
Research Article
Analysis of Human Standing Balance by
Largest Lyapunov Exponent

Kun Liu,1 Hongrui Wang,1,2 Jinzhuang Xiao,2 and Zahari Taha3

1School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2College of Electronic and Information Engineering, Hebei University, Baoding 071000, China
3Faculty of Manufacturing Engineering, University Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

Correspondence should be addressed to Kun Liu; 2008dakun@sina.com

Received 22 December 2014; Revised 17 February 2015; Accepted 9 March 2015

Academic Editor: Pasi A. Karjalainen

Copyright © 2015 Kun Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of this research is to analyse the relationship between nonlinear dynamic character and individuals’ standing balance
by the largest Lyapunov exponent, which is regarded as a metric for assessing standing balance. According to previous study, the
largest Lyapunov exponent from centre of pressure time series could not well quantify the human balance ability. In this research,
two improvements were made. Firstly, an external stimulus was applied to feet in the form of continuous horizontal sinusoidal
motion by a moving platform. Secondly, a multiaccelerometer subsystem was adopted. Twenty healthy volunteers participated in
this experiment. A new metric, coordinated largest Lyapunov exponent was proposed, which reflected the relationship of body
segments by integrating multidimensional largest Lyapunov exponent values. By using this metric in actual standing performance
under sinusoidal stimulus, an obvious relationship between the newmetric and the actual balance ability was found in the majority
of the subjects. These results show that the sinusoidal stimulus can make human balance characteristics more obvious, which is
beneficial to assess balance, and balance is determined by the ability of coordinating all body segments.

1. Introduction

Balance is a complex physiological process involving the
interaction of many body organs. Diseases from these organs
can lead to weak equilibrium, which will affect people’s
daily lives, so an objective measurement for human balance
maintenance dynamics is of great significance in disease
diagnosis and rehabilitation treatment [1, 2]. The purpose
of this research is to find an effective numerical indica-
tor to measure human balance ability and to analyse the
relationship between human balance ability and dynamic
characteristics.

Traditional methods for assessing balance ability [3, 4],
which depend on centre of pressure (COP) trajectory, are
considered as a descriptive way of characterizing bodymove-
ment patterns. These approaches are not sensitive enough to
investigate human systemic dynamics [5]. Therefore, some
nonlinear parameters based on the concept of chaos have
been proposed to detect the important hidden dynamic

properties of physiological signals [6–8]. In the field of
human motion mechanism, [9, 10] confirm that human
standing derives from chaotic dynamics by establishing a
simulation model. Their results verified that the new analysis
method by using chaos system parameters had a relationship
with human balance.

The largest Lyapunov exponent (LLE) is a typical nonlin-
ear parameter to quantify the chaotic behaviour of postural
sway. In [11], LLE values, which were evaluated from COP
time series, were positive and greater than zero.They claimed
that the postural control system derives from a process
exhibiting chaotic dynamics. A similar result was also found
by Ladislao and Fioretti [12], who investigated the effect of
different visual conditions on the postural steadiness time
series of normal subjects along the anterioposterior (AP)
direction using traditional linear posturographic measures
and nonlinear dynamical system quantifiers. Pascolo et al.
used LLE to distinguish healthy controls from Parkinson’s
disease patients [13]. They claimed that human postural
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control system is indeed chaotic and they also found low
dimensional attractors for sway dynamics in both groups.
They calculated positive LLE values for both healthy subjects
and Parkinson’s disease patients, but these values could not
clearly discriminate healthy subjects from Parkinson’s disease
patients.

In the above studies, subjects stand on static support
surfaces. Because of body’s endogenous sway, the related
biological signal of human movement may suffer from
interference to a certain extent, or even be submerged in
noise. It is not only unconducive to analyze the dynamic
processes of the human body, but also it directly affects
the numerical accuracy of LLE [14, 15]. Many researchers
have tried an external force stimulus to improve the signal
to noise ratio of human dynamic information. In [16], a
random translational stimulus was applied to the feet by
a movable support surface. However, the random sudden
motion causes the body to remain in a stressed state for a long
time. Because of the patients’ physiological and psychological
factors, the methodmay not be conducive to obtain objective
balance adjustment data in clinical practice. In this work,
attempts were made to use a sinusoidal AP motion in order
to generate a periodic external disturbance to the plantar. If
the amplitude and frequency of the motion platform were
suitably selected, the phenomenon found in the experiment
showed that the subjects’ COP periodically swayed to track
themoving platform. And the psychological stress of subjects
could be reduced by the sinusoidal stimulus, by contrast with
the sudden movement stimulus.

