). 

 The secondary breakup in the dense spray medium is not properly represented 

by jump conditions at the high pressure surrounding of multiple practical spray 

combustion processes. Under such obstacles, the secondary spray breakup should be 

assumed as a rate process. Other than the deformations and spray breakup movements, 

existing information about the secondary spray breakup is still limited and it show 

clearly that additional study or research is essential in order to gain better understanding 

of secondary spray breakup properties for practical combustion processes. 
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2.7 COMPUTATIONAL FLUID DYNAMICS (CFD) SOFTWARE 

 

 Computational fluid dynamics (CFD) is a modern analysis process that used 

numerical and algorithm method which allows a computational model representing the 

physical system to be built or studied and uses computers to simulate fluid flow 

dynamics. CFD itself raise the head as a useful tool to reduce cost and time waste by 

computational method compared with costly and more time consumed experiments to 

produce a much better result and design. Experimental data is also required for input in 

CFD simulations for example the flow type and boundary conditions properties. When 

fluid flow model is applied to this virtual prototype, the CFD software application is 

capable to predict the outputs of the fluid dynamics. 

 Other than that CFD also predict the transfer of heat, mass, phase change, 

chemical reaction, mechanical movement, stress or deformation of related fluid 

structures and associated phenomena such as chemical reactions by means on computer 

based simulation (Baris Guler & Rizwan Ali, October 2004). Both compressible and 

incompressible fluid flows can be combined with specific properties and parameters, all 

the simulations can be done using 2D and 3D flows (www.cosmol.com). Advantages 

and benefits of CFD simulation are listed below: 

 3D surface and solid modeling 

 Simulation, visualization and analysis of the fluid flow 

 Full analysis report including integrated quantities 

 Capable to shows result animations and pictures of fluid flow field 

 Alterations done in the 3D model are associative with mesh 

 Quick recalculation 

 Many operating conditions can be calculated with same analysis model 

  

 In order to determine the spray structure characteristics such as spray angle and 

depth of gasoline fuel, CFD CFX software will be used for simulation and get the result. 

The parameter that will be examined by using this CFD software is different injection 

pressure range from 100bar to 250bar. This parameter will be the manipulated variable 

and the final simulation results are capable to determine the spray angle and depth. 

Another objective that needs to accomplish is to determine the impact of different 

injection pressure on the spray structure development. From the final simulation result 
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obtained, we will determine the graph that will show details about the simulation and 

interpret the spray structure result. 

 

2.8 BASIC CONSERVATION EQUATIONS ON CFD 

 

 Fundamental of CFD is based on the governing equations of fluid dynamics, 

derivations of the equations where physical laws are taken into account. The physical 

laws are mass is conserved for the fluid, Newton’s second law-the rate of change of 

momentum equals the sum of forces acting on the fluid and the first law of 

thermodynamics-the rate of change of energy equals the sum of the rate of heat addition 

to and the rate of work done on the fluid. 

 

2.8.1 The Mass Conservation Equation 

 

 One conservation law that is pertinent to fluid flow is matter may neither be 

created nor destroyed. An arbitrary control with volume, V fixed in space and time to be 

considered, the mass conservation equation or continuity equation can be written as 

follows: 

 

  

  
              (2.2) 

 

Where ρ is the fluid density, t is the time interval and V is the velocity at any point in 

the flow field where it can be describe as local velocity component u, v and w. On the 

Cartesian coordinate system the equation can be written as: 

 

  

  
 

     

  
 

     

  
 

     

  
       (2.3) 
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2.8.2 The Momentum Conservation Equation 

 

 Newton’s second law of motion states that the sum of forces that acting on the 

fluid element equals to the product between its mass and acceleration of the element. 

The momentum conservation equation for Newtonian fluids in an inertial (non-

accelerating) with ui reference to the Cartesian coordinates system can be written as: 

 

 

  
      

 

   
         

  

   
 

    

   
           (2.4) 

 

Where p is the static pressure, τij is the stress tensor and the gravitational body force and 

external body respectively are ρgi and Fi respectively on the specific coordinate 

direction. 

 

2.8.3 The Energy Conservation Equation 

 

 The equation for the conservation of energy is derived from the consideration of 

the first law of thermodynamics: 

 

 
            

                
   

           
          

        
           
         

        (2.5) 

 

The  two terms represented by ∑   and ∑   describe the net rate of heat addition 

to the fluid within  the control volume  and  the  net  rate  of work done  by  surface 

forces  on the  fluid. 

