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INTRODUCTION 

 
The well known anticoagulant compound heparin was 

discovered in the early 20th century by Howell’s and his student 

L. Emmett Holt Jr. Howell coined the term heparin from the 

Greek ‘hepar’ meaning liver, the tissue utilized in the isolation 

of heparin [1]. The family of glycosaminoglycan (GAGs) 

consists of sulfated and non-sulfated GAGs. The sulfated class 

of GAGs is further subdivided into O-sulfated and N-sulfated 

GAGs. The heparin and long chain less sulfated polymer known 

as heparan sulfate (HS) comes under N-sulfated GAGs 

category. The presence of heparin with its similar structure has 

been noticed in many vertebrate and invertebrate organisms [2] 

including turkey [3], whale [4], camel [5], mouse [6], human 

[7], losbster [8], shrimp [9], mussel [10], species of clam [11] 

and crab [12].  

 

The biochemical characteristic that differentiate HS to 

heparin is basically based on the sulfation pattern, as HS is less 

sulfated than heparin and possesses higher lever of acetylation 

on its glucosamine residue. Heparin is solely produced by the 

mast cells of connective tissues in the form of serglycin, a 

proteoglycan (PG). The complex procedure of biosynthesis of 

heparin in mast cells involves substantial level of sulfation with 

epimerization of its uronic acid. The whole process takes place 

in such a way that more than 80% of the glucosamine can be 

changed into deacetylated form with N-sulfation. The process 

converts 70% of the uronic acid into iduronic acid. HS on the 

other hand exist in association with its PG, the basic structure of 

HS is similar to heparin but bears lower degree of epimerization 

to its iduronate and also with lower level of N- and O- sulfation 

and charge density along the polymer [13]. The major sequence 

of heparin comprises of iduronate residues, often possesses 

sulfation at C2 positions with a N-sulfated glucosamine. Apart 

from sulfation at nitrogen moiety, the amino sugar part 

(glucosamine) is also known to have sulfation at the 6-O 

position. Variation in the pattern of sulfation and its distribution 

provides substantial heterogeneity, which can affect its 

biological properties [14]. The main biological property for 

which heparin is known all over is its ability to act as an anti-

coagulant. The strong anti-coagulant property of heparin is 

mainly because of its ability to potentiate the anti-thrombin 
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Heparin has been in the market since the last six decades due to its potential anticoagulant 

property. The mechanism of its anti-coagulation effect is well established. Along with its 

anticoagulant activity the other activity that is gathering a lot of importance now-a-days is its 

ability to arrest the progression of tumors specially some solid forms of tumors such as small cell 

lung carcinoma and pancreatic tumors. The chemically modified and light molecular weight 

fractions of heparin have been found to be more active in countering tumor progression. In this 

review we discuss a brief history of this versatile biomolecule with its clinical data and 

postulated mechanism of action as per recent studies. This review also highlighted the approach 

of heparin-conjugated nanoparticles to achieve targeted drug delivery with synergistic response 

in tumor cells.  
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(AT) based pathway for the inhibition of thrombin and factor 

Xa type coagulation factors.  

 

There are numbers of affinity states between heparin and 

AT with its coagulation factors which ultimately terminates into 

high affinity interactions. There are two possible mechanisms 

by which heparin are known to activate AT. The first is altering 

the structure of AT which allows further interaction between 

heparin and AT results in stronger binding between these two. 

The conformational change also hinders the protease reactive 

centre loop (RCL) in AT. This alteration in structure allows 

interaction of RCL with factor Xa. After complex formation, the 

ATIII bounces back to its original low affinity binding state, 

which results in cleavage of RCL and liberation of heparin from 

the covalent complex of ATIII and factor Xa. The second 

mechanism of heparin anticoagulation activity is known as 

bridging mechanism by which a complete heparin molecule 

facilitate the binding of AT with thrombin. In this mechanism, a 

positively charge thrombin domain binds non-selectively with 

extended polymer of heparin. The length based interaction of 

heparin with serine proteases and AT has already been 

discussed in several studies, despite the fact that only 

pentasaccharide portion of heparin is required to interact with 

AT but a chain of at least 16 monosaccharides are required to 

initiate the interaction of AT with thrombin [15].  

