

An Evaluation of the Potential of Adaptive Neuro-Fuzzy Inference

System in Hydrological Modelling and Prediction

by

Ngahzaifa Ab Ghani, BSc.

G UNIVERSITI M	ISTAKAÁN Alaysia Pahang
No. Perolehan 068591 Tarikh 3 0 NOV 2012	No. Panggilan GB 1207 .N43 2012 TheFS

Thesis submitted to The University of Nottingham for the degree of

Doctor of Philosophy

October 2012

Abstract

The use of data-driven modelling (DDM) in hydrological forecasting has been in practice since decades ago. Nevertheless, despite the ease of use, DDM approach has also been criticised due its 'black box' nature where the physical insights of the modelled processes are far from reach. Whilst hydrologists are craving for the insight, the operational modellers are and will always prefer an easily applicable method regardless of whether the model is able to deliver knowledge. Hence, a method that could fulfil the need of both would be a perfect solution. ANFIS (Adaptive Neuro Fuzzy Inference System), for its advantages of having linguistic representation of models has been the interests of both groups and have been successfully tested on a number of international catchments. It is however still unclear as to what extent is ANFIS able to deliver the required knowledge; how capable is ANFIS in modelling sediment-discharge; and what are the advantages and disadvantages of using ANFIS as a modelling tool. This thesis explores ANFIS capability in order to address these issues. The methods involved include creating synthetic datasets that mimic the sediment-discharge relationships; experimenting with different ANFIS parameter settings; and observing and analysing the behaviour of models with the help of statistical and graphical evaluations. The results highlight that ANFIS is capable to model most of the tested relationships, but the produced model is very dependent on the parameters applied when training the model. Wrong choice of parameters may lead to the production of models with good metrics but low transferability, or even worse, not transferable at all. As a conclusion, ANFIS can be used in sediment-discharge modelling with certain restrictions on training parameters but this is mostly applicable to the simple and common rating curves. More studies are needed in order to explore the potential of ANFIS to model complex sediment-discharge processes.

Table of Contents

Chapte	r 1 - In	troduction	1
1.1	Data	a driven modelling - from conventional to machine learning	1
1.2	The	motivation of research	3
1.3	Rese	earch aim and objectives	6
1.4	The	sis Overview	7
Chapte	r 2 – Fi	undamental of ANFIS	10
2.1	Intro	oduction	10
2.2	The	basic concept of fuzzy	10
2.3	Fuzz	y Inference System	11
2.4	ANF	IS – how the output is calculated	15
2.4	4.1	How ANFIS processes data – a numerical example	16
Chapter	r 3 – Li	terature Review	23
3.1	Intro	oduction	23
3.2	Part	I: The suspended sediment-discharge relationships	23
3.2	2.1	Single-valued linear	27
3.2	2.2	Single-valued nonlinear	29
3.2	2.3	Multi-valued linear	31
3.2	2.4	Multi-valued nonlinear (loops)	33
3.3	Part	II: ANFIS modelling of suspended sediment-discharge relationships	37
3.3	8.1	Introduction	37
3.3	8.2	The growing interests	37
3.3	8.3	The input combinations	44
3.3	3.4	Model calibration, validation and evaluation issues and training paramet settings	er 46
3.3	5.5	The capability to model complex physically based processes	49
3.3	8.6	The models evaluation	50
3.3	3.7	The research questions	53
Chapter	4 - M	ethodology	54
4.1	Intro	duction	54
4.2	Thes	is aim and objectives	55
4.2	.1	Aim	55