 

2.9 TURBULENCE FLOW 

 

 In fluid dynamics contact, a flow regime characterized by the chaotic and 

stochastic property change is known as turbulence or turbulent flow, most engineering 

problem will have to deal in turbulent in nature. This type of flow includes high 

momentum convection, low momentum diffusion and darting modification of velocity 

and pressure in space and time. A small disturbance in a normal laminar flow might be 
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lead to chaotic and disordered state of motion, Figure 2.5 illustrate the transformation 

from laminar flow to turbulent flow. 

 

 

 

Figure 2.5: Transformation from laminar flow to turbulent flow 

 

2.10 GASOLINE FUEL 

 

 Gasoline or generally known as petrol is a colorless liquid that is derived from 

crude oil, it is widely used as primary fuel options in an internal combustion engines. 

Compared to the other fuels, gasoline is more volatile than diesel oil or kerosene 

because of the presence of the base constituents and also additives. Currently the 

development of vehicles engines is rapid by using other than gasoline as their main fuel 

and also the emergence of hybrid system might disturb gasoline performance. Only by 

achieving an ideal mixture of air and fuel ratio or known as stoichiometric air-fuel ratio, 

than gasoline can experience a complete combustion and hence more power can be 

generated. Equation 2.6 below shows a chemical reaction of a complete combustion 

equation of gasoline with 100% air, the combustion products of gasoline are carbon 

dioxide (    , water (   ) and nitrogen (  ). 

 

                                       (2.6) 
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Figure 2.6: Few main component of gasoline base chemical chain 

 

 It known that straight-run gasoline from crude oil via distillation does not 

suitable for modern engines as they do not fulfill the required specification. Due to this 

complication, gasoline will be blended with other materials to make the fuels have 

different characteristics to use in modern engines. Figure 2.6 shows few main 

component of gasoline base chemical chain. The blended fuels still have the same 

carbon number in their chemical component but only differ in hydrogen number and 

type on bonds between them. Most gasoline base fuel will have the same properties, the 

properties of gasoline is listed in Table 2.1. 

 

Table 2.1: Gasoline fuel properties 

 

Property Gasoline content 

Chemical Formula C4 to C12 

Molecular Weight () 100-105 

Carbon 85-88 

Hydrogen 12-15 

Oxygen 0 

Specific gravity, 60° F/60° F 0.72-0.78   

Density, lb/gal @ 60° F 6.0-6.5 

Boiling temperature, °F 80-437 

Freezing point, °F -40 

Flash point, closed cup, °F -45 

Specific heat, Btu/lb °F 0.48 

Stoichiometric air/fuel, weight 14.7
b
 



 

 

 

CHAPTER 3 

 

 

RESEARCH METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

 Methodology is a part of important element with the main purpose that is to 

make sure the development of the study is running smoothly and achieves the expected 

result. In the other hand methodology is essential to make sure that the study obeys the 

guideline based on the objectives of the study. Based on the objectives and scope of 

study, methodology will act as the framework where supervisor can get the overall view 

of the study flow and development. With this framework, supervisor will be able to 

maintain and provide sufficient guidance of the study progression in order to make sure 

all the tasks given can be achieve and complete in the desired time. 

 Through this section, any problem faced can be identified and discussion can be 

a huge help to overcome any problems occurred. A methodology consists of a 

constructed flow chart to provide more clear details about the whole process of the 

study, there are several steps that must followed in order to ensure that the objective of 

the project can be achieved. 

 

3.2 FLOW CHART 

 

 A flowchart visually displays the formalized sequence of activities, operations or 

step-by-step progression of this project using connecting lines and conventional 

symbols. Flowcharts can be used to determine the work flow that is need to be highlight 

and might be a good help for explaining how a project progression works. Figure 3.1 

below shows the flow chart for this project. 
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3.3 SIMULATION METHODOLOGY 

 

 An accustomed process in performing a simulation on CFD analysis has been 

indicated by the National Project for Applications Oriented Research in CFD (NPARC) 

Alliance. The simulation of this project will follow the outlined by the NPARC with a 

complete CFD analysis that consisting three main elements; pre-processor, solver and 

post-processor. Figure 3.2 shows the connection between the three main elements. 