In addition, the current analysis methods for human
standing balance are mainly based on LLE of one-dimen-
sional COP time series, with a large amount of human
dynamic information being lost. For complex systems, mul-
tidimensional time series contain more detailed dynamic
characterization than one-dimensional time series [17–19].
The conclusion in [13], which claimed that the nonlinear
dynamic system parameters cannot accurately distinguish
between Parkinson’s disease patients and normal controls,
may be the result of a lack of dynamic data in sufficiently high
dimension. In our experiment, a multiaccelerometer subsys-
tem was utilized and capturedmultidimensional acceleration
time series during the balance adjustment process.

In this paper, we propose that the standing balancing
ability can be assessed by ametric, which can reflect the over-
all coordination between multisegment movements, when a
sinusoidal external perturbation is applied to the plantar. Two
improved designs are performed in the experiment. (1) A
continuous sinusoidal moving platform is applied to generate
external disturbance to the plantar, which makes the move-
ment characteristics more obvious. (2) A multiaccelerometer
system is attached on different body parts in order to obtain
multidimensional acceleration time series. Twenty healthy
students are divided into three groups, in accordance with
their performance during the experiment, and then the
chaotic parameters of the experimental data are calculated.
By statistical analysis, the results indicate three aspects: firstly,
the sinusoidal stimulus makes the movement characteristics
more obvious, which is good for assessing balance. Secondly,
regarding whether the sinusoidal stimulus exists or not, the
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Figure 1:The posture of the subject and testing system. Accelerom-
eters are attached to the back, hip, and knee. Subjects stand on the
motion platform with upper arms along their respective sides. Two
feet are apart at the same width as their shoulder-width. Eyes are
closed. PC-104 collects and saves the real-time sway data of subjects.
Motion platform generates AP sinusoidal external disturbance to
plantar. COP data are obtained by the force plate.

LLE values from one-dimensional time series seem unable to
distinguish individuals effectively.Thirdly, the balance ability
is associated with the ability to coordinate all body segments
in some extent.

2. Methodology

2.1. Subjects. Twenty healthy student volunteers participated
in the experiment (10 females: f1∼f10; 10 males: m1∼m10.
Numbers are random). Mean age is 25.7 ± 3.1 years; mean
height is 169.6 ± 6.3 cm; mean weight is 61.6 ± 8.9 kg.
All subjects reported having no muscle or neurological
movement disorders history, and they identified themselves
as healthy with the ability to stand comfortably for 20min
[8, 20].

2.2. Devices

2.2.1. Motion Platform. The motion platform was controlled
by a programmable motion controller (Canada Quanser
Q8 motion control board), which provides AP sinusoidal
external disturbance to the plantar of subjects.

2.2.2. Sensors System

(1) Accelerometer. MMA7361L (Freescale Semiconductor),
which is fixed on the back, hip, and knee (Figure 1), is used
to collect the subject’s dynamic information. The sampling
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Figure 2: The raw data of a subject: (a) stimulus is in the 0Hz, (b) stimulus is in the 0.8Hz. The dynamical data is from a typical subject
and (a) shows the data when the subject is standing under stimulus of 0Hz frequency; (b) shows the data when the subject is standing under
stimulus of 0.8Hz frequency.

frequency is 100Hz. The signals from 3 accelerometers rep-
resent the dynamic information of different body segments,
which are lower segment (legs), middle segment (thighs), and
upper segment (trunk, arms, and head) [20].

(2) Force Plate. An OPT400600 (AMTI) is used to obtain
the COP position time series, whose measurement accuracy
is typically ±0.1% of the applied load. Its base is fixed on
the movable platform, and subject stands on the force plate
during experiment.

(3) Data StorageModule.The PC/104 CPUModule (Em104P-
i2904, ARBOR technology), which has a 6-channel 16-bit
precision differential A/D converter, can save real-time sway
data of the subject in a .txt file onto the flash disc.