 

Besides of its known anticoagulant activity, heparin 

exhibits several other pharmacological activities due to its 

capacity to interact with diverse proteins. In addition, the 

presence of carboxylate and sulfate group endows it to possess a 

high negative charge (approximately -75), which allows it to 

have electrostatic interaction with many proteins such as growth 

factors, protease and chemokines [16]. Apart from its 

anticoagulant activity, the anti-tumor activity of heparin is 

gaining continuously a substantial ground in upcoming studies, 

due to its inhibitory effect on vascular thromboembolism and on 

the pathway of angiogenesis. Now-a-days researchers are 

focusing on generating short fractions heparin known as low-

molecular-weight heparins (LMWHs) sequence which lack 

anticoagulant property but have more anti-metastatic effect 

allowing the sequence to bind with tumor growth driving 

proteins like P-Selectin and fibroblast growth factors [17]. This 

review will focus on the light molecular weight heparins and 

their anticancer potential.  

 

Light molecular weight heparin as anticancer 

 

Generally, regular fraction of heparin extracted from pork 

intestine or bovine lung lies between the molecular weights of 

5,000 and 40,000 Daltons. Low-molecular-weight heparin is 

depolymerized form of unfractionated heparin comprises of 

heterogeneous sulfated group and are generally used to treat 

venous thromboembolism. The anti-tumor activity is due to its 

potential to inhibit tumor growth, which results improvement in 

survival rate [18]. There are different possible mechanisms 

behind this activity of heparin. One of them is the triggering the 

coagulation cascades or their other components like tissue 

factors which are instinctively involve in tumorigenesis and 

metastasis [19-20]. Several in-vivo studies suggests that’s its 

antimetastatic role is probably due to its anticoagulant effect, 

blocking of heparanase, intervention with P-selectin-HSPG 

interaction and inhibitory effect on tumor adhesion and motility 

[21]. Dargo et al. in their study demonstrated that heparin and 

HS decrease cancer metastasis in the Nb rat prostatic 

adenocarcinoma model [22]. The new low-molecular-weight 

heparin (LMWH) known as revaparin not only block collaged 

adhesion and adenocarcinoma cells invasion of matrigel but 

also decrease their intra-abdominal growth in vivo [23]. Many 

cell-based studies have demonstrated that LMWH can inhibit 

angiogenesis in a dose-dependent manner, while animal studies 

have shown that LMWH can alter tumor progression and 

restrict pulmonary metastasis [24-25]. The phase 2 clinical trial 

of dalteparin another member of LMWH has showed a 

promising effect in reducing ovarian cancer at a dose of 100 

IU/kg [26]. In terms of clinical research, both warfarin and 

heparin have been tried to investigate the influence of 

antithrombotics on cancer. However, more detailed research has 

been conducted on LMWH. The first potential anticancer effect 

of antithrombotics was repoted in 1954 [27]. The first trial of 

ultra-fractionated heparin (ULH) was carried out on 277 

patients, to estimate the action of ULH on the survival of small 

cell lung carcinoma [28]. The patients were randomized to 

receive chemotherapy alone or chemotherapy with dose 

adjusted subcutaneous UFH for 5 weeks. The group treated with 

UFH, attained better median survival of 317 days in comparison 

to 261 days of chemotherapy alone group and also with a better 

survival rate at 1 year (40 vs 30%), 2 year (11vs 9%), and 3 

year (9 vs 6%). The preliminary data to suggesting the effect of 

LMWH in improving the survival of cancer patient is basically 

originated from an evaluation studies comparing UFH with 

LMWH in the first phase of thrombosis treatment [29-30]. 

However, the first study designed to know the effect of LMWH 

on survival rate in cancer was named as Fragmin Advanced 

Malignancy Outcome Study (FAMOUS) study in which 385 

patients with lung, pancreatic, hepatic, advanced breast, 

ovarian, urogenital or uterine cancer were randomized to 

classical chemotherapy with 5000 IU daily dose of dalteparin or 

placebo [31]. The primary end point was mortality at one year. 

The estimate of 1 year survival in the dalteparin and placebo 

cases were 46 and 41%, respectively, for 2nd year the survival 

was 27 and 18% and in the 3rd year it was 21 and 12% for 

dalteparin and placebo group. A post hoc analysis of patients 

who survived more than 17 months indicated a survival benefit 

for dalteparin group.  