 

 

 

Figure 3.2: Connection between the three main elements in a complete CFD analysis 

 

3.4 NUMERICAL SOLUTION 

 

 A control volume based is the fundamental of CFX’s numerical approach, the 

computational (solid geometry) domain will be discrete into multiple smaller control 

volumes using grid or known as the meshing process. It is proved that the smaller the 

mesh size will result in better analysis on the fluid flow, but it will take extra time to 
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complete the iteration on each mesh size. Mesh size is determined based on the 

geometry of Computational Aided Design (CAD) model drawing via SolidWorks 

software. 

Founded on the physical phenomena on the real fluid flows usually need to be 

solved using iterative solution approach due to complex and unknown consistency 

within the flow. The discrete values of the fluid flow properties are required for the 

initialization which is crucial for the solution. Figure 3.3 below shows the flow chart of 

initialization and solution control in CFD CFX analysis. 

 

 

 

Figure 3.3: Flow chart of initialization and solution control 

 

3.5 FLUID FLOW (CFX) IN CFD ANSYS WORKBENCH 

 

There are five elements in a single standalone system that need to be define in 

order to perform a perfect ANSYS CFX  analysis, each of them has their own properties 

that must be defined in sequence. Fluid flow (CFX) analysis system is chosen in the 
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project schematic diagram where all five element of a single standalone system will be 

defined. Figure 3.4 shows the standalone system in the project schematic diagram. 

 

 

 

Figure 3.4: A standalone system 

 

3.5.1 Geometry 

 

 The first element in a standalone system is the geometry component, the desired 

length unit for the geometry of the simulation to run is in millimeter. Then, import the 

external geometry file that is a ready CAD model of fuel injector and combustion 

chamber into the Design Modeler and generate the geometry file. The injector nozzle 

CAD drawing with 0.2mm diameter is shown in Figure 3.5, a green tick will appear 

besides the geometry icon if the process is successful. 

 

 

 

Figure 3.5: Injector nozzle CAD drawing 
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Dimensions of CAD model: 

 Nozzle diameter: 0.2mm 

 Bore:   110mm 

 Stroke:   125mm 

 

3.5.2 Mesh 

 

 The second element in a standalone system is the mesh component, in this 

component the imported geometry file will go through the meshing process. The sizing 

of each mesh cell should be suitable with the whole geometry dimension. Under Mesh 

component in the project outline display, the sizing option will be define as follow: 

 Relevance center: Fine 

 Min size:  4.e-005m (4     m) 

 Max face size:  4.e-003m (4     m) 

 Max  size:  8.e-003m (8     m) 

 

 

 

Figure 3.6: Complete mesh generated of the geometry model 

 

After defining the sizing options, click the update button and a window at the 

bottom will shows the stage at which the Mesher package is in mesh generation process. 

Figure 3.6 shows the generated mesh of the geometry file. 
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3.5.3 Setup 

 

 The third element in a standalone system is the setup component, in this 

component all fluid flow properties will be define and inserting all boundary condition 

under the default domain. 

1. The first step is to edit the default domain under Flow Analysis 1, remove the 

default item under Fluid and Particle Definition and add a new item named as 

“Gasoline”. Then select the new item’s material from the extended list as 

“C8H18l”, this is the basic chemical structure of gasoline in liquid state. 

 

 

 

Figure 3.7: Default domain outline 
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 Figure 3.7 shows the default domain outline that has been defined, the entire 

component under the Domain Models does not being altered as they are in a default 

options setting. Click Ok button to save and apply the new material properties setting. 

 

2. The second step is to insert the inlet boundary condition by clicking the 

boundary button and rename it as “Inlet”. The boundary type will be define 

automatically as Inlet and then under Location setting, click the inlet surface on 

the geometry. Under Boundary Details, the Mass and Momentum option is 

define as “Total Pressure (stable)” with 100bar relative pressure. Then the Flow 

Direction option is define as “Acting Normal to Boundary Condition” and the 

Turbulence option is define as “High Intensity” with 10% vale. 

 

 

 

Figure 3.8: Inlet Boundary Condition 

 

 Figure 3.8 shows the inlet boundary condition outline, it is define as the fluid 

flow entering the domain as total pressure in stable condition with 100bar relative 

pressure value. Click Ok button to save and apply the inlet boundary condition setting. 
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3. The third step is to insert the opening boundary condition by clicking the 

boundary button and rename it as “Opening”. The boundary type will be define 

automatically as Opening and then under Location setting, click the opening 

surface on the geometry. The opening surface is on the combustion chamber part 

excluding the surface that is attached with the nozzle tip. Under Boundary 

Details, the Mass and Momentum option is define as “Opening Pres. and Dirn” 

with 101325Pa relative pressure, this would apply atmospheric condition to the 

domain. Then the Flow Direction option is define as “Acting Normal to 

Boundary Condition” and the Turbulence option is define as “Medium 

Intensity” with 5% value. 