2.3. Experiment Method. After subjects filled in their basic
personal information (height, body segment length, and
weight), the accelerometers were attached to the predeter-
mined position of body. The subjects stood on the motion
platform with their upper arms along their respective sides,
with their feet apart at the same width as their shoulder-
width, as shown in Figure 1. In addition, some requirements
were to be complied with: the subjects had to close their
eyes to minimize any visual effects, try to maintain their
best standing upright posture, without swinging their arms
or moving their feet, and maintain their balance depending
only on the major joints of their bodies.

Each subject was exposed to seven trials, and the duration
of eachwas about 120 s, duringwhich the platformunderwent
sinusoidal motion in the AP direction.The seven frequencies
used were fixed at 0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2Hz. For
each frequency, the amplitude used was fixed at a single
peak of 25mm. At the beginning of the first 20 s, subjects
changed their sway rhythm to adapt to the sinusoidal motion.
If the subjects experienced no discomfort, the data collection
would last for 100 s; meanwhile, the actual performance of
each subject was recorded.

2.4. Data Filtering. In order to analyse the dynamic character,
linear filter processing is necessary to reduce the noise in
raw data. In this work, a low pass of 2-order digital filter
with 5Hz cutoff frequency is applied, which is the same as in
[11]. In the software environment of MATLAB 2010b, the raw
data of body movements (the acceleration and the COP time
series) were obtained. The data of a typical subject is shown
in Figure 2.

Figure 2(a) shows the data when a subject is standing
under a stimulus of 0Hz frequency, andFigure 2(b) shows the
data when the subject is standing under a stimulus of 0.8Hz
frequency.The acceleration time series of back, hip, and knee
comes from the accelerometers. The COP time series is the
component along AP direction.

2.5. State Space Reconstruction. It is necessary to reconstruct
the state space of the dynamical process for calculating the
nonlinear parameter by embedding time lag copies of the
time series [21], which is [𝑥(𝑡), 𝑥(𝑡 + 𝜏), 𝑥(𝑡 + 2𝜏), . . . , 𝑥(𝑡 +

(𝑚 − 1)𝜏)]. The 𝜏 and 𝑚 represent the embedding time lag
and embedding dimension, respectively. The reconstructed
attractor from the dynamical datamust preserve the invariant
characteristics of the original unknown attractor. Different
from an infinite noise-free data set, the data set in experiment
is finite and noisy; therefore, the choice of the delay time is
important in the reconstruction of the attractor from the time
series. Also, the optimal 𝜏 and 𝑚, which are unique to one
dynamical system, are important to the LLE results.

C-C method [22], which seeks either time lag 𝜏 or time
lag window 𝜏

𝑤
by using the correlation integral, is adopted

to reconstruct the state space of the dynamical system. C-C
method is a combined algorithm for 𝑚 and 𝜏, because the
𝜏

𝑤
is unique to one time series, and 𝑚 and 𝜏 conform to

the equation 𝜏

𝑤
= (𝑚 − 1)𝜏. The accurate description of

this method is in [22], while here we only pay attention to
the results. By calculating the time series data of all subjects,
reasonable reconstructing parameters set can be obtained
(the average time lag 𝜏 = 30 ± 5.69; the average embedding
dimension 𝑚 = 4 ± 0.71). Since the optimal 𝜏 and 𝑚 are
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unique to a dynamical system, the corresponding optimal 𝜏
and 𝑚 should be applied to calculate the LLE for single time
series.

2.6. Determinism Test and Stationarity Test. In real-life sys-
tems, sources of irregular behavior are perhaps from the ever-
present noise. Therefore, after reconstructing the state space
of human standing systems, determinism test and stationarity
test are necessary to prove whether the studied systems
have the typical properties of dynamical system. Assuming
that these two tests are positive, one could then proceed to
quantify the dynamics [23–25].

