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ABSTRACT 

Porous polyvinylidene fluoride (PVDF) and polyetherimide (PET) hollow 
fiber membranes were developed for CO 2 stripping in membrane contactor system. 
The effects of various types of additives (lithium chloride, polyethylene glycol, 
phosphoric acid, methanol and glycerol) and different concentrations of lithium 
chloride (LiC1) on the membrane structure and CO 2 stripping performance of PVDF 
membrane were investigated. Different polymer concentrations of PEI membranes 
were studied and their effects on membrane structure and CO 2 stripping performance 
were evaluated. Long term performance of PVDF and PEI membranes were 
compared and analyzed. The membranes were characterized in terms of gas 
permeation, contact angle, membrane porosity, liquid entry pressure and tensile 
strength. Atomic force microscopy (AFM) was used to examine the membrane 
surface roughness while the membrane morphology was investigated using scanning 
electron microscopy (SEM) and field emission scanning electron microscopy 
(FESEM). Mass transfer resistance of the system was further calculated based on the 
experimental data. The addition of additives improved the PVDF membrane 
characteristics in terms of liquid entry pressure and stripping flux. This could be 
caused by the thermodynamic (polymer-solvent interaction) and kinetic effects 
(solution viscosity) on the phase inversion process. These effects also contributed to 
the reduction of membrane pore size, contact angle and gas permeability of PVDF 
membranes. The CO2 stripping performance of PVDF with polyethylene glycol 
(PEG) additive showed the highest stripping flux and efficiency compared to the 
other membrane samples. The increase in the concentration of LiC1 in PVDF 
membrane produced high stripping fluxes which can be associated to low surface 
roughness and mass transfer resistance. For PET membrane, increasing the polymer 
concentration had significantly enhanced the wetting pressure whilst reducing the gas 
permeation. From FESEM analysis, PEI hollow fiber membranes showed finger-like 
structure similar to PVDF membrane but there was variation in thickness of sponge-
like layer in the middle of the membrane cross-structure. Comparative study between 
PVDF and PEI hollow fiber membranes possessed different microstructures with 
PVDF-PEG membrane achieving the highest stripping flux of 4.Ox 10-2 mol/m2s. 
Although PEI membranes had higher resistance compared to PVDF membranes in 
terms of liquid entry pressure, both membranes suffered reduction of stripping flux 
after operating more than 20 hours. However, the percentage of flux reduction during 
long hour operation for PVDF membrane was 34% higher than PEI membrane. In 
addition, PVDF membranes demonstrated higher stripping flux compared to PEI 
membranes. Therefore, highly hydrophobic membranes with reasonable pore sizes 
and microstructure are preferred in membrane contactor system for CO 2 stripping 
application.
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ABSTRAK 