4.2	2.2	Objectives	55
4.3	The	framework of the experiments	57
4.4	The	synthetic datasets generation	62
4.4	4.1	Set I and II – the simple general functions	62
4.4	4.2	Set III – The process-based functions	66
4.5	The	characteristics of synthetic datasets	71
4.6	Synt	thetic dataset experiments	71
4.6	5.1	Analysis for Study 1 – ANFIS optimal settings on specific dataset characteristics	72
4.6	5.2	Analysis for Study 2 – ANFIS capability of modelling physical processes	74
4.7	Rea	l world validation	74
Chapter	r 5 – S	ynthetic Dataset Experiments Results and Analysis	75
5.1	Intro	oduction	. 75
5.2	Ana	lysis Study 1 – ANFIS Optimal Settings	77
5.2	2.1	Experiments of models with different types of membership functions	. 79
5.2	2.2	Experiments of models with different number of membership functions a training epochs	nd 88
5.3	Loca	al testing to measure over-fitting	106
5.3	3.1	Local over-fitting of <i>gaussmf</i> models	111
5.3	3.2	Local over-fittings of <i>trimf</i> models	114
5.4	ANA proc	LYSIS STUDY II – ANFIS capability in modelling complex suspended sedime cesses	nt 118
5.4	4.1	Two separated linear functions	119
5.4	1.2	Two parallel linear functions	121
5.4	1.3	Piecewise linear functions	123
5.4	1.4	Single loop – single event hysteresis	125
5.4	1.5	Multiple loops – multiple events of hysteresis	126
5.5	Sum	maries of Study I and Study II	132
5.5	5.1	Training parameters for simple linear relationship	132
5.5	5.2	Training parameters for simple nonlinear relationship (second degree polynomial curve)	133
5.5	5.3	Training parameters for higher degree polynomial curve	134
5.5	5.4	ANFIS capability to model complex physically based relationships	135
Chapter	6 – R	eal World Validations	136
6.1	Intro	oduction	136

6.	2	Case	Study 1: Rio Valenciano, Puerto Rico	137
	6.2.3	1	Dataset descriptions	137
	6.2.2	2	Results and Analysis	137
	6.2.3	3	Conclusion	155
6.3	3	Case	Study 2: River Tees at Low Moor (Single Hysteresis)	156
	6.3.1	1	Dataset descriptions	156
	6.3.2	2	Result And Analysis	156
	6.3.3	3	Conclusion	168
6.4	4	Case	Study 3: River Tees (Multiple Hysteresis)	169
	6.4.1	1	Dataset descriptions	169
	6.4.2	2	Results and Analysis	169
	6.4.3	3	Conclusion	183
Chap	ter 7	/ – Dis	scussion and Conclusion	184
7.1	1	Intro	duction	184
7.2	2	Addre	essing the research questions	184
	7.2.1	L	The training parameters	184
	7.2.2	2	Interpolation and extrapolation capability	188
	7.2.3	3	Over-fitting issues	188
7.3	3	The ir	npacts of the research	191
7.4	t .	The li	mitations	194
	7.4.1	L	Limited case studies	194
	7.4.2	2	Limited input parameters	195
	7.4.3	3	Dissimilarities of the synthetic datasets with datasets of natural river syste	ems
				196
	7.4.4		Training and testing samples issues	196
7.5	• •	Concl	usion	206
7.6)	Recor	nmendations for further research	207
Refer	ence			
Appe	ndice	es.		208
	Apn	endi	A - Metrics performance of TEST 1 and TEST 2	215
	App	endi	$\langle B - Metrics performance of TEST 3$.10
	App	endi	< C – Journal publications	20
	- F			.SU