The determinism test, which was proposed by Kaplan and
Glass [26], enables us to measure average directional vectors
in the coarse grained embedding space.The embedding space
should be coarse grained into equally sized boxes. Each pass
𝑙 of the trajectory through the 𝑘th box is approximated to a
unit vector 𝑒

𝑙
, whose direction is determined by both space

points where the pass 𝑙 enters and leaves the box. Therefore,
the average directional vector 𝑉

𝑘
of the 𝑘th box is

𝑉

𝑘
=

1

𝑅

𝑅

∑

𝑝=1

𝑒

𝑙
, (1)

where 𝑅 is the total of all passes in box 𝑘. If the time
series originates from a deterministic system and the coarse
grained partitioning is fine enough, the vector 𝑒

𝑙
inside one

box may nearly not cross, and each crossing decreases the
size of the average vector 𝑉

𝑘
. Hence, for a deterministic

system, the average length of all directional vectors will
be 1, while for a random system it decreases to 0. In this
section, the acceleration time series of a typical subject is
evaluated by determinism test. The determinism factors are
0.968 (acceleration time series of back, 𝜏 = 28 and 𝑚 = 4),
0.909 (acceleration time series of hip, 𝜏 = 31 and𝑚 = 4), and
0.973 (acceleration time series of knee, 𝜏 = 27 and𝑚 = 5) and
the corresponding embedding spaces are shown in Figures
3(a), 3(c), and 3(e), which clearly confirms the deterministic
nature of human balance system.

In order to verify if the studied sway is from a stationarity
process, stationarity test, which is proposed by Schreiber
[27], is evaluated for each data set by the recurrence plot
analysis. In this method, the time series is divided into
ℎ nonoverlapping segments and ℎ

2 possible combinations
to calculate the statistics (ℎ = 25). By calculating the
average cross-prediction error (𝛿

𝑖𝑗
) for possible combinations

of segments 𝑖 and 𝑗, those dynamical changes in time series
are shown obviously. If 𝛿

𝑖𝑗
is not significantly larger than the

average value for any combination of 𝑖 and 𝑗, it indicates that
the time series sources from stationary system. In this section,
the acceleration time series of a typical subject is evaluated
by stationarity test.The average cross-prediction errors for all
possible combinations of 𝑖 and 𝑗 are in Figures 3(b), 3(d), and
3(f).The average values of all 𝛿

𝑖𝑗
are 0.1209, 0.0613, and 0.0655

(for the acceleration time series of back, hip, and knee, resp.).
Since eachmaximal cross-prediction error is not significantly
larger than the average, the studied time series are clearly
stationary.

2.7. Largest Lyapunov Exponent. For a dynamical system, its
attractor trajectory contains the main dynamical character-
istics, whose sensitivity to the initial condition represents
deterministic chaotic characteristics [13]. The sensitivity to
initial condition is quantified by LLE. If LLE is positive, the
nonlinear deterministic system is chaotic.The greater the LLE
value is, the more divergent the attractor is [28, 29]. The LLE
of attractor is calculated by the algorithm in [30]. The initial
distance between the 𝑗th point 𝑥

𝑗
and its nearest neighbor 𝑥

𝑗

is defined as

𝑑

𝑗
(0) = min 󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑗
− 𝑥

𝑗
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,
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> mean period, (2)

for each point 𝑥

𝑗
in the phase space, the distance after the

evolution of 𝑖th steps is defined as 𝑑
𝑗
(𝑖). Suppose that the 𝑗th

point 𝑥

𝑗
and nearest neighbor 𝑥

𝑗
diverge at a rate given by

𝛾, we have 𝑑

𝑗
(𝑖) = 𝑑

𝑗
(0) × 𝑒

𝛾(𝑖⋅Δ𝑡). By taking the logarithm to
both sides, we obtain ln 𝑑

𝑗
(𝑖) = ln 𝑑

𝑗
(0) × 𝛾(𝑖 ⋅ Δ𝑡). The LLE

value is defined as a divergence curve ⟨ln 𝑑

𝑗
(𝑖)⟩ versus 𝑖 ⋅ Δ𝑡,

which can be fitted by least squares

𝑦 (𝑖) =

1

Δ𝑡

⟨ln 𝑑

𝑗
(𝑖)⟩ , (3)

where, ⟨⋅⟩ denotes the average over all values of 𝑗.
In order to investigate the coordination ability of the

series structure system based on LLE, a simplemetric, named
coordinated LLE (CLLE), is presented, and defined by

CLLE = ((LLEback − LLEhip)
2

+ (LLEback − LLEknee)
2

+ (LLEknee − LLEhip)
2

)

1/2

,

(4)

where LLEback, LLEhip, and LLEknee are the LLE values for
back, hip, and knee acceleration time series, respectively.
The new metric is proposed to represent the difference of
the chaotic dynamic of all body segments. And the chaotic
dynamic of all body segments is integrated to compensate the
defect of LLE from one-dimensional time series.