 

The perceptible advantage of LMWH with an improved 

prognosis was again shown in another trial having patients with 

metastatic or locally advanced cancer who could not be 

eradicated curatively [32]. In this, 302 patients were 

randomized to receive their regular chemotherapy with a 6-

week regime of weight adjusted nandroparin or placebo. Unlike 

dalteparin, here the primary end point was all-cause mortality. 

At the period of 6 month, the survival estimates were 61% in 

nandroparin group and 56% in placebo. At 12 and 24 months 

the relative estimates were 39 vs 27% and 21 vs 11%. In 

contrast to these studies, another study with a randomized 141 

patients going through the advanced stage of cancer treated with 

LMWH or saline does not produce any significant survival 

advantages with LMWH [33]. This shows that LMWH cannot 

act as anti-tumor alone until incorporated with chemotherapy 

regime. Due to unsatisfactory response, the saline part was 

removed from the study to make it more realistic by comparing 

LMWH with standard care. The median survival reported for 

standard care was 10.5 months in comparison to 7.3 months 

with LMWH. Another study on 84 small cell lung carcinoma 

patients evaluated the efficacy of dalteperin with and without 

chemotherapy [34]. The study reported high overall response 

rate in patients, received LMWH with chemotherapy as the 

survival rate was 69.2% in comparison 42.5% solely by 

chemotherapy. A systematic study and comprehensive analysis 

of all these studies suggests that LMWH with chemotherapy 

produced better survival in cancer patients including those 

patients who are at advance stage of cancer [35-36].  
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Proposed mechanism of action 

 

Inhibition in tumor progression due to anticoagulant 

property 

The exact mechanism of LMWH anti-metastatic role is under 

scrutiny but as per the animal models and cell based research, 

some evidences have came into light which relates its anti-

metastatic activity to its anti-coagulant activity. Clinically, the 

LMWH and un-fractionated heparin has been used from a long 

time as effective blocker of fluid phase coagulation by 

enhancing antithrombin inactivation of factor IIa and Xa. [37-

39]. Another anti-metastatic activity of heparin is mainly by the 

virtue of its anticoagulant effect and is its potential to liberate 

tissue factor pathway inhibitor (TFPI) from vascular 

endothelium. The TFPI is one of the contributors in 

antiangiogenic activity [40-41]. Various studies have 

demonstrated the effect of antimetastatic activity of modified 

heparin with no anticoagulant activity [42-47]. These modified 

heparins ruled out the claim that antimetastatic activity is due to 

anticoagulant effect of heparin. In another study, an excellent 

anticoagulant agent, fondaparinux that mainly potentiate 

antithrombin III, had produced no effect on cancer progression 

at clinically accceptable dose [48-49].  

 

Inhibition of heparinase 

Another important step in the process of cancer progression, 

which drive the invasion of tumor cells is the debasement of 

various building blocks of extracellular matrix, including 

laminin, collagen, fibronectin and HSPGs. Cancer cells usually 

get this job done by employing some hydrolytic enzymes such 

as matrix metaloproteases, serine proteases, cysteine proteases 

and endoglycosidases [50-51]. Among endoglycosidases, 

heparinases secreted by tumor cells can sabotage various 

component favoring tumor invasions. The expression of 

heparinase is very rare in normal tissues but its expression is 

evident in many tumors where it significantly enhances both 

metastasis and angiogenesis [52] of tumors of breast [53], colon 

[54], ovary [55], bladder [56], pancreases [57], acute myeloid 

leukemia [58], non-small cell lung cancer [59] and myelomas 

[60]. Heparinase is a vital enzyme for the cleavage of heparin 

sulfate groups present in heparan sulfate proteoglycans. These 

HS groups possess growth factor having domain associated to 

the protein core with serine residue confined in ECM and in 

plasma membrane of cells. These domains engage growth 

factors, like βFGF and VEGF [61-62] and then act as their co-

factor in cell signaling [63,61]. Heparanase not completely 

cleaves the heparan sulfate chain but it breaks the glycosidic 

bonds at some specific sites, generating sequences, which seems 

even more potent than the parent chain in activation of bound 

growth factors [64-65]. Various study demonstrated that heparin 

and some chemically altered forms of heparin blocked the 

tumor cell heparanase activity [66-70]. Thus, inhibiting 

heparinase can subsequently reduce metastatic potential of 

tumor [71].   