List of Figures

ì

Figure 2.1: Example of fuzzy rules
Figure 2.2: Illustration of Fuzzy Inference System
Figure 2.3: ANFIS architecture for a two-input model16
Figure 3.1: Heteroscedasticity in C-Q plot causing bias in sediment estimation
Figure 3.2: Heteroscedasticity in C-Q plot of Rio Valenciano in Puerto Rico
Figure 3.3: Heteroscedasticity in SSC-Q plot of Quebrada Blanca in Puerto Rico
Figure 3.4: The rising and falling limb of a discharge (Q) temporal graph
Figure 3.5: Linear C-Q relationship of Fraser River at Hansard (top) and Hope (bottom) 28
Figure 3.6: C-Q relationship of Te Arai Rivers modelled by piecewise linear curve
Figure 3.7: Concave shape (top left) and convex shape (top right) of C-Q relationship on the
Chilliwack River at Vedder Crossing station. On the bottom row are the associated temporal
graphs
Figure 3.8: C-Q relationship of Waipaoa River at Kanakanaia (New Zealand) modelled by the
combination of two convex curves
Figure 3.9: Parallel linear curve to model C-Q relationship of Millers Creek near Phyllis,
Kentucky
Figure 3.11: Anti-clockwise loop caused by peak of C happens after peak of Q. (On the left is
temporal graph; on the right is rating curve)
Figure 3.12: Sediment rating curve in the shape of clockwise loop on Yadkin River at Yadkin
College, North Carolina (top) and Flynn Creek near Salado, Oregon (bottom)
Figure 3.13: Sediment rating curve in the shape of anti-clockwise loop on Muddy Creek near
Vaughn, Montana (top) and Animas River at Farmington, New Mexico (bottom)
Figure 3.14: C-Q scatterplot of multiple-loop hysteresis dataset on River Swale Thornton
Manor, UK

Figure 3.15: C-Q scatterplot of multiple-loop hysteresis dataset on River Tees at Low Moor,
UK
Figure 3.16: Example of hysteresis plot in Rajaee et al., (2009)
Figure 4.1: Flowchart of the research 58
Figure 4.2: 27 datasets of Set I (no heteroscedasticity)59
Figure 4.3: 27 datasets of Set II (with heteroscedasticity)60
Figure 4.4: Five datasets of Set III where each represents common hydrological processes 61
Figure 4.5: 1000-point sets of different distribution pairing
Figure 4.6: The probability density function (PDF) of Qa and Ca64
Figure 4.7: The use of synthetic 'hydrograph' to create hysteresis effect (dataset S and T) 67
Figure 4.8: The process of adding heteroscedasticity effect to the datasets
Figure 4.9: The parameters applied in modelling72
Figure 5.1: ANFIS models of different membership functions on Nonlinear 1 (NL1) datasets
Figure 5.2: ANFIS models of different membership functions on Nonlinear 2 (NL2) datasets
Figure 5.3: ANFIS models of different membership functions on Nonlinear 3 (NL3) datasets
Figure 5.4: of NL2 dataset with the membership functions plots
Figure 5.5: An example of how membership functions work
Figure 5.6: Gaussmf and trimf models of SL dataset on different number of membership
functions and training epochs
Figure 5.8: Models of NL2 dataset on different number of membership functions and
training epochs
Figure 5.9: NL2 dataset successfully modelled with three membership functions of gaussmf

Figure 5.10: NL2 dataset successfully modelled with five membership functions of <i>trimf</i> 98
Figure 5.11: Over-fitting of gaussmf model can be detected by the abnormalities of the
shape of membership function
Figure 5.12: Over-fitting of trimf model is not visible in membership function shape 100
Figure 5.15: RSqr scatterplots of gaussmf models 112
Figure 5.16: CE scatterplot of gaussmf models 113
Figure 5.17: RSqr scatterplot of trimf models 116
Figure 5.18: CE scatterplot of trimf models 117
Figure 5.19: Synthetic sediment-discharge represents two separate linear events modelled
by ANFIS with three membership functions of <i>trapmf</i>
Figure 5.21: Dataset represents two parallel linear events modelled with two membership
functions of trimf
Figure 5.22: Synthetic sediment-discharge represents two parallel linear events
Figure 5.23: Dataset represents four continuous linear processes modelled by three
membership functions of gaussmf
Figure 5.24: Dataset represents four continuous linear processes modelled by four
membership functions of <i>trimf</i>
Figure 5.26: Dataset represents single hysteresis event modelled (two-input modelling
approach) by two membership functions of <i>gaussmf</i> 126
Figure 5.31: Dataset represents multiple hysteresis events modelled (two-input modelling
approach) by 10 membership functions of gaussmf trained for 10,000 epochs
Figure 6.1: Rio Valenciano station in Puerto Rico138
Figure 6.3: ANFIS rating curve model of Rio Valenciano (Experiment 1) with two gaussmf
and trained for 180 epochs140
Figure 6.4: ANFIS rating curve model and membership plot of Rio Valenciano (Experiment 1)
with two <i>gaussmf</i> and not sufficiently trained141