 

 

 

Figure 3.9: Opening Boundary Condition 
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 Figure 3.9 shows the opening boundary condition outline, it is define as the fluid 

flow will experience atmospheric condition after leaving the nozzle. Click Ok button to 

save and apply the opening boundary condition setting. 

 

4. The forth step is to insert the wall boundary condition by clicking the boundary 

button and rename it as “Wall”. The boundary type will be define automatically 

as Wall and then under Location setting, click the entire surface on the geometry 

model excluding Inlet and Opening surface. The wall boundary condition is 

acting as solid barriers to ensure that there is no leaking of fluid and the fluid 

flow only remains in the control domain. Figure 3.10 shows the wall boundary 

condition outline. 

 

 

 

Figure 3.10: Wall Boundary Condition 

 

5. The next step is to change the maximum iterations under Convergence Control 

in Solver Control component, default setting of maximum iterations is 100 but 

the convergence solver does not reach the residual target that is 1.e-4 (1     ). 
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The maximum iteration is changed to 150 for better result although it is not 

reaching the residual target. Figure 3.11 shows the solver control setup in Flow 

Analysis 1. 

 

 

 

Figure 3.11: Solver Control Setup 

 

6. The last step is to define the Global Initialization component, this component 

will be defined to determine the initial condition of the simulation. For spray 

simulation, the velocity type will be defined as “Cylindrical” since the nozzle 

and combustion chamber are cylindrical in shape while the turbulence option is 

set to be high intensity with 10% value. Figure 3.12 shows a complete setup 

definition on the geometry model, check that there is a green tick beside the 

setup icon. Then proceed to the next element in the standalone system. 
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Figure 3.12: Complete setup of the boundary conditions on the geometry model 

 

3.5.4 Solution 

 

 The forth element in a standalone system is the solution component, in this 

component the iteration calculation is solved until it reach a specific residual target but 

in some cases the iteration calculation can be stop if the convergence is near to the 

residual target or limited by the maximum iteration number. In the solver, a graph will 

show as Figure 3.13 where it illustrates the convergence in near to the residual target. 

Check that there is a green tick beside the solution icon, it means that the iteration 

calculation has been completely solved. Then proceed to the next element in the 

standalone system. 
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Figure 3.13: A complete iteration calculation 

 

3.5.5 Results 

 

 The last element in a standalone system is the results component, it is capable to 

show the result of iteration calculations in visualized form. With the right method, the 

fluid flow properties or spray characteristics can be seen in the 3D viewer. There are 

few steps before the visualized data can be generated, the steps are listed as follows: 

1. Inserting plane - Right click User Locations and Plots icon, then go to insert then 

location and select Plane. Let the default name be “Plane 1” and chose “All 

Domains” for domain optians and “YZ Plane” for method options then click 

apply button. The plane will appear according the the Figure 3.14. 
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Figure 3.14: YZ plane on the geometry model 

 

2. Inserting contour - Right click User Locations and Plots icon, then go to insert 

then from the drop down list select “Contour”. Let the default name be “Contour 

1” and chose “Plane 1” for locations options and “Velocity w” for variable 

options. Then go to the Range and select from the drop down list “Global” and 

“Transparency” for Color Map options. Go to the (# of Contours) and enter 100 

into the input cell, the velocity contour will appear according to the Figure 3.15. 

 

 

 

Figure 3.15: Velocity contour on Plane 1 
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 For much clear and better view of the velocity contour, right click on the 3D 

viewer and go to the Predefined Camera and select “View from +X” from the drop 

down list. Since the goemetry and mesh setting will be the same, the standalone system 

can be done in series system as shown in Figure 3.16, only the Inlet pressure will be 

change to 150bar, 200bar and 250bar. Based on the same procedure, the geometry 

model for nozzle diameter 0.3mm and 0.4mm are used in to perform the simulation 

analysis. 