 

Engagement with cell adhesion molecules 

Invasion of tumor cells from one part of body to other part 

usually takes place through intravasation capability of tumor 

cells by which they invade blood vessels and reach to distant 

organs. The intravasation phase is also critical step for tumor 

cells from the prospect of their survival in blood vessels. To 

survive against the immune competent cells present in stream of 

blood, the tumor cells form a complex with platelets [72-73] 

which not only provide a cover that protect them against 

immune system elements but also support their anchoring on 

vascular endothelium [74]. This complex formation between 

tumor cells and platelets is mediated by interaction of 

glycoprotein’s in the plasma membrane of tumor cells to the 

selectins of platelets and endothelium. 

 

Transformed glycosylation of cell-surfaced mucins is a 

leading feature of tumor growth. Some of these transformations 

are related with carcinomas (Cancer originate from epithelial 

cells). Sialyl Lewisx and Lewis a are two of such epitopes found 

on the carcinoma mucins that are usually associated with tumor 

progression. Selectins act as adhesion receptors that recognize 

these altered glycosylated structures. Their physiological role in 

facilitating cell adhesion has already been demonstrated in 

inflammations, immune responses and wound repairs [75-76]. 

Selectins are basically  adhesion molecules responsible for 

initiating the first step for cell adhesions and in the absence of 

selectins, all the steps are initiated by secondary elements of 

adhesion process such as integrins and other adhesion 

molecules are eventually delayed or do not occur. Selectins are 

expressed by leukocytes (L-selectin), platelets (P-selectin), and 

the vascular endothelium (E and P selectin). However, L 

selectin mainly exist on neutrophils, monocytes, and naïve 

lymphocytes. The secretory granules of resting platelets and 

endothelium stores P-selectins, which is rapidly shifted on cell 

surface and the process is triggered by histamine and thrombin. 

E-selectin is entirely produced by endothelial cells on getting 

activated by various inflammatory factors such as TNF-alfa, IL-

I and endotoxins [77].  All these three selectins can interact with 

sialyted, fucosylated or with sulfated glycans on proteoglycans, 

glycoproteins and glycolipids. The tetrasaccharide epitope 

Sialyl Lewisx and Lewisa have been found as a minimum ligands 

for binding with all three types of selectin. The validation of 

selectins as a target for anti-cancer therapy has been already 

realized in animal based models. A substantial decline in 

platelet-tumor cell thrombi formation has resulted in 

diminishing of metastasis has been reported in P-selectin 

deficient mice [78]. Role of E-selectin in metastasis has also 

been validated in transgenic mice with overexpression of E-

selectin, which resulted in increase in liver metastasis [79]. 

Reduction in metastasis is also observed in two L-selectin 

knocked out mice models, thus actively suggesting the role of 

leukocytes in aggravating metastasis [80].  

 

Heparin has the potential to inhibit selectins even with no 

similarity to selectin ligands [81]. The anti-coagulation effect of 

heparin increase time of cancer cells to be in blood vessels by 

limiting their adhesion to endothelium and platelets. This makes 

the tumor cells more vulnerable to get neutralized by NK cells 

in circulation [82]. Several laboratories have analyzed the effect 

of heparin on selectins. In one such experiment, the UFH is 

injected in P and L selectin-knocked out mice shortly after the 

injection of melanoma cells. [83-84]. Single bolus injections of 

heparin have been identified to reduce metastasis in wild type 

mice in a similar way as in P-selectin deficient mice [83]. In 

addition to this, a single heparin injection in P-selectin knocked 

out mice produces no marked change on metastasis [74]. 

Interestingly, a single dose of heparin injected in L-selectin 

deficient mice just before to tumor cell injection resulted in 

further reduction in metastasis [80]. When heparin is injected 

shortly before or six hours after tumor cell injection, no further 

attenuation on metastasis in P- and L-selectin is observed. 

