MEMBRANE TE

E HARVESTING FOR

by

NUR HIDAYAH BINTI MAT YASIN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

MAY 2014

TEKNOLOGI MEMBRAN DALAM PEROLEHAN MIKROALGA UNTUK PENGHASILAN BIOBAHAN API

ABSTRAK

Mikroalga telah muncul sebagai salah satu alternatif yang menjanjikan sumber lipid untuk digunakan dalam penghasilan biodiesel kerana kadar pertumbuhan dan pengeluaran yang tinggi untuk menghasilkan biojisim berbanding penjanaan lain bahan suapan biodiesel. Dalam kajian ini, Chlorella vulgaris telah dipilih sebagai model mikroalga. Isu yang paling penting yang perlu ditangani adalah proses perolehan biojisim Chlorella vulgaris yang ketara lebih mahal daripada pengkulturan alga. Oleh itu, perolehan Chlorella vulgaris merupakan penyelidikan yang penting dalam usaha untuk membangunkan proses yang sesuai dan ekonomi untuk spesies mikroalga supaya penghasilan biodiesel ini berdaya saing. Kajian terperinci mengenai keberkesanan penurasan membran untuk pemisahan biojisim Chlorella vulgaris daripada media kultur telah dijalankan. Asetat selulosa membran hidrofilik dengan diameter liang 1.2 µm mempamerkan prestasi terbaik di antara empat membrane yang diuji (nitrat selulosa, polipropilena dan polivinildiflorida) dari segi fluks penelapan. Keadaan-keadaan optimum yang dicapai adalah 1.5 bar tekanan transmembran (TMP) dan 0.4 ms⁻¹ halaju aliran silang (CFV). Tambahan pula, 0.75% natrium hipoklorida (NaOCl) pada 60 °C telah dijalankan sebagai proses pembersihan membran. Ketebalan pengutuban kepekatan (CP) telah didapati sangat bergantung kepada caj permukaan membran dan bilangan kitaran pembersihan membran. Perkaitan mikroalga-membran telah berjaya dicapai melalui pendekatan XDLVO. Akhir sekali, kaedah mikropenurasan telah dibandingkan dengan kaedah pengemparan dan pengentalan untuk menentukan kaedah yang paling berkesan untuk memisahkan biojisim *Chlorella vulgaris* daripada media kultur. Antara tiga kaedahkaedah perolehan yang dinyatakan dalam kajian ini, didapati bahawa membran mikropenurasan adalah proses perolehan yang lebih berkesan kerana ia membolehkan pengendalian kultur dengan jumlah yang besar pada kos tenaga yang rendah. Profil asid lemak (FAME) yang sama telah diperolehi bagi semua kaedah perolehan, yang menunjukkan bahawa komponen utama adalah asid palmitik (C16:0), asid oleik (C18:1) dan asid linoleik (C18:2). Walau bagaimanapun, jumlah individu bagi FAME adalah lebih tinggi untuk mikropenurasan berbanding pengemparan dan pengentalan; pengentalan adalah yang paling teruk dalam hal ini dengan menghasilkan jumlah FAME yang paling rendah (41.61 \pm 6.49 mg/g dw). FAME tak tepu (C16:1, C18:1, C18:2, C18:3) mendominasi dalam FAME profil (>70%) untuk semua kaedah perolehan yang digunakan dan dengan itu menjadikan biojisim *Chlorella vulgaris* adalah spesis yang baik untuk penghasilan biodiesel.