Membran gentian geronggang polivinilidin florida berliang (PVDF) dan 
polieterimida (PEI) dibangunkan untuk penyingkiran karbon dioksida (CO2) dalam 
system penyentuh bermembran. Pengaruh pelbagai bahan tambah (litium kiorida, 
polieterlina glikol, asid fosforik, metanol dan gliserol) dan pelbagai kepekatan litium 
kiorida (LiC1) pada struktur membran dan prestasi penyingkirãn CO 2 pada membran 
PVDF telah dikaji. Pelbagai kepekatan polimer untuk membran PEI telah dikaji dan 
kesan terhadap struktur membran dan prestasi penyingkiran CO 2 telah dianalisa. 
Prestasi jangka panjang membran PVDF dan PEI telah dibandingkan dan dianalisa. 
Membran mi telah dicirikan dari segi penelapan gas, sudut sesentuh, keliangan 
membran, tekanan masukan cesair dan kekuatan tegangan. Mikroskopi daya atom 
(AFM) telah digunakan untuk menganalisa kekasaran permukaan membran 
manakala struktur membran telah dianalisa melalui mikroskopi imbasan elektron 
(SEM) dan mikroskopi imbasan elektron pemancaran medan (FESEM). Rintangan 
pengangkutan jisim bagi sistem mi telah dikira berdasarkan data eksperimen. 
Penambahan bahan tambah telah menambahbaik sifat membran PVDF dari segi 
tekanan masukan cecair dan fluks penyingkiran. mi berkait rapat dengan kesan 
termodinamik (interaksi polimer-pelarut) dan kinetik (kepekatan larutan) ke atas 
proses fasa balikan. Kesan-kesan mi juga menyumbang kepada pengurangan saiz 
hang membran, sudut sesentuh clan ketelapan gas. Prestasi penyingkiran CO 2 oleh 
membran PVDF dengan bahan tambah polieterlina glikol (PEG) menunjukkan fluks 
penyingkiran CO2 dan keberkesanan penyingkiran yang tertinggi berbanding dengan 
sampel-sampel membrane lain. Peningkatan kepekatan LiC1 pada membran PVDF, 
meningkatkan prestasi fluks penyingkiran dan mi berkaitan dengan kekasaran 
permukaan dan rintangan pengangkutan jisim yang rendah. Bagi membran PEI, 
peningkatan kepekatan pohimer telah meningkatkan secara ketara tekanan kebasahan 
sementara menurunkan kebolehtelapan gas. Anahisa FESEM membran gentian 
geronggang PET menunjukkan struktur berjejari serupa dengan membran PVDF 
tetapi terdapat variasi ketebalan bagi lapisan berspan di tengah-tengah belahan 
struktur membran. Kajian perbandingan antara membran gentian geronggang PVDF 
dan PEI menunjukkan struktur mikro yang berlainan dengan membran PVDF-PEG 
mencatatkan fluks penyingkiran CO2 yang tertinggi 4.0X10 2 mo1m 2s 1 . Walaupun 
membran PET mempunyai rintangan yang lebih tinggi dari segi tekanan masukan 
cecair berbanding membran PVDF, operasi jangka panjang menunjukkan kedua-dua 
membran mengalami penurunan fluks penyingkiran selepas 20 jam. Namun, 
kejatuhan peratus fluks semasa operasi jangka panjang bagi membran PVDF adalah 
lebih tinggi berbanding membran PET iaitu sebanyak 34%. Tambahan pula, membran 
PDVF menunjukkan fluks penyingkiran lebih tinggi berbanding dengan membran 
PET. Oleh itu, membran yang sangat hidrofobik dengan saiz keliangan dan struktur 
mikro yang lebih bersesuaian diberi keutamaan dalam sistem penyentuh bermembran 
bagi aplikasi penyingkiran CO2.
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CHAPTER 1 

INTRODUCTION 

1.1	 Research Background 

Current concerns on environmental issues and climate change have promoted 

scientists and researchers to find effective ways. to reduce the amount of CO 2 gas 

released to the atmosphere as it is commonly associated with greenhouse effects and 

global warming. A study by environmental agency reported that emissions of CO2 

are increasing yearly due to human activities especially in industrial, transportation, 

residential, commercial and agricultural fields. Of these activities, fossil fuel 

combustion for energy generation has contributed about 70-75% of the total CO2 

emissions. 

In industrial and natural gas processing, removal of acid gases (mainly CO2 

and 112S) is essential as they could cause corrosion in the gas pipeline and reduce the 

hydrocarbon content hence resulting in a lower energy content of the fuel. These 

phenomena incurred economical losses in investment and reduction in the efficiency 

of the system (Kladkaew et al., 2011). Several established technologies in gas 

separation namely chemical absorption (amine), physical absorption, cryogenic 

distillation and membrane system have been applied to combat the problem and have 

produced promising results. The removal of CO 2 by absorption-stripping into 

aqueous solutions using equipment such as packed bed, spray columns and bubble 

column has been conventionally used and acknowledged as an effective method to 

remove CO2. For stripping process, Weiland et al. (1982) designed and analysed



2 

packed column for CO2 stripping from monoethanolamine in gas purification 

process. Xu et al. (1995) used packed column for CO 2 desorption from aqueous 

methyldiethanolamine (MDEA) and activated MDEA solutions. However, for a long 

term operation, this conventional equipment has suffered from significant drawback 

such as flooding, channelling, entrainment and foaming (Criscuoli and Drioli, 2008). 

Therefore, alternative technology such as gas-liquid membrane contactor has been 

identified as a promising option that has potential to replace conventional equipment 

in CO2 absorption-stripping process. 