However, repeated injection of UFH causes increase in survival 

of mice, suggesting that heparin at such doses might have 

further antimetastatic activities apart from selectin blocker. A 

detailed characterization of non-anticoagulant heparin resulted 

in identification of specific heparin analogue (58% N-acetylated 

heparins), that holds outstanding P-selectin inhibition property 

while holding minimal heparinase activity and also with 

reduced growth factor interaction ability [85]. This heparin 
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analogue is found to reduce metastasis colon carcinomas and 

melanomas cells. Overall, these results strongly indicate that 

heparin block metastasis by interfering with selectin based cell-

cell adhesion.   

 

Blocking of cell surface proteoglycans 

Another mechanism of heparin antimetastatic action may lies in 

its ability to compete with the HS group present on the Heparan 

sulfate proteoglycans (HSPGs) to bind with growth factors and 

may liberate these proteins from ECM [86]. Studies on human 

in vitro angiogenesis model proves that both UFH and LMWH 

are capable of inhibiting βFGF- induced angiogenesis by 

blocking the interaction βFGF with HS. In man, therapeutic 

dose of UFH can indeed cause a hike in plasma levels of growth 

factors, such as βFGF [87-89]. Contradictory to this, Soker et 

al. demonstrate that LMWH but not UFH can block the 

interaction of growth factor to their high affinity receptors due 

to its smaller size [90-91]. Heparin fragment of less than 18 

saccharide units has been identified to reduce the activity of 

VEGF [92] and fragment of less than 10 saccharide units can 

inhibit the activity of βFGF [93-94]. In one more such 

contradiction to UFH, the LMWH has also been demonstrated 

for inhibiting βFGF and VEGF-facilitated angiogenesis in vivo 

[95]. The true relevance of HSPGs and growth factor as a 

potential target for heparin is very perplexed and unpredictable.  

 

Heparin based nanoparticle and other innovative 

pharmaceutical approach to target tumors 

 

The major issue today’s modern chemotherapy is facing is harsh 

side effects of cytotoxic drugs due to their lack of specificity 

which can only be resolved by targeted drug delivery [94]. To 

overcome drug delivery issue, pharmaceutical modification in 

dosage form by making polymer drug conjugates are one of the 

approach that has been employed in past few years [90]. The 

approach has been shown to offer advantages in targeting tumor 

through a passive way by increasing the permeability and 

retention factor, which ultimately lead to reduction in noxious 

effect and increase in solubility as well as chemical stability. 

The advantage of polymer drug conjugates has been observed in 

a phase I trial where increase efficacy has been reported in 

forty-three patient with advanced solid tumor treated with 

cisplatin and poly (L-glutamic acid)-paclitaxel conjugate (PGA-

PTX). Nevertheless, the challenges to find polymer with 

suitable physiochemical and biopharmaceutical properties are 

major hurdle in developing a selectively targeted polymer- drug 

conjugated therapy [95]. To deal with this issue, heparin, which 

is a biodegradable, non-cytotoxic, and water-soluble natural 

polysaccharide coupled with variety of paharmacological 

activities such anti-coagulation, anti-inflamation, anti-

angiogenesis and anti-tumor [96], has allured intense attention. 

Taking advantage of this unique property of heparin, many 

heparin-drug conjugates have been developed for cancer 

chemotherapy [97]. In one such attempt, a LMWH based 

polymer drug conjugate holding two different anti-tumor drugs, 

Paclitaxel and all-trans-retinoic acid (ATRA) has been 

synthesized by Hou et al. The conjugate was reported to have 

less toxicity with better antitumor activity due to better 

permeability of nano-particles which increased the influx of 

paclitaxel (PTX) bound conjugate in tumor cells. The ATRA, 

which is known to induce regression of tumor by down 

regulating the survival factors of tumor and by activating of 

mitochondria dependent apoptosis, has played a significant role 

in the facilitating the transport of paclitaxel in the nucleus of 

tumor cell [98]. Beside heparin based nano-particles 

development, other approaches such as development of heparin 

based microcapsules loaded with anti-cancer drugs like 

doxorobucin has also take pace in past few years. In one such 

study doxorobucin has been encapsulated with layer-by-layer 

assembly of heparin and chitosan. Use of chitosan is mainly to 

prevent degradation of heparin from heparanase and also to 

facilitate the cellular uptake of heparin as the heparin is 

negatively charge that prevents it to move across the cell 

membrane, layer of positively charge chitosan applied to 

counter this effect. Thus, a synergistic response has been 

obtained against A549 cell lines [99]. Beside conjugation of two 

active anti-tumor agents, the attempt to make heparin-based 

nanoparticles also employed conjugation of florescent dye 

labeled heparin with gold nanoparticles.  