MEMBRANE TECHNOLOGY IN MICROALGAE HARVESTING FOR BIOFUEL PRODUCTION

ABSTRACT

Microalga has emerged as one of the most promising alternatives sources of lipid for use in biodiesel production because of their high growth rates and productivity to produce biomass compared to other generations of biodiesel feedstocks. In this study, Chlorella vulgaris was selected as the model microalga. The most important issue to be addressed is the recovery process of Chlorella *vulgaris* biomass that can be substantially more expensive than the culturing of the microalgae. Therefore, Chlorella vulgaris harvesting is an important research area in order to develop an appropriate and economical process for microalgae species so that the production of this biodiesel is competitive. Detailed studies on the effectiveness of membrane filtration for the separation of Chlorella vulgaris biomass from the culture medium had been carried out. The hydrophilic cellulose acetate membrane with pore diameter of 1.2 µm exhibited the best performances among four membranes tested (cellulose nitrate, polypropylene and polyvinylidenefluoride) in terms of permeation flux. The optimal conditions achieved were 1.5 bar of transmembrane pressure (TMP) and 0.4 ms⁻¹ of crossflow velocity (CFV). In addition, 0.75% sodium hypochloride (NaOCl) at 60 °C was performed as the membrane cleaning process. The concentration polarization (CP) thickness was found to be strongly depended on the membrane surface charge and the number of membrane cleaning cycles. The microalgae-membrane interaction was successfully achieved by XDLVO approach. Finally, the microfiltration method was compared with centrifugation and coagulation method to determine the most efficient method for separating Chlorella vulgaris biomass from the culture medium. Of the three harvesting methods described in this work, it was found that the membrane microfiltration was more effective in harvesting process because it allowed the handling of large volumes of culture at a low energy costs. Similar fatty acid (FAME) profiles were obtained for all of the harvesting methods, indicating that the main components were palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2). However, the amounts of the individual FAME were higher for microfiltration than for centrifugation and coagulation; coagulation performed the most poorly in this regard by producing the smallest amount of FAME (41.61 \pm 6.49 mg/g dw). The unsaturated FAME (C16:1, C18:1, C18:2, C18:3) were predominant in the FAME profile (>70%) for all harvesting methods applied and thus making *Chlorella vulgaris* biomass a good species for biodiesel production.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF PLATES	xvii
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	XX
ABSTRAK	xxiii
ABSTRACT	XXV

CHAPTER ONE – INTRODUCTION

1.1	Resea	arch overview	1
	1.1.1	Scenario of energy	1
	1.1.2	Biofuels an answer to a sustainable fuel	3
	1.1.3	Microalgae for biodiesel production	4
	1.1.4	Harvesting of microalgae	6
1.2	Proble	em statement	7
1.3	Objec	tives of research	8
1.4	Scope	e of research	9
1.5	Organ	ization of the thesis	12

CHAPTER TWO – LITERATURE REVIEW

2.1	Feeds	tocks of bio	diesel	14
	2.1.1	First gener	ration biodiesel feedstocks	16
	2.1.2	Second ge	neration biodiesel feedstocks	17
	2.1.3	Third gene	eration biodiesel feedstocks	19
2.2	Comp	arison betw	een microalgae and palm oil as biodiesel feedstocks	23
	2.2.1	Palm oil a	s a source of biodiesel	23
		2.2.1 (i) F	food versus fuel dispute for a sustainable future	24
		2.2.1 (ii) H	Environmental debate	25
	2.2.2	Microalga	e as a source of biodiesel	27
		2.2.2 (i) H	Research activities about microalgae	28
		2.2.2 (ii) H	Briefly of biodiesel processing from microalgae	33
	2.2.3	Microalga	e versus palm oil in Malaysia	35
2.3	Micro	algae specie	es	36
	2.3.1	Chlorella	species	36
2.4	Micro	algae harve	sting technologies	37
	2.4.1	Centrifuga	ation method	39
	2.4.2	Coagulatio	on method	39
	2.4.3	Membran	e filtration method	41
		2.4.3 (i)	Applications of membrane filtration in harvesting method	42
		2.4.3 (ii)	System design and configuration module	46
		2.4.3 (iii)	Different type of membrane	47
		2.4.3 (iv)	Transmembrane pressure and crossflow velocity	48
		2.4.3 (v)	Membrane fouling and cake formation	50
		2.4.3 (vi)	Cleaning for fouled membrane	52