2.8. Analysis of Variance. A one-way analysis of variance
(ANOVA) is performed by SPSS 19.0 (SPSS, Inc., Chicago,
IL) to determine if there is statistical significance between
different groups for assessing balance. The level of significant
difference is 0.05. In hypothesis testing, the significance level
is a criterion to reject the null hypothesis. The lower the
significance level is, the more significant the data subset
must diverge from the null hypothesis will be. If the 𝑃 value
of certain subset is less than the significance level (0.05),
it concludes that data subset attains statistical significance
compared with different other data.

3. Results

3.1. Performance Classing. During the experiment, all the 20
subjects were able to maintain balance in band of 0∼0.8Hz,
so 0.8Hz can be considered as a conservative upper limit
of stimulus amplitude for all subjects. When the frequency
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Figure 3: The results of determinism test and stationarity test for the acceleration time series of a typical subject. (a) and (b) are the results
of back, (c) and (d) are the results of hip, and (e) and (f) are the results of knee. (a), (c), and (e) are the embedding space and (b), (d), and (f)
are the average cross-prediction error for all the possible combinations of 𝑖 and 𝑗. The average values of all 𝛿

𝑖𝑗
are 0.1209, 0.0613, and 0.0655

(for the acceleration time series of back, hip, and knee, resp.).
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Table 1: The LLE and CLLE of all subjects in quiet standing (stimulus frequency 0Hz).

Subject LLEback LLEhip LLEknee LLECOP CLLE Subject LLEback LLEhip LLEknee LLECOP CLLE
f1 0.2732 0.5066 0.4790 0.4971 0.3124 m1 0.2553 0.4237 0.4051 0.3282 0.2260
f2 0.2174 0.3764 0.4544 0.4237 0.2959 m2 0.1339 0.3227 0.2504 0.5113 0.2334
f3 0.2278 0.1263 0.2151 0.4273 0.1355 m3 0.1654 0.06458 0.2447 0.2414 0.2212
f4 0.3640 0.2462 0.2774 0.4089 0.1494 m4 0.4070 0.3934 0.4609 0.4235 0.0874
f5 0.1243 0.2066 0.1985 0.2300 0.1109 m5 0.2238 0.2821 0.3495 0.4351 0.1541
f6 0.4022 0.4485 0.3913 0.2746 0.0744 m6 0.4231 0.3992 0.3250 0.3363 0.1253
f7 0.1885 0.3252 0.3707 0.4207 0.2323 m7 0.1500 0.2818 0.2691 0.4999 0.1781
f8 0.2599 0.2422 0.3232 0.2252 0.1043 m8 0.2445 0.2595 0.5264 0.2858 0.3885
f9 0.1305 0.4150 0.2204 0.3495 0.3562 m9 0.1280 0.3823 0.3858 0.3662 0.3622
f10 0.2169 0.3252 0.2463 0.3903 0.13721 m10 0.1167 0.2128 0.4376 0.4359 0.4034

Table 2: The LLE and CLLE of all subjects in passive standing (stimulus frequency 0.8Hz).

Subject LLEback LLEhip LLEknee LLECOP CLLE Subject LLEback LLEhip LLEknee LLECOP CLLE
f1 0.3855 0.3838 0.2332 0.5179 0.2142 m1 0.1894 0.2301 0.1665 0.4718 0.0789
f2 0.2885 0.5878 0.5645 0.4242 0.4078 m2 0.0537 0.5449 0.3024 0.6656 0.6016
f3 0.2727 0.7342 0.4584 0.5442 0.5688 m3 0.4089 0.4656 0.4945 0.4832 0.1067
f4 0.5041 0.7327 0.6393 0.6037 0.2815 m4 0.4183 0.4181 0.6809 0.7080 0.3714
f5 0.358 0.5169 0.7770 0.4411 0.5181 m5 0.2728 0.4539 0.6235 0.7158 0.4295
f6 0.2254 0.4229 0.6253 0.6806 0.4898 m6 0.8176 0.8314 0.6437 0.2343 0.2562
f7 0.4562 0.4807 0.6409 0.7201 0.2457 m7 0.2905 0.2494 0.1796 0.4664 0.1374
f8 0.3143 0.7668 0.6428 0.8193 0.5728 m8 0.2047 0.1855 0.4014 0.5914 0.2927
f9 0.2008 0.1477 0.5819 0.4927 0.5802 m9 0.2261 0.3457 0.3571 0.6558 0.1777
f10 0.3858 0.5829 0.4403 0.3829 0.2493 m10 0.1121 0.2379 0.4534 0.6506 0.4228