 

Gold nanoparticles are widely used in many studies for 

their role in detection of biomolecules [100], selective marking 

of cells and proteins [101], killing tumor cells by hyper-thermal 

treatment and delivering therapeutic agent inside cells. In a 

study by Lee et al., heparin immobilized gold nanoparticles 

were prepared to optically identify the metastatic stage of tumor 

cells as well as to initiate apoptosis-induced tumor death by 

loading heparin into the cells. The nanoparticles were prepared 

by sealing the florescent heparin at the surface of gold nano-

particles via gold-thiol interaction to obtain florescence 

resonance energy transfer (FRET). These nanoparticles were 

further conjugated with arginine-glycine-aspartic acid, a cell 

adhesive peptide to make it more effective for inducing 

apoptosis. The study achieved acute apoptosis in αvβ3 integrin 

expressing cancer cells due to targeted influx of heparin in 

cytoplasm of cancer cells [102]. In addition to all this 

innovations, Alam et al. recently conjugated a potent anti-

angiogenic analogue of heparin (LHT7) with tetrameric 

deoxycholic acid to prepare an oral formulation of heparin with 

better bioavailability [103]. The LHT7 has also been studied for 

its conjugation with reduced graphene oxide nanoparticles in a 

separate study. In this, light molecular weight heparin analogue 

coated with nano sheet of reduced graphene oxide is further 

loaded with doxorubin. The particles are found to have a better 

dispersion in tumor vasculature of KB carcinoma bearing mice 

with better efficacy possibly due to synergistic effect of 

doxorubicin and LHT7 [104].  

 

Conclusion 

Heparin is the most negatively charged and important member 

of the GAG family and is commercially available in the market 

as a potential anticoagulant. Presence of heparin in various 

species has already been well documented but major 

commercial sources are still limited to porcine intestine and 

bovine lungs. Biological properties of heparin have been found 

to largely depend on its sulfation pattern. The properties also 

differ on the basis of its distribution in various vertebrates and 

invertebrates. The anticoagulant features of heparin have 

already been well studied and documented in various studies. 

The mechanism of anticoagulant activity of heparin is well 

established and known. Beside from its anticoagulant role, 

heparin has been explored in the past few decades for its anti-

tumor properties, a role which gained much momentum after 

the development of some light molecular weight fractions of 

heparins (LMWH) along with unfractionated heparin (UFH) 

and non sulfated heparins with little or almost no anticoagulant 

properties. The process of tumor growth has been known to be 

highly complicated as many hallmarks of cancer such as 

angiogenesis and metastasis use different tactics to make the 

progression simplified for tumor cells. There is enough 

evidence suggesting heparin as a potential therapeutic agent 

against cancer. Various experimental studies have already 

demonstrated the efficacy of heparin in arresting tumor growth 

both in vitro and in vivo models. Clinical trials of some of the 
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LMWH have already shown better survival rate and regression 

of solid tumors especially in lung carcinoma patients. The 

clarity on its actual mechanism of action is still not clear. As 

some studies suggest that it interfere the progression of tumor 

by its anticoagulant property while other point out its interaction 

potential to engage cell adhesion molecules and proteoglycans. 

A synergistic and selective approach of heparin-based 

nanoparticles loaded with classical anti-cancer drugs such as 

paclitaxel and doxorubicin to target tumor cells, has been 

obtained by several studies. It can be concluded that heparin 

have a potential to serve itself as an anticancer agent or can 

complement the treatment in combination with other anti-cancer 

agent to minimize the harsh side effects and chemotherapy. 

Apart from the need to give much emphasis on a clear cut 

mechanism of mechanism of its action there are some other 

issue which are also needed to be addressed such as: what type 

of heparin, what dose is needed, what duration of administration 

are optimum for better anticancer outcome. These questions 

urgently needed to be answered so that design of prospective 

randomized clinical trial especially in patients with early 

metastasis can take place.  
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