 

 

 

Figure 3.16: Series of standalone system 



 

 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSIONS 

 

 

4.1 INTRODUCTION 

 

This section will present and discuss the result from all the simulations done for 

different injection pressure of 100bar, 150bar, 200bar and 250bar on three nozzle 

diameters of 0.2mm, 0.3mm and 0.4mm. Based on each simulation, what is the effect of 

various injection pressure to the spray angle and spray tip penetration will be discuss. 

With the aid of ANSYS CFX software, the simulations have been completed using 

basic gasoline (C8H18l) properties as liquid phase. Graph of spray angle versus injection 

pressure and spray tip penetration versus injection pressure for each nozzle tip diameter 

will be shown. 

 

4.2 VALIDATION 

 

 Based on the American Institute of Aeronautics and Astronautics (AIAA), the 

process of determining the degree to which the computational approach or simulation 

model is accurate and follow the real world situation is known as validation. In this 

study the simulations done ware based on basic spray simulation program in which the 

spray fluid in this case is the gasoline will experienced laminar flow before 

experiencing turbulent flow as it moves away from the nozzle tip. The high pressure 

from the inlet will forced the gasoline fuel to burst or dispersed as it move towards a 

lower pressure medium. 

 In a validation process, an accuracy of the results are compared to other source 

of data such as experimental or related study approach. Even though an experimental 

data is has been used as references, but it still have uneven data due to errors while 
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performing the experiment. Hence there will be unequal data formation between 

computational approach and real experimental method. 

 

4.3 SIMULATIONS RESULTS 

 

 Using ANSYS CFX software, the gasoline fuel spray simulations were done on 

three nozzle diameters of 0.2mm, 0.3mm and 0.4mm where the same mesh size is used 

to get the uniform results between each nozzle diameter and injection pressure. 

 

 

 

Figure 4.1: Spray tip penetration and spray angle measurement 

 

Table 4.1: The results of different injection pressure on the spray structure 

 

Injection 

pressure 

(bar) 

0.2mm nozzle diameter 0.3mm nozzle diameter 0.4mm nozzle diameter 

Spray tip 

penetration 

(mm) 

Spray 

angle 

(°) 

Spray tip 

penetration 

(mm) 

Spray 

angle 

(°) 

Spray tip 

penetration 

(mm) 

Spray 

angle 

(°) 

100 45.2778 22.50 68.9362 23.50 81.8182 24.00 

150 46.1972 22.50 77.8571 24.00 83.8983 25.50 

200 46.5714 22.75 78.0952 26.50 85.3448 25.75 

250 46.8571 23.00 78.0476 27.00 86.5487 26.00 

 

 Figure 4.1 illustrates the spray structure, as mention in Chapter 2 the spray tip 

penetration is measured from the nozzle tip until the end of the spray propagation and 
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the spray angle is measured form the center line of the spray propagation to the edge of 

the spray structure. With proper scale and clear simulation’s results, both desired 

parameters are measured manually by using ruler for spray tip penetration and protector 

for the spray angle. Both parameters are then classified according to their nozzle tip 

diameter and injection pressure value and included in an appropriate table as shown in 

Table 4.1. The data has been measured multiple times to avoid parallax error while 

taking the reading for each simulation result. 

 

4.3.1 0.2mm Nozzle Diameter 

 

 

 

Figure 4.2: 0.2mm nozzle diameter spray structure 

 

Figure 4.2 shows the spray structure of gasoline fuel in 0.2mm nozzle tip 

diameter inside the combustion chamber. Based on Figure 4.3, the spray tip penetration 
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is increased as the injection pressure increased, the depth difference between injection 

pressure value of 100bar to 150bar is the largest compared to depth difference of 150bar 

to 200bar and 200bar to 250bar. The first injection pressure indicates the shortest 

penetration depth among the other injection pressure while the last injection pressure 

indicates the longest penetration depth. 

 

 

 

Figure 4.3: Graph of penetration depth versus injection pressure in 0.2mm nozzle tip 

diameter 

 

 

 

Figure 4.4: Graph of spray angle versus injection pressure in 0.2mm nozzle tip 

diameter 
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 Based on Figure 4.4, the spray angle is wider on injection pressure of 150bar and 

above. The angle difference between 100bar to 150bar does not shows any difference 

while the angle difference between 150bar to 200bar and 200bar to 250bar show 

uniform enhancement. The spray angle does not changed when until the injection 

pressure reach 150bar. The injection pressures of 100bar and 150bar indicates the 

smallest spray angle among the other injection pressure while the highest injection 

pressure indicates the widest spray angle. 