Figure 6.5: ANFIS rating curve model and membership plot of Rio Valenciano (Experiment 1)
with two gaussmf and sufficiently trained141
Figure 6.6: ANFIS rating curve model of Rio Valenciano (Experiment 1) with three gaussmf
and sufficiently trained
Figure 6.7: ANFIS rating curve model and membership plot of Rio Valenciano (Experiment 1)
Figure 6.8: ANFIS rating curve model of Rio Valenciano (Experiment 1) with two trimf 144
Figure 6.9: ANFIS rating curve model of Rio Valenciano (Experiment 1) with three trimf 145
Figure 6.10: ANFIS rating curve model and membership plot of Rio Valenciano (Experiment
1) with three <i>trimf</i>
Figure 6.11: ANFIS rating curve model of Rio Valenciano (Experiment 2) with two gaussmf
Figure 6.12: Rating curve model and membership plot of Rio Valenciano (Experiment 2)
and the value of t
with two gaussmf
with two gaussmf. 148 Figure 6.13: Rating curve model of Rio Valenciano (Experiment 2) with two gaussmf. 148 Figure 6.14: Rating curve model and membership plot of Rio Valenciano (Experiment 2) with two gaussmf. 149 Figure 6.15: Rating curve model of Rio Valenciano (Experiment 2) with three gaussmf. 150 Figure 6.16: Rating curve model and membership plot of Rio Valenciano (Experiment 2) with three gaussmf. 150 Figure 6.16: Rating curve model and membership plot of Rio Valenciano (Experiment 2) 150 Figure 6.17: Insufficient training of rating curve model of Rio Valenciano (Experiment 2) 152 Figure 6.18: Sufficiently trained rating curve model of Rio Valenciano (Experiment 2) with 152
with two gaussmf
with two gaussmf

Figure 6.20: Over-fitted rating curve model of Rio Valenciano (Experiment 2) with three	
trimf	
Figure 6.21: Rating curve model and membership plot of Rio Valenciano (Experiment 2)	
with two <i>trimf</i>	
Figure 6.22: River Tees at Low Moor station	
Figure 6.24: Single hysteresis rating curve and membership plot of Low Moor (Experiment	
1) with two <i>gaussmf</i>	
Figure 6.25: Single hysteresis rating curve of Low Moor (Experiment 1) with three gaussmf	
Figure 6.26: Single hysteresis rating curve and membership plot of Low Moor (Experiment	
1) with three gaussmf	
Figure 6.27: Single hysteresis rating curve of Low Moor (Experiment 1) with two trimf 162	
Figure 6.28: Single hysteresis rating curve and membership plot of Low Moor (Experiment	
1) with two <i>trimf</i>	
Figure 6.29: Single hysteresis rating curve of Low Moor (Experiment 2) with two gaussmf	
Figure 6.30: Single hysteresis rating curve and membership plot of Low Moor (Experiment	
2) with two <i>gaussmf</i>	
Figure 6.31: Single hysteresis rating curve of Low Moor (Experiment 2) with two trimf 167	
Figure 6.32: Single hysteresis rating curve and membership plot of Low Moor (Experiment	
2) with two trimf	
Figure 6.33: Multiple hysteresis rating curve of Low Moor (Experiment 1) with two gaussmf	
Figure 6.34: Multiple hysteresis rating curve and membership plot of Low Moor	
(Experiment 1) with two gaussmf	