		2.4.3 (vii) Concentration polarization thickness	53
		2.4.3 (viii) DLVO and extended DLVO (XDLVO) interaction	57
	2.4.4	Economic analysis of harvesting methods	62
2.5	Lipid	extraction and transesterification of microalgal lipid	66
2.6	Prope	rties of biodiesel	69
	2.6.1	Quality of microalgae-derived biodiesel	70

CHAPTER THREE – MATERIALS AND METHODS

3.1

3.3

Introduction

72

81

3.2	Materials		
	3.2.1	Membranes	73
	2 2 2	Chitagan	7/

3.2.2 Chitosan	74
3.2.3 Chemicals	74
Chlorella vulgaris cultivation	76

3.3.1	Medium and culture conditions	76
3.3.2	Preparation of Chlorella vulgaris biomass	76

3.4	Chara	cterization of Chlorella vulgaris	77
	3.4.1	Determination of growth curve	77
	3.4.2	Measurement of cell size	77
	3.4.3	Measurement of electrophoretic mobility	78
3.5	Memb	brane filtration study	78
	3.5.1	Experimental set-up	78
		3.5.1 (i) Crossflow microfiltration rig	78

81 3.5.2 Microfiltration studies

3.5.1 (ii) Membrane cell

		3.5.2 (i) Effect of different types of membranes	82
		3.5.2 (ii) Effect of the transmembrane pressure (TMP)	83
		3.5.2 (iii) Effect of the crossflow velocity (CFV)	83
	3.5.3	Measurement of the filtration resistance	84
	3.5.4	Chemical cleaning for fouled membranes	85
		3.5.4 (i) Pure water flux	86
		3.5.4 (ii) Fouling	87
		3.5.4 (iii) Water rinse	87
		3.5.4 (iv) Chemical cleaning	87
	3.5.5	Characterization of the cake layer	89
	3.5.6	Modelling to predict the flux decline	89
		3.5.6 (i) Calculation of initial flux, J_i	89
		3.5.6 (ii) Calculation of flux decline, $J_d(t)$	92
	3.5.7	Analytical methods	97
		3.5.7 (i) Zeta potential measurement	97
		3.5.7 (ii) Contact Angle Measurement	97
		3.5.7 (iii) Atomic Force Microscope (AFM)	98
		3.5.7 (iv) Scanning Electron Microscope (SEM)	98
3.6	Comp	parison of harvesting methods	99
	3.6.1	Centrifugation	99
	3.6.2	Coagulation studies	99
		3.6.2 (i) Preparation of the chitosan solution	100
		3.6.2 (ii) Jar test for the coagulation process	100
		3.6.2 (iii) Measurement of floc size	102
3.7	Total	lipid extraction	102

	3.7.1 Kinetics studies and thermodynamics of lipid extraction	103
	3.7.1 (i) Calculation of thermodynamic parameters	103
3.8	Acidic transesterification of Chlorella vulgaris oil	104
3.9	Gas Chromatography (GC) analysis	104

.

CHAPTER FOUR – RESULTS AND DISCUSSIONS

4.1	Cha	acterization of Chlorella vulgaris	106
	4.1.1	Growth curve of Chlorella vulgaris cultivation	106
	4.1.2	Cell size distribution	107
	4.1.3	Electrophoretic mobility results	109
4.2	Cros	sflow microfiltration membrane of Chlorella vulgaris biomass	111
	4.2.1	Microfiltration performances	111
	4.2.2	Parameter study for microfiltration	112
		4.2.2 (i) Effect of membrane material	113
		4.2.2 (ii) Effect of pore size	117
		4.2.2 (iii) Effect of the transmembrane pressure (TMP)	122
		4.2.2 (iv) Effect of the crossflow velocity (CFV)	125
	4.2.3	Analysis of filtration resistance	128
	4.2.4	Chemical cleaning of CA membrane fouled by <i>Chlorella</i> vulgaris biomass	131
		4.2.4 (i) Fouling behavior of CA membrane	131
		4.2.4 (ii) Effect of cleaning agent and cleaning cycle on flux recovery	133
		4.2.4 (iii) Effect of temperature on cleaning performance	143
	4.2.5	Determination of the concentration polarization (CP) thickness of the <i>Chlorella vulgaris</i> cells using CDE model	145
	4.2.6	Interaction between <i>Chlorella vulgaris</i> cells and the CA membrane	148

x...