 

4.3.2 0.3mm Nozzle Diameter 

 

 

 

Figure 4.5: 0.3mm nozzle diameter spray structure 

 

Figure 4.5 shows the spray structure of gasoline fuel in 0.3mm nozzle tip 

diameter. Based on Figure 4.6, the spray tip penetration is increased as the injection 
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pressure increased, we can see that the depth is at its maximum when the injection 

pressure reach 150bar and becomes slightly constant while the minimum depth is at the 

minimum injection pressure. 

 

 

 

Figure 4.6: Graph of penetration depth versus injection pressure in 0.3mm nozzle tip 

diameter 

 

 

 

Figure 4.7: Graph of spray angle versus injection pressure in 0.3mm nozzle tip 

diameter 
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 Based on Figure 4.7, the spray angle is the widest between injection pressure of 

150bar to 200bar. It is shown that the differences between the first and second injection 

pressure has small value, the same condition to the third and forth injection value. These 

mean that the spray angle is almost the same for the low and high injection pressure, it 

will experienced major differences for midst of the injection pressure range. As the 

injection pressure increased the spray angle also getting wider but does not show 

uniform enhancement. 

 

4.3.3 0.4mm Nozzle Diameter 

 

 

 

Figure 4.8: 0.4mm nozzle diameter spray structure 

 

Figure 4.8 shows the spray structure of gasoline fuel in 0.4mm nozzle tip 

diameter. Based on Figure 4.9, the spray tip penetration is increased as the injection 
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pressure increased, we can see that the depth is at its maximum when the injection 

pressure reach is maximum value. Compared to the other nozzle diameter, 0.4mm 

nozzle tip shows a uniform enhancement of penetration depth from the lowest injection 

pressure to the highest injection pressure. The depth differences between each injection 

pressure are nearly the same. 

 

 

 

Figure 4.9: Graph of penetration depth versus injection pressure in 0.5mm nozzle tip 

diameter 

  

 

 

Figure 4.10: Graph of spray angle versus injection pressure in 0.4mm nozzle tip 

diameter 
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Based on Figure 4.10, the spray angle is wider as the injection pressure 

increased, according to the theoretical understanding the spray angle will always 

increase with the injection pressure and also the nozzle tip diameter. With nozzle 

diameter 0.4mm, the spray angle will develop but does not the same compared to the 

other nozzle diameters. The differences of spray angle between the first and second 

injection pressure is the largest compared to the rest of the injection pressure. after 

reaching 150bar injection pressure, the spray angle will show small differences as the 

injection pressure increased. 

 

4.4 DIFFERENCE IN SPRAY STRUCTURE FOR VARIOUS NOZZLE 

DIAMETER 

 

 

 

 

 

Figure 4.11: Spray structure of gasoline fuel for different nozzle diameter 
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Figure 4.11 shows the spray structure (penetration depth and spray angle) of 

gasoline fuel for different nozzle diameter. The penetration depth of gasoline fuel spray 

is highly influenced by the nozzle tip diameter, the Figure 4.12 shows the difference on 

penetration depth versus injection pressure for 0.2mm, 0.3mm and 0.4mm nozzle 

diameter. With small difference in nozzle diameter, the penetration depths are varies 

because larger opening dimension or nozzle diameter will result in longer spray 

structure. When the nozzle diameter becomes larger, the percentage of fluid flow is 

much bigger compared to small nozzle diameter. 

We can see from the Figure 4.12 that 0.4mm nozzle diameter has the longest 

penetration depth for each injection pressure while 0.2mm diameter nozzle diameter had 

the shortest penetration depth for each injection pressure. Only 0.3mm nozzle diameter 

will shows non-uniform penetration depth development as the depths are constant after 

injection pressure reach 150bar. The higher injection pressure resulted in the longer 

spray tip penetration along the combustion chamber, but the penetration depth is also 

depends on the nozzle tip diameter. 

 

 

 

Figure 4.12: Variance of penetration depth between nozzle diameter and injection 

pressure 
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The spray angle of gasoline fuel spray is highly influenced by the nozzle tip 

diameter, the Figure 4.13 shows the difference on spray angle versus injection pressure 

for 0.2mm, 0.3mm and 0.4mm nozzle diameter. With small difference in nozzle 

diameter, the spray angle are varies because larger opening dimension or nozzle 

diameter will result in wider spray structure. Based on Figure 4.13 we can see that 

0.3mm nozzle diameter will has the widest spray angle even though it is not the largest 

nozzle diameter in this study. The simulation results showed a small effect of injection 

pressure to the spray angle for 0.2mm nozzle diameter, but effect of injection pressure 

to the spray angle for 0.3mm and 0.4mm nozzle diameter is high. According to the 

related experimental approach, it is conclude that the spray angle is mainly affected by 

the liquid viscosity, air-fuel ratio and density. 