was over 0.8Hz, some participants would occasionally step
or substantially sway, and when the frequency was raised to
1.2Hz, five subjects were unable to complete the experiment.
Therefore this indicates that the five subjects who could not
withstand the frequency 1.2Hz have poor balance control
ability. Based on the different performance of subjects with
1.2Hz stimulus, the subjects were divided into excellent,
stable, and unstable groups:

excellent group: f1, f4, m1, m3, m5, m7;
stable group: m4, m6, m8, m9, m10, f2, f7, f9, f10;
unstable group: f3, f5, f6, f8, m2,

where “excellent” means that their feet did not leave the
support surface and their body swayed in a small amplitude
without lifting the heels; “stable” means that their bodies
swayed slightly more widely, with occasional lifting of foot
or stepping; “unstable” means that their bodies swayed in a
larger amplitude, always stepping or falling, and the subjects
were unable to complete 100 s test.

When under lower intensity stimulus condition, the
special dynamic characteristics of different individuals are
also hidden in themotion.Themore intense the perturbation
is, themore obvious the dynamic characteristics of the human
body will be. On one hand, the perturbation should not cause
the body to step or fall from the support surface, whichmight
harm the subject. On the other hand, this stimulus should
be intense enough to effectively improve the characteristics

of the body’s movement. Therefore, the human signal of
0.8Hz stimulus is the most suitable for the passive standing
balance analysis. In addition, 0Hz perturbation condition,
which is regarded as a quiet standing condition, is the control
condition.

3.2. LLE Results. The humanmotion data under the stimulus
frequencies of 0Hz and 0.8Hz were calculated to measure
the balance ability, while the standing performances under
the stimulus frequency of 1.2Hz are used to verify the metric.
By using (3) and (4), LLE and CLLE values were solved
from the human motion time series of the stimulus under
0Hz and 0.8Hz, and the results are listed in Tables 1 and 2.
The columns LLEback, LLEhip, and LLEknee are the LLE for
time series from the accelerometers on back, hip, and knee,
respectively. Column LLECOP is the LLE time series of COP
trajectory component in AP. The CLLE values are in the last
column of Tables 1 and 2.

3.3. Statistical Results. The quiet standing LLECOP (Table 1)
and passive standing LLECOP (Table 2) are compared, which
are shown in Figure 4.The vertical axis represents the LLECOP
value, and the horizontal axis represents the sample number
of the subjects. The dark bar is LLECOP value in Table 1 (quiet
standing data, with the body under 0Hz stimulus), and the
light bar is LLECOP value in Table 2 (passive standing data,
with the body under 0.8Hz stimulus).
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Figure 4: Comparison of quiet standing LLECOP and passive
standing LLECOP. The vertical axis represents the value LLECOP; the
horizontal axis represents the sample number of subjects. Dark bar
shows LLECOP values in Table 1 (at 0Hz platform motion, static
sway data of the body without stimulus), while light bar shows
LLECOP values in Table 2 (the data of passive sway body under 0.8Hz
stimulus).

In Figure 5, the LLECOP mean values of the excellent,
stable, and unstable groups are compared. The dark bar rep-
resents quiet standing condition, and the white bar represents
passive standing condition.

The CLLE values of different samples are in Figure 6.
(a) shows the sample number in ascending order of quiet
standing CLLE, while (b) shows the sample number in
ascending order of passive standing CLLE.

In Figure 7, the CLLE and LLECOP mean values of the
three groups are compared.The dark bar represents themean
passive standing CLLE value, and the white bar represents the
mean dynamic LLECOP value.