		4.2.6 (i) Surface free energy of CA membrane and <i>Chlorella vulgaris</i> cell	149
		4.2.6 (ii) DLVO and XDLVO energy profile	150
	4.2.7	Modeling to predict the flux decline	152
		4.2.7 (i) Combined kinetic model and Carman-Kozeny model	153
		4.2.7 (ii) Model prediction and comparison with experimental data	155
		4.2.7 (iii) Modelling of the mean flux under different transmembrane pressure	157
	4.2.8	Optimum conditions of membrane filtration	158
4.3	Kineti	c studies and thermodynamics of oil extraction	158
	4.3.1	Extraction kinetics	159
	4.3.2	Calculation of activation energy	162
	4.3.3	Calculation of thermodynamic parameters	163
4.4	Comp and ar	arison of harvesting methods of microalgae <i>Chlorella vulgaris</i> nalysis of fatty acid profile from <i>Chlorella vulgaris</i> lipid	164
	4.4.1	Optimization of Chlorella vulgaris coagulation process	165
		4.4.1 (i) Effect of chitosan dosage	165
		4.4.1 (ii) Effect of mixing time	167
		4.4.1 (iii) Effect of impeller speed	169
		4.4.1 (iv) Effect of sedimentation time	171
		4.4.1 (v) Optimum conditions of coagulation process	172
	4.4.2	Comparison of harvesting methods on biomass and lipid content	173
	4.4.3	Fatty acid profiles from various harvesting methods	176

CHAPTER FIVE – CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

5.1	Conclus	ions	179
5.2	Recomn	nendations for future research	182
REFE	RENCE	8	184
APPE	NDICES		
APPE	NDIX A	Calibration curve	203
APPE	NDIX B	Results of Gas Chromatography analysis	204
APPEI	NDIX C	Photographs related to the research	206

LIST OF PUBLICATIONS AND AWARDS 211

LIST OF TABLES

.

		Page
Table 2.1	Current feedstock for biodiesel worldwide.	15
Table 2.2	Comparison of microalgae with other biodiesel feedstocks.	22
Table 2.3	Biomass productivity, lipid content and lipid productivity of 30 microalgal strains cultivated in 250 ml flasks.	30
Table 2.4	Summary of advantages and disadvantages of techniques that are used for harvesting microalgal biomass.	38
Table 2.5	Flux range and pressure in various pressure driven membrane processes.	41
Table 2.6	Membrane application in various cell harvesting findings by researchers.	44
Table 2.7	Surface tension properties (mJ/m^2) of probe liquids.	61
Table 2.8	Comparison of microalgae harvesting methods.	63
Table 2.9	Fatty acid composition of microalgal oil.	69
Table 2.10	Comparison of properties of biodiesel from microalgal oil and ASTM biodiesel standard.	70
Table 2.11	Comparison of typical properties of fossil oil and bio-oils from fast pyrolysis of wood and microalgae	71
Table 3.1	Main characteristics of the membranes.	73
Table 3.2	List of chemicals for preparation of Bold's Basal Medium.	74
Table 3.3	List of chemicals used.	75
Table 3.4	Operating conditions of the different steps in a membrane fouling and cleaning cycle.	86
Table 4.1	Characterization of the membranes (pore size = $0.8 \ \mu m$).	114