 

 

 

Figure 4.13: Variance of spray angle between nozzle diameter and injection pressure 
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CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 CONCLUSIONS 

 

 Based on the objectives stated in Chapter 1, the computational study of fuel 

spray structure has been done completely. The gasoline spray structure on penetration 

depth and spray angle with various injection pressure have been determined by using 

ANSYS CFX analysis software. This study has achieved the objectives which is to 

perform a gasoline fuel spray simulation using computational approach and determine 

the effect of different injection pressure (bar) on the spray structure. The spray structure  

behavior and it characteristics at the exit of the nozzle tip and in the combustion 

chamber for all three nozzle diameter at different injection pressures were studied and 

compared 

 It is determined that the effect of different injection pressure on the penetration 

depth is that the higher the injection pressure, the longer the penetration depth will be. 

The simulations have been done to three nozzle diameter, each of the nozzle fulfill the 

theoretical penetration depth criteria. Nozzle diameter of 0.2mm and 0.4mm show 

uniform penetration depth development as the injection pressure increased, nozzle 

diameter of 0.3mm shows that the penetration depth is almost constant when the 

injection pressure reached 150bar. The lowest injection pressure that is 100bar shows 

the shortest penetration depth for each nozzle diameter, while the highest injection 

pressure that is 250bar shows the longest penetration depth for each nozzle diameter 

except for the 0.3mm diameter. There are many factors that might be affecting the 

penetration depth such as liquid viscosity, density, surface tension, injection pressure 

and also the outside pressure or ambient pressure. 
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Other than penetration depth, the effect of different injection pressure on the 

spray angle has been determine. The effect is the same as the effect on the penetration 

depth that is the higher the injection pressure, the wider the spray angle will be. Results 

from the spray simulations does not fulfill the theoretical spray angle coverage criteria 

as the spray angle will diverge as the spray development flows much further from the 

nozzle tip. Each nozzle diameter does not show a uniform spray angle development as 

the spray angle for 100bar and 150bar injection pressure on 0.2mm nozzle diameter are 

constant. The same situation occurred on 0.3mm and 0.4mm nozzle diameter where the 

spray angle will be constant at certain injection pressure level. 

 The lowest injection pressure that is 100bar shows the smallest spray angle for 

each nozzle diameter while the highest injection pressure that is 250bar shows the 

widest spray angle for each nozzle diameter. The factors that might be affecting the 

spray angle development is almost the same for penetration depth, the overall result 

indicate that the bigger the nozzle tip diameter will result in wider spray angle. 

 

5.2 RECOMMENDATIONS 

 

 Based on this study, there are few recommendations can be apply in order to 

improve the result and understanding of fuel spray structure focused on the penetration 

depth and spray angle. Even though computational approach is used in solving 

engineering problems, the result is not totally acceptable for real world situations. 

There are still some important aspect that need to be highlight to do a study on 

the spray structure. In order to obtain much better result in investigating the spray 

structure including penetration depth and spray angle, a real experiment should be carry 

out. The spray propagation through the air can be seen clearly with real experiment and 

with the aid of suitable equipment, the droplet properties on the dilute spray medium 

can be determined. 

 Another recommendation that can be apply to improve this study in to increase 

the injection pressure range, in this study there are only four different injection 

pressures. The pressure range should be bigger to determine and to obtain a clear 

understanding about the effect of injection pressure on the spray structure, the spray 

characteristics for wide range of injection pressure might be different from the results in 

this study. 
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 More parameters or boundary condition in the analysis can result in different 

findings about the spray characteristics. Since this study is related to the engine system, 

the simulation should used appropriate pressure value in the combustion chamber, the 

real engine condition can be apply to this study. The additional parameters that can be 

used are temperature in the combustion chamber, pressure in the combustion chamber, 

type of fuel and different nozzle tip shape. 
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APPENDIX A1 

 

Gantt Chart for Final Year Project 1 
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APPENDIX A2 

 

 

Gantt Chart for Final Year Project 2 

 