Gas-liquid membrane contactor was employed earlier in 1970's by Esato and 

Eiseman (1975) for blood oxygenation which consists of hydrophobic microporous 

PTFE membrane known as Gore-Tex membranes. These membranes were also used 

in fuel cell system for U.S space program in the late 1960's. Further application of 

membrane in gas-liquid contactor started to emerge when Feron and Jansen (2002) 

first introduced CORAL solvent with porous polyolefin membranes for the 

production of carbon dioxide from flue gas. Since then, membrane contactor 

technology has been applied in wide range applications such as fermentation, 

pharmaceuticals, water treatment (Drioli et al., 2005), beverage carbonation 

(Mackey and Mojonnier, 1995) and absorption-stripping process (Gabelman and 

Hwang, 1999). Some of the prominent advantages of membrane contactor are high 

area per unit volume, no flooding or entrainment, independent of gas and liquid flow, 

system easily scale-up and most importantly no moving parts in the system. 

Polymr membranes such as polyvinylidene fluoride (PVDF), 

polytetrafluorthylene (PTFE), polypropylene (PP), polyethylene (PE) and 

polyetherimid (PEI) are among the prominent polymers applied in gas-liquid 

contactor application. Due to its favorable properties such as being hydrophobic, 

compatible in organic solvent, resistant to heat and chemical reaction; having a 

straightforward process in membrane preparation has made PVDF polymer as a 

favourite over other commercial polymers. Modification of PVDF hollow fiber 

membrane by adding non-solvent additives has been reported in the literature and has 

produced promising outcomes in CO 2 absorption. These include the enhancement of 

gas permeability (Yeow et al., 2004), high CO2 absorption flux (Mansourizadeh and
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Ismail, 2011 a), high wetting pressure (Bakeri et al., 2011) and altering the final 

membrane structure which turned out to affect CO 2 absorption performance 

(Atchariyawut et al., 2006). Up to present, experimental results on the applications of 

polymeric membrane in CO 2 stripping have been scarcely reported (Khaisri et al., 

2011; Simioni et al., 2011a). Khaisri et al. (2011 a) performed CO2 stripping from 

loaded aqueous monoethanolamine (MEA) solution by using PTFE hollow fiber 

membrane. A study on plasma sputtering nylon membrane for CO 2 stripping has was 

carried out by Simioni et al. (2011 b) at elevated temperatures up to 100 °C with 

aqueous potassium carbonate as liquid absorbent. Mansourizadeh and Ismail (201 lb) 

investigated CO2 stripping from water using PVDF hollow fiber at 60°C. To the best 

of our knowledge, there is no specific discussion regarding the effects of non-solvent 

additive on the membrane stripping performance that has been highlighted. Recently, 

a modified version of PEI hollow fiber membrane incorporated with fluorinated 

silica (fSi02) inorganic layer was studied by Zhang and Wang (2013) for CO2 

absorption. It was reported that the hydrophobicity of the membrane was 

significantly increased due to reduction of surface free energy and enhancement of 

surface roughness generated by the Si0 2 layer. 

According to the latest technical market research report by BCC Research, 

(2012), the total market for membrane used in gas and liquid separations is expected 

to reach nearly $3.3 billion in 2017 after increasing at a five-year compound annual 

growth rate of 8.9%. This can be broken down into two main categories; 

conventional liquid separations and other separations as shown in Figure I.I. The 

conventional liQuid separations may include the separation applications such as 

reverse osmosis, desalination, ultrafiltration, nanofiltration and gas separation. Since 

the membrane contactor application is an emerging technology, it is expected that 

10% out of the total market demand will be contributed by the demand in membrane 

contactor application.
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Figure 1.1: Membrane market potential (BCC Research LLC., 2012) 

1.2	 Problem Statement 

In order to be feasible for CO2 stripping, the membrane contactor should be 

equipped with a novel membrane that exhibits high CO 2 transport rates and can 

prevent the loss of volatile absorbent from the aqueous solutions. The performance of 

contactor is strongly related to the membrane properties e.g. membrane structure, 

pore size, porosity, degree of hydrophobicity and breakthrough/wetting pressure 

which significantly influence the mass transfer process between gas and liquid 

phases. To date, numerous findings have been reported on the performance of the 

CO2 absorber unit. However, there was limited data focusing on detailed stripping 

operation, despite the fact that stripping and regeneration unit acquire about 80% of 

the total energy during solvent regeneration, thus responsible for the major cost 

component in Impurity removal process (Chakma, 1997; Tobeisen et al., 2005). 