Table 4.2	Blocking phenomena in filtration.	119
Table 4.3	Effect of cleaning agent on flux recovery (%) with different concentration for 3 cleaning cycles.	135
Table 4.4	Zeta potentials (mV) for the new and cleaned membranes after the first cycle for 4 different cleaning agents.	139
Table 4.5	Zeta potentials (mV) for the new and cleaned membranes used in the experiments for 3 cleaning cycles.	148
Table 4.6	Contact angles (°) measurements for the CA membrane and the <i>Chlorella vulgaris</i> cells.	149
Table 4.7	Surface free energy (mJ/m^2) data for the CA membrane and the <i>Chlorella vulgaris</i> cells.	149
Table 4.8	Values of parameters k_1 , k_2 and k_3 .	153
Table 4.9	Cleaning kinetic data over the cycles of cleaning process.	155
Table 4.10	Calculated values for the specific resistance α and membrane resistance R_m for each cleaning cycle ($L = 0.1$ mm).	155
Table 4.11	The oil extraction yield (%) from <i>Chlorella vulgaris</i> biomass and the reaction rate constants at different temperatures with respect to extraction time.	161
Table 4.12	Comparison of k values with the previous researches.	161
Table 4.13	The equilibrium constant (K) and the thermodynamic parameters (ΔS and ΔG) for <i>Chlorella vulgaris</i> biomass oil extraction at different temperatures.	164
Table 4.14	Lipid content (percentage of dry weight biomass = % dw) in <i>Chlorella vulgaris</i> from different harvesting methods for 2 ℓ <i>Chlorella vulgaris</i> cultures.	173
Table 4.15	Fatty acid composition of <i>Chlorella vulgaris</i> for various harvesting methods.	177

•

LIST OF FIGURES

.

		Page
Figure 1.1	(a) World marketed energy consumption. (b) Marketed energy use by region.	2
Figure 2.1	General cost breakdown for production of biodiesel.	15
Figure 2.2	Price comparison of crude palm oil and crude petroleum oil	25
Figure 2.3	Production of biodiesel from microalgae.	34
Figure 2.4	Schematic drawing of two basic module operations: (a) dead- end filtration and (b) cross-flow filtration.	46
Figure 2.5	Schematic of the boundary conditions near the membrane surface.	55
Figure 2.6	Schematic of the surface-to-surface separation distance between the membrane and a microalgal cell with an equivalent spherical approximation.	59
Figure 2.7	Transesterification of oil to biodiesel. R_{1-3} are long-chain hydrocarbons, sometimes called fatty acid chains.	68
Figure 3.1	Flowchart of the overall experimental research.	72
Figure 3.2	Schematic diagram of crossflow microfiltration system.	80
Figure 3.3	Schematic of the membrane cell.	81
Figure 3.4	Flowchart of the model calculation process.	96
Figure 4.1	Growth curve of <i>Chlorella vulgaris</i> in Bold's Basal Medium cultures at 600 nm.	107
Figure 4.2	Cell size distribution of <i>Chlorella vulgaris</i> (wavelength = 830 nm).	108
Figure 4.3	Optical observation of <i>Chlorella vulgaris</i> cells (Mag = 100X).	108