Figure 6.35: Multiple hysteresis rating curve of Low Moor (Experiment 1) with five generation
a specific the ruling curve of Low Woor (Experiment 1) with five gaussing
Figure 6.36: Multiple hysteresis rating curve and membership plot of Low Moor
(Experiment 1) with five gaussmf
Figure 6.37: Multiple hysteresis rating curve of Low Moor (Experiment 1) with two trimf 174
Figure 6.38: Multiple hysteresis rating curve and membership plot of Low Moor
(Experiment 1) with two <i>trimf</i>
Figure 6.39: Multiple hysteresis rating curve of Low Moor (Experiment 1) with five trimf 176
Figure 6.40: Multiple hysteresis rating curve and membership plot of Low Moor
(Experiment 1) with five <i>trimf</i>
Figure 6.41: Multiple hysteresis rating curve of Low Moor (Experiment 2) with five gaussmf
Figure 6.42: Multiple hysteresis rating curve and membership plot of Low Moor
(Experiment 2) with five <i>gaussmf</i>
Figure 6.43: Multiple hysteresis rating curve of Low Moor (Experiment 2) with two <i>trimf</i> 181
Figure 6.44: Multiple hysteresis rating curve and membership plot of Low Moor
(Experiment 2) with two <i>trimf</i>
Figure 7.1: Membership plot of good model (left) and membership plot of over-fitted model
(right) 189
Figure 7.2: <i>Gaussmf</i> model with lower metric score (RMSE = 49.837) and the over-fitted
<i>trimf</i> model with better metric score (RMSE = 47.528)
Figure 7.3: Training and testing subsets of different distribution (training – exponential;
testing – uniform) 199
Figure 7.4: Training and testing subsets of same exponential distribution (split from training
dataset of Figure 7.3)

Figure 7.5: The comparison between the results from experiments in Chapte	r 5 (A) and the
post-study results (B)	202

List of Tables

Table 2.1: Parameters for trimf for X1 = 2 and X2 = 4.2023
Table 2.2: Different types of membership functions 20
Table 4.1: Equations used to create datasets in Set I and Set II
Table 4.2: Equations used to create datasets in Set III 70
Table 4.3: The organisation of synthetic dataset experiments analysis 73
Table 5.1: MAE, RMSE, MdAPE and MSRE values for linear model of each dataset
Table 5.2: Performance of models built by different type of membership functions
Table 5.3: Mean model performance of models in category SL
Table 5.5: Mean model performances of models in category NL2
Table 5.6: Mean model performances of models in category NL3
Table 5.7: Statistics of TEST 1 and TEST 2 of gaussmf models on one of NL3 datasets 104
Table 5.8: Statistics of TEST 1 and TEST 2 of <i>trimf</i> models on one of NL3 datasets 105
Table 5.9: Statistics of gaussmf models for TEST 3 (on high Qa) 108
Table 5.10: Statistics of <i>trimf</i> models for TEST 3 (on high Qa)
Table 5.11: Categories of overall performance based on training and testing performance
Table 7.1: Descriptive statistic of NL2 dataset with different distribution training/testing
subsets
Table 7.2: Descriptive statistic of NL2 dataset with same distribution training/testing
subsets
Table 7.3: The performance metrics for local testing of post-study models and models of
experiments 5 at high discharge (HQ) 205
Table A. 1: Statistics of TEST 1 and TEST 2 of gaussmf models on one of SL datasets 217