In Table 3, the average quiet standing LLE values for the
acceleration data are shown. The LLE average values for the
acceleration data of body segment of excellent, stable, and
unstable group are compared. The column represents the
LLE values of different body segment, and the row represents
different groups. The 𝑃 values are in the last row of Table 3.

4. Discussion

In order to investigate the relationship between LLE and
the standing balance ability, two measures were adopted.
Chaotic parameters of the data set for 20 healthy students’
are calculated. In discussion, these results will be further
analysed.

(1) What Role Does the Sinusoidal Stimulus Play for the
Chaotic Characteristics?TheCOP of quiet standing posture is
mixed with white noise. Due to the low signal to noise ratio,
dynamical characteristics are not measured directly. When
a sinusoidal stimulus is applied with a reasonable amplitude
and frequency, body sway changes speed as needed until its
frequencymatches the platform frequency.The phenomenon
in this experiment shows that subjects can withstand the
intensity of physiological and psychological pressure.

Excellent Stable Unstable
0

0.2

0.4

0.6

0.8

Quiet standing
Passive standing

Figure 5:The average LLECOP values of groups.The average LLECOP
values of excellent group, stable group, and unstable group are
compared. Dark bar represents the quiet standing conditions, and
the white bar represents the passive conditions.

Table 3: The average quiet standing LLE values from acceleration
data (different body segment versus different group). The average
LLE values from the acceleration data of body segment of excellent,
stable, and unstable group are compared. The column represents
the LLE values of different body segment, and the row represents
different group.

Group LLEback LLEhip LLEknee

Excellent 0.3419 ± 0.1126 0.4193 ± 0.1830 0.3894 ± 0.2220
Stable 0.3456 ± 0.2106 0.4242 ± 0.2223 0.5293 ± 0.1184
Unstable 0.2448 ± 0.1176 0.5971 ± 0.1475 0.5612 ± 0.1836
𝑃 value 0.9859 0.4932 0.1646

A number of findings have been reported by using a plat-
form perturbation stimulus to human body in experiment.
Schilling and Robinson [31] used an air bearing platform
which was in sinusoidal AP motion in order to generate
a periodic stimulus to postural control system, and then
a mathematical model was established. Acharya et al., in
[16], used platform perturbation whose acceleration was
gradually increased from 1m/s2to 5m/s2to study the response
of ten healthy subjects. The results showed that higher
acceleration of the platform results in a lower LLE value,
and lower acceleration of the platform results in a higher
value. van der Kooij and de Vlugt [32] used pseudorandom
translations of a platform in the ML direction with platform
frequencies in a certain range. By spectral analysis, the COP
and ankle torque responses were decomposed into periodic
and remnant (stochastic) components. The results supported
that balance control is based on a continuous feedback
mechanism where observed variations in the responses are
due to noise associated with state estimation errors.

In this study, LLE is applied as a metric to analyse human
balance. The LLECOP, which is based on the AP component
of COP time series, has been discussed as a data analysis
indicator by many researchers [8, 12, 14]. In Figure 4, LLECOP
values in quiet standing and passive standing condition do
not show the special relationship to different performances
of the subjects. In Figure 5, the excellent and stable groups
have approximately quiet standing LLECOP mean values,
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Figure 6: The CLLE values of all samples. The CLLE values of each sample are listed. (a) The sample number is in ascending order of quiet
standing CLLE; (b) the sample number is in ascending order of passive standing CLLE.
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Figure 7: Group mean values of CLLE and LLEcop from passive
standing condition. The different metric means of each group are
compared. Dark bar represents the passive standing CLLE mean
value of groups; the white bar represents the passive standing
LLECOP mean value of groups.

while quiet standing LLECOP mean value of the unstable
group is lower than that of the other two groups, and the
passive standing LLECOP mean value of unstable group is
higher than the other two groups. Compared with quiet
standing LLE mean value, the difference of passive standing
LLE mean value in the unstable group and other groups is
obvious. These results imply that sinusoidal stimulus from
the motion platform plays a role in increasing the dynamical
characteristic of body movement. The difference of the LLE
mean values becomes bigger from quiet standing to passive
standing condition.

The LLE of one-dimensional time series seems unable to
distinguish individuals into three groups effectively (𝐹(2,19) =
0.