Figure 4.4	Microscopic pictures of <i>Chlorella vulgaris</i> cells at the (a) first day, (b) third day and (c) fifth day of the cultivation process.	109
Figure 4.5	The electrophoretic mobility profile of <i>Chlorella vulgaris</i> on different culturing days.	110
Figure 4.6	Pure water flux of membranes.	112
Figure 4.7	Effect of membrane material on microfiltration performance.	113
Figure 4.8	Optical images of a water droplet on the membrane surface: (a) PP 0.8 μ m and (b) PVDF 0.8 μ m.	115
Figure 4.9	AFM images of the (a) CA, (b) CN, (c) PP and (d) PVDF membrane.	117
Figure 4.10	Effect of pore size on microfiltration performance for (a) CA and (b) CN membranes.	118
Figure 4.11	SEM images of CA membrane with pore size of 1.2 μ m at 60 min of filtration: (a) fresh membrane and (b) fouled membrane.	121
Figure 4.12	SEM images of CA membrane with pore size of $3.0 \ \mu m$ at $60 \ min$ of filtration: (a) fresh membrane and (b) fouled membrane.	121
Figure 4.13	Effect of the transmembrane pressure on the permeation flux.	123
Figure 4.14	Acting forces on a single cell.	123
Figure 4.15	Critical flux evaluation by increasing in TMP steps.	124
Figure 4.16	TMP versus mean flux for Chlorella vulgaris suspension.	125
Figure 4.17	Effect of the crossflow velocity on the permeation flux.	126
Figure 4.18	Influence of the CFV and the TMP on the steady state permeation flux.	127
Figure 4.19	Various filtration resistances after 1 hr of filtration at different CFVs (TMP = 1.5 bar).	128
Figure 4.20	Influence of the CFV and TMP on the cake resistance.	131

xiv

- Figure 4.21 *Chlorella vulgaris* filtration flux and water flux of the fouled 132 membrane.
- Figure 4.22 Effect of different cleaning agents at different concentrations 134 on the flux recovery after the first cycle.
- Figure 4.23 Effect of different cleaning agents at a concentration of 0.1% 136 on the permeate flux.
- Figure 4.24 SEM images of a membrane after chemical cleaning using 138 0.1% (a) citric acid, (b) HNO₃, (c) NaOH and (d) NaOCl. (T_c : 25°C)
- Figure 4.25 Effect of different concentrations of NaOCl on the permeate 141 flux.
- Figure 4.26 SEM images of a membrane after chemical cleaning using (a) 143 0.5% NaOCl, (b) 0.75% NaOCl and (c) 1.0% NaOCl. (T_c : 60°C)
- Figure 4.27 Effect of cleaning temperature on the flux recovery after the 144 different cleaning cycles.
- Figure 4.28 CP thickness of *Chlorella vulgaris* for different assumed 146 ratios of C_w and C_b .
- Figure 4.29 CP thickness of *Chlorella vulgaris* after each repeated cycles 147 of the cleaning process $(C_w/C_b = 4)$.
- Figure 4.30 DLVO and XDLVO interaction energy profile with separation 152 distance.
- Figure 4.31 A plot of $\ln (\alpha/t)$ versus 1/T for the (a) first, (b) second and (c) 154 third cycle of cleaning process.
- Figure 4.32 The flux decline for each repeated cycle of cleaning. 156
- Figure 4.33 The mean flux at different transmembrane pressures by 157 experiment and by the Carman-Kozeny model.
- Figure 4.34 A plot of $\ln (dY/dt)$ versus $\ln Y$ at different temperatures for 160 oil extraction from *Chlorella vulgaris* biomass.

Figure 4.35	Activation energy calculation from the plot of $\ln k$ versus $1/T$ (K ⁻¹).	162
Figure 4.36	Enthalpy change calculation from the plot of $\ln Y_T$ versus $1/T$.	163
Figure 4.37	Effect of chitosan dosage on the removal of <i>Chlorella vulgaris</i> cells.	166
Figure 4.38	Effect of mixing time on the removal of <i>Chlorella vulgaris</i> cells.	169
Figure 4.39	Effect of impeller speed on the removal of <i>Chlorella vulgaris</i> cells.	170
Figure 4.40	Effect of sedimentation time on the removal of <i>Chlorella</i> vulgaris cells.	171
Figure 4.41	Floc size versus settling time.	172
Figure 4.42	Microscope images of (a) individual <i>Chlorella vulgaris</i> cells before coagulation and (b) flocculated <i>Chlorella vulgaris</i> cells after coagulation (Mag = $20X$).	174
Figure A.1	Calibration curve of no. of <i>Chlorella vulgaris</i> cells and absorbance.	203
Figure B.1	Graph of GC analysis for centrifugation as harvesting method.	204
Figure B.2	Graph of GC analysis for microfiltration as harvesting method.	204