Table A. 2: Statistics	of TEST 1 and TEST 2 of <i>trimf</i> models on one of SL datasets
Table A. 3: Statistics	of TEST 1 and TEST 2 of <i>gaussmf</i> models on one of NL1 datasets 219
Table A. 4: Statistics	of TEST 1 and TEST 2 of <i>trimf</i> models on one of NL1 datasets
Table A. 5: Statistics of	of TEST 1 and TEST 2 of <i>gaussmf</i> models on one of NL2 datasets 221
Table A. 6: Statistics of	f TEST 1 and TEST 2 of <i>trimf</i> models on one of NL2 datasets
Table A. 7: Statistics of	f gaussmf models for TEST 3 (on LQ range)
Table A. 8: Statistics c	f <i>trimf</i> models for TEST 3 (on LQ range)225
Table A. 9: Statistics o	f gaussmf models for TEST 3 (on mLQ range) 226
Table A. 10: Statistics	of <i>trimf</i> models for TEST 3 (on mLQ range)
Table A. 11: Statistics	of gaussmf models for TEST 3 (on mHQ range) 228
Table A. 12: Statistics	of <i>trimf</i> models for TEST 3 (on mHQ range)

xiv

Glossary and Abbreviations

Chapter 1	
ABM	Agent based modelling
ANFIS	Adaptive neuro-fuzzy inference system
DDM	Data driven modelling
GA	Genetic algorithm
NN	Neural network
SRC	Sediment rating curve
Chapter 2	
mf, MF	Membership function
Gaussmf	Gaussian membership function
Gbellmf	Generalized bell membership function
Pimf	'Pi' membership function
Psigmf	Product of Sigmoid membership function
Trapmf	Trapezoidal membership function
Trimf	Triangular membership function
Chapter 3, 4	
е	Epoch (training iteration)
C-Q	Sediment-discharge
NE	Synthetic dataset with normal distribution on y-axis and exponential
	distribution on x-axis
NG	Synthetic dataset with normal distribution on y-axis and Gumbel
	distribution on x-axis
NU	Synthetic dataset with normal distribution on y-axis and uniform
	distribution on x-axis
О-Р	'observed versus predicted'
SSC	Suspended sediment concentration
Set I (dataset)	Synthetic dataset without heteroscedasticity
Set II (dataset)	Synthetic dataset with heteroscedasticity
SSL	Suspended sediment load
Chapter 5	
NL1	Nonlinear1 (dataset of second degree polynomial relationship)
NL2	Nonlinear2 (dataset of higher degree polynomial relationship)
NL3	Nonlinear3 (dataset of higher degree polynomial relationship with
	higher sinuosity index than NL2)
SL	Dataset of simple linear
Q _a	Artificial discharge
<u>C</u> _a	Artificial sediment
LQ	low discharge value
MLQ	Medium low discharge value
MHQ	Medium high discharge value
HQ	High discharge value

1.1 Data driven modelling - from conventional to machine learning

Models are the abstraction of reality. In hydrology, models are of central importance because of two main reasons i.e. to understand the hydrological processes; and for the purpose of prediction. The types of models can be broadly grouped into three main categories i.e empirical, conceptual, and physically based models.

Between the late 15th century and the late 18th century, the only way of learning the hydrological processes was by physical in-lab experiments (Babovic, 2005). Hydrologists had developed physical artificial models that mimic the real processes to study the response of each hydrological variable involved. Each response or process is then described or represented by process description or mathematical equations. In recent years, with the availability of advanced computational tools, a physically based model is also presented in a digital form such as with animations or 3D models where the numerical calculations are also done by computers.

Despite having the advantage of 'real' control of both temporal and spatial variables and the improvement by computational advancement, this approach is still not always preferred by modellers. This is because physically based models are often complex thus require more computing time and effort (Yu, 2002). Moreover, physically based model has also been criticized due to scaling issues where the scale of measurement for many variables is usually incompatible with their use in hydrological models (Grayson et al., 1992) This type of models are more feasible for small catchment studies where the variables are small and well under control (Gan et al., 1991).

In its simplest form, a conceptual model is presented in the form of flowcharts in order to describe the modelled processes. Whilst this basic conceptual model is the simplest type of model and can be easily understood, it is one of the hardest to develop (Lane, 2003). The flowcharts are very useful to get some sort of general ideas and knowledge about the relationships involved in the particularly modelled processes. Because it is not transferable, this type of model cannot be used for prediction.