CO2 stripping by membrane contactor has long been used in various 

applications such as for removal of volatile organic compounds (V005) (Majumdar 

et al., 2001), lactate extraction (Coelhoso et al., 1997), spring water treatment 

(Cabassud et ¶21., 2001) and exhaust gas treatment (Falk-Pedersen and Dannstrom,
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1997). In such system, a hydrophobic membrane was employed for an efficient 

contact between gas and liquid phases and the rate of mass transfer process between 

those phases were determined by the liquid and membrane resistance. The increase in 

membrane resistance is commonly occur due to the intrusion of liquid absorbent into 

pore structure and consequently resulted in severe wetting of membrane material. 

Some of the commercially available membranes (Kosaraju et al., 2005; Simioni et 

al., 201 la) were found to be wetted more than 70% by liquid absorbent when 

operated at long hours and at increased temperatures. This condition would in turn 

reduce the system performance in terms of flux and efficiency. 

Although commercial membranes have been diversely used in membrane 

contactor application, results showed that some of the hydrophobic membrane 

materials are susceptible to wetting problem after long hour operation. This is 

unexpected as the membrane has very high contact angle value (more than 90°) and 

has good chemical resistance against any organic solvent. Hence, having higher 

contact angle value is not an assurance that the membranes are robust enough to 

withstand liquid absorbent intrusion through the membrane pores. Therefore, PVDF 

and PEI membranes were suggested in this study over the commercial membrane 

based on their good performance reported in the literature (Liu et al., 2011, Bakeri et 

al., 2012). While PVDF membranes have been a favourite in gas-liquid separation in 

membrane contactor due to simple and ease of processing steps in phase inversion 

process, PEI membranes can be tailored made to produce a membrane that has high 

wetting pressure resistance and high surface hydrophobicity (Zhang et al., 2012). 

Since the plain PVDF and PEI were expected to have low wetting pressure 

(Mansourizadeh and Ismail, 2010a) due to macrovoid finger-like structure, it is 

possible to improve the membrane structure by adding the additives in the polymer 

solution.

Membrane structure plays an important role in ensuring the efficient flow of 

gas through the pore structure in mass transfer process. A porous membrane structure 

with combined finger-like was found suitable for CO 2 absorption in membrane 

contactor application (Mansourizadeh et al., 2010). This could be done by 

controlling the spinning variables or adding non-solvent additives to tailor the



membrane structure. The existence of finger-like structure can provide an easy 

channel for the liquid to permeate and this would reduce the liquid entry pressure of 

the system. Therefore, an appropriate membrane structure with a trade off between 

finger-like and sponge-like structure should be developed to achieve high flux and 

efficiency of stripping process. 

From the abovementioned study, it is clearly shown that further study on the 

enhancement of membrane properties and structure need to be emphasized since the 

existing membranes are very susceptible to wetting at long operating hours. In 

addition, the stripping process variables e.g. liquid and flow rates, operating 

condition, membrane porosity and membrane morphology should be addressed in 

order to have a good correspondence of their effects on the stripping performance in 

the membrane contactor system. 

	

1.3	 Objectives of the Study 

Based on the problem statements addressed, the current study is performed 

with the following objectives: 

i. To evaluate the effects of various non-solvent additives on the structure of 

PVDF hollow fiber membrane and CO 2 stripping performance in membrane 

contactor system. 

ii. To evaluate the effects of additive concentrations on the PVDF hollow fiber 

membrane surface characteristics and CO 2 stripping performance in 

membrane contactor system. 

iii. To evaluate the potential of polyetherimide (PEI) hollow fiber membrane in 

CO2 stripping via membrane contactor application. 

iv. To evaluate the long term performance of PVDF and PEI hollow fiber 

membrane in CO 2 stripping via membrane contactor system.
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