Figure B.3 Graph of GC analysis for coagulation as harvesting method. 205

LIST OF PLATES

		Page
Plate 2.1	Forest clearing in forest area near the oil palm plantations of Kalimantan	26
Plate 3.1	Crossflow microfiltration rig.	79
Plate 3.2	Jar test apparatus.	101
Plate 4.1	<i>Chlorella vulgaris</i> culture and microscope images of <i>Chlorella vulgaris</i> (a) before and (b) after microfiltration.	175
Plate C.1	Chlorella vulgaris cultivation in different days.	206
Plate C.2	Condition of the surface membrane after various steps in microfiltration of <i>Chlorella vulgaris</i> biomass.	207
Plate C.3	Cells removal using coagulation method with (a) 10 ppm, (b) 40 ppm and (c) 80 ppm of chitosan dosage.	208
Plate C.4	Lipid extraction from Chlorella vulgaris biomass.	208
Plate C.5	Separation of three layers after lipid extraction method.	209
Plate C.6	Separation of two layers after transesterification method.	209
Plate C.7	Lipid content in 30 mg of biomass after extraction for (a) centrifugation, (b) microfiltration and (c) coagulation methods.	210
Plate C.8	Fatty acids methyl ester in hexane after transesterification of <i>Chlorella vulgaris</i> lipid for (a) centrifugation, (b) microfiltration and (c) coagulation harvesting methods.	210

LIST OF ABBREVIATIONS

AB	Acid-base interactions
BBM	Bold's Basal Medium
CA	Cellulose acetate
CD	Convection-Diffusion
CDE	Convection-Diffusion-Electrophoretic
CFF	Crossflow filtration
CFV	Crossflow velocity
C-K	Carman-Kozeny
CN	Cellulose nitrate
CO ₂	Carbon dioxide
СР	Concentration polarization
CPO	Crude palm oil
DI	Deionized
DLVO	Derjaguin-Landau-Verwey-Overbeek
DW	Distilled water
EOM	Extracellular organic matter
EPA	Eicosapentaenoic acid
EPS	Extracellular polysaccharide
ES	Electrostatic repulsion
FAME	Fatty acid methyl ester
ME	Mixed ester
MF	Microfiltration
MPOB	Malaysian Palm Oil Board
NOM	Natural organic matter
PAC	Polyaluminum chloride
PC	Polycarbonate
PES	Polyethersulfone
POME	Palm Oil Mill Effluent
PP	Polypropylene
PVC	Polyvinylchloride
PVDF	Polyvinylidenefluoride

SEM	Scanning electron microscope
SFA	Saturated fatty acid
SMP	Soluble microbial products
sp.	species
TMP	Transmembrane pressure
UF	Ultrafiltration
UFA	Unsaturated fatty acid
vdW	van-der-Waals interaction
XDLVO	Extended DLVO