In hydrological modelling and prediction, the use of conceptual model is not limited to the basic processes description only. In fact, it is far more complex i.e. with the integration of complex mathematical description to describe each process or phase in the conceptual model and of course requires computational tool. In regards to the process description, the variables involved are usually not directly measurable and must be calibrated from the observed data (Beven and Binley, 1992).

Empirical models are obtained by establishing relationships between the observed parameters involved. Most commonly, the relationships are achieved by statistical methods. One of the popular empirical approach in hydrological modelling is the Sediment Rating Curve (Campbell and Bauder, 1940) that is used to predict suspended sediment from discharge value.

Any model can be based on either inductive or deductive modelling approach. Deductive approach is theory or knowledge driven and starts with using knowledge to develop hypothesis in order to control or restrict the production of model. Conceptual and physically-based models are based on this approach.

Contrary to deductive, inductive approach is data-driven and works by learning the data to achieve the model. It starts with data observations, establishing pattern/relationships on

the observed data, developing hypothesis, and lastly producing the model (theory). All data-driven models including empirical models are based on this approach.

The fact that data-driven model (DDM) is easy to produce and does not require critical expertise, has contributed to its popularity. Moreover, since decades ago, DDM has improved from the conventional statistical methods to more sophisticated artificial intelligence (AI) (McCarthy, 1956) method, which combines more advanced statistics and requires computer processing power.

AI method is mostly inspired by natural processes. Artificial Neural Network (NN) (McCulloch and Pitts, 1943) was developed on the concept of human brain function, Genetic Algorithms (GA) on the behaviour of chromosomes in genetic science (Goldberg and Holland, 1988), and Agent Based Modelling (ABM) on the body cells behaviour where they function as the agents in human body (Bonabeau, 2002). NN, GA and ABM are just a few of many other available AI methods.

In hydrological modelling, NN is one of the AI methods that have been the attention of hydrologists because of its learning capability towards non-linear relationships. Although NN has been very popular in hydrological modelling with increasing success, it has nevertheless been criticised due to its 'black box' behaviour: it is not understandable in terms of physical parameters (Johannet et al., 2007).

1.2 The motivation of research

In 1993, Jang introduced Adaptive Network Based Fuzzy Inference System (ANFIS) (Jang, 1993) which has been considered more conceptually advanced than ANN. The main advantage of ANFIS over ANN is that it is developed by two parts: ANN to learn the data and model it; and 'fuzzy components' to describe the model. Being one step advanced than ANN in terms of transparency, ANFIS is indeed a hope for hydrologists in getting the solution over the 'black-box' issues.

Interestingly enough, in most publications of ANFIS application on water resources modelling, majority of the studies concluded that ANFIS has performed very well, or even better, superior to other modelling methods compared in most cases. Moreover, ANFIS has been believed to be a tool that is capable of providing further insight into the process being modelled (Cobaner et al., 2009, Kisi, 2009, Kisi et al., 2009, Kisi et al., 2008, Sayed and Razavi, 2000, Sayed et al., 2003). The growing interests towards ANFIS in hydrological modelling especially suspended sediment and the promising results of testing has been one of the motivations of this research.

One of the areas that would benefit from ANFIS application is sediment forecasting. Sediment forecasting is important for many purposes such as for reservoir designs, water pollution controls i.e. for continuous monitoring of water quality in rivers and reservoirs, and flood-risk assessment. By in-field observation, sediment measurement is obtained using standardised samplers and sampling methods. Although this traditional method provides accurate and reliable measurement, the data is usually temporally sparse and very expensive to collect (Gray and Glysson, 2004).

The need for sediment forecasting is crucial. The failure to reach sediment information may lead to serious consequences. For example, a continuous observation of sediment can help in monitoring the stability of a dam thus can possibly avoid incidence such as damn collapse that is due to underlying sediment failure. The forecasting of sediment is also very useful to prevent flood as a flood event can be caused by accumulated sediment blocking the river course.