LIST OF SYMBOLS

Unit

A	Effective Hamaker constant	_
A_e	Effective surface area of the membrane	m ²
A _r	Arrhenius constant	s ⁻¹
a_c	Radius of the colloid (microalgae)	m
C_b	Concentration in bulk, $x = 0$	o/l
C_{f}	Feed concentration	g, € a/l
C_i	Concentration of solute	5, € ø/£
C_p	Concentration of solute in permeate	g/ C g/ f
C_w	Concentration at the membrane wall, $x = d$	g/f
D	Diffusivity of the charged solute	m^2/s
D_f	Fractal dimension	-
d	Thickness of the CP layer	nm
d_m	Mean pore size of membrane	m
d_p	Mean particle size of the layer	m
Ea	Activation energy	k I/mol
E_c	Energy barrier for cleaning	kcal/mol
F	Faraday constant, 96,500	C/mol
f	Frictional coefficient	-
h	Surface-to-surface separation distance	m
h(t)	Layer height	m
Ι	Ionic strength	mol/£
J	Permeability	m/s
J_d	Flux decline	ℓ/h.m ²
J_i	Initial flux	ℓ/h.m ²
J_p	Permeate flux	ℓ/h.m ²
J_r	Flux recovery	ℓ/h.m ²
J_s	Flux of the microalgal suspension at steady state	ℓ/h.m ²
J_{w0}	Initial pure water flux	ℓ/h.m ²
J_{wl}	Final water flux before removing the cake layer	ℓ/h.m ²
J_{w2}	Final water flux after removing the cake layer	ℓ/h.m ²
J_{wc}	Final water flux through the cleaned membrane	ℓ/h.m ²

K	Equilibrium constant	-
k_b	Boltzmann's constant, 1.38×10 ⁻²³	J/K
k_0	Cleaning rate constant	-
L	Thickness of membrane	mm
MW	Molecular weight	g/mol
$N_{\mathcal{A}}$	Avogadro's number, 6.022×10^{23}	mol ⁻¹
P_{in}	Inlet pressure	bar
Pout	Outlet pressure	bar
<i>P</i> _{perm}	Permeate pressure	bar
R	Universal gas constant	J/mol.K
R _a	Roughness	μm
R_b	Resistance caused by pore blocking	m ⁻¹
R_c	Resistance of the cake layer	m ⁻¹
R_{cp}	Resistance caused by concentration polarization	m ⁻¹
R_m	Intrinsic resistance of the membrane	m ⁻¹
R_{m^*}	Membrane resistance in modeling part	m ⁻¹
R _{max}	Maximum fouling resistance	m^{-1}
R_{mb}	Membrane resistance after blocking	m ⁻¹
R_s	Residue resistance at a given t_c	m^{-1}
R _{st}	Stokes radius of solute molecular	m
R_T	Total filtration resistance	m ⁻¹
ra	Aggregate radius	m
r_p	Primary particle radius	m
r_L	Specific cake resistance	m ⁻²
T_{c}	Cleaning temperature	°C
T	Temperature	K
t	Time of extraction	min
t _c	Cleaning time	min
U	Total interaction energy between membrane and particle	J
x	Distance from the bulk to the membrane	m
Y	Oil extraction yield	%
Y_T	Percent oil yield at temperature T	%
Y _u	percent unextracted oil	%
Уо	Minimum separation distance between the two surfaces	m

Valence of the ion *i*

Greek letters

 z_i

ΔG	Free energy of adhesion	mJ/m ²
$\varDelta H$	Enthalpy change	kJ/mol
ΔS	Entropy change	1/mol.K
∆t	Time period	S
ΔV	Permeate volume	mℓ
α	Specific resistance of the layer	m ⁻²
α_m	Specific membrane resistance before blocking	m ⁻²
α_{mb}	Specific membrane resistance after blocking	m ⁻²
ρ	Density of microalgae	cell/m ³
ψ	Electric potential of the charged surface	mV
. μ	Viscosity	kg/m.s
μ_i	Electrophoretic mobility of the charged solute	m²/V.s
ζ	Zeta potential of the fouled surface	mV
ζς	Zeta potential of the colloid	mV
ζ_m	Zeta potential of the membrane	mV
κ	Reciprocal of the Debye length at 25°C	s ⁻¹
3	Porosity of the layer	-
Ea	Aggregate porosity	-
Em	Porosity of the membrane before blocking	-
ε_{mb}	Porosity of the membrane after blocking	-
ErEO	Dielectric permittivity of the fluid	-
ε_t	Overall cake porosity	-
λ	Correlation length for molecules in aqueous systems	m
γ	surface energy	mJ/m ²
Xmean	Mean particle size deposited on the cake layer at a specific	m
	height	

-

xxii