From the good impression on the performance of ANFIS as a modelling tool for hydrological problems (based on the publications cited before), perhaps, the use of ANFIS for sediment forecasting can help in managing water resources and preventing environmental problems caused by sediment such as flooding and water pollution.

1.3 Research aim and objectives

This research aims to provide enhanced knowledge that can be developed into theories and guides that will improve the efficiency of ANFIS application in hydrological modelling especially in suspended sediment-discharge relationships in operational and research level. The objectives of this research are:

Objective 1

To identify problems and issues in ANFIS modelling of suspended sediment-discharge by reviewing and critically discuss the progress and gaps in existing research.

Objective 2

To create a series of synthetic datasets in order to provide a controlled environment for further testing and investigations of the problems identified from Objective 1.

Objective 3

To explore the capability, pros and cons of ANFIS models with different modelling parameters by experimenting with the synthetic datasets.

Objective 4

To propose a set of guides in the form of rules and theories for ANFIS modelling of suspended sediment-discharge.

Objective 5

To test and evaluate the applicability of the proposed guides and theories by applying the guides and theories to (two) river case studies.

1.4 Thesis Overview

Chapter 2: ANFIS mechanism

Chapter 2 provides the explanation of ANFIS working mechanism and its main components. The explanation covers how an ANFIS model is trained and developed. To ease the understanding of the role of each component, a numerical example of the step-by step calculation is also included.

Chapter 3: Literature Review

Literature Review in Chapter 3 is developed by two main parts. The first part presents the review on suspended sediment processes and the relationships of suspended sedimentdischarge that have been commonly found in hydrologic research. The second part critically reviews ANFIS application in suspended sediment-discharge modelling and its progress in hydrological research community. The gaps in previous research are defined in the form of research questions.

Chapter 4: Methodology

Chapter 4 presents an overall methodology of the research where it is formed based on the understanding and research gaps defined in Chapter 3. From the literature review, it was identified that in existing studies, the approach of suspended sediment-discharge modelling has been on trial and error basis. Model evaluations were mostly dependent to statistics alone, with hardly deep understanding on either hydrological nature of the relationships or ANFIS components itself. Hence a series of synthetic datasets with different complexity based on the understanding of suspended sediment-discharge relationships were created for ANFIS experiments. The experiments involved a number of different parameter settings of type of membership functions, number of membership functions and training epochs. The methods of experiments, analysis and validation of results are also explained briefly in this chapter.

Chapter 5: Results and Analysis of synthetic datasets experiments

This chapter presents the results and analysis of models trained from the synthetic datasets. The results are presented in the form of model plots and statistics (tabulated and graphs). In the first part of analysis, ANFIS models of common suspended sediment-discharge relationships were compared and thoroughly analysed in terms of its capability to model the datasets with regards to issues including sensitivity to outliers, stability with the changes of training parameters, and local over-fitting. In the second part, the capability of ANFIS to model more complex suspended sediment-discharge processes was examined. This chapter is concluded with the summaries of the two parts of analysis that are formed into guides and theories in modelling sediment-discharge. These guides and theories will be tested in Chapter 6.

Chapter 6: Case Studies – Real world validation

In Chapter 6, the guides and theories from Chapter 5 are re-applied to the modelling of datasets of two catchments to validate their applicability in real world. The catchments involved are Rio Valenciano (Puerto Rico) and Low Moor (River Tees, Northern England). The chapter is concluded with the finalised theories and guides for ANFIS modelling of suspended sediment-discharge.

Chapter 7: Discussion and Conclusion

In this chapter, the outcome of the research is discussed in a broad perspective. The discussion is organised into five sections. First section reviews the findings of this research and how this research fills the gaps in existing studies defined in Chapter 3. In the second section, the impacts of this research to the previous existing studies and the society are discussed. The third, fourth and fifth sections provide the limitations of the research, the conclusion and a set of recommendations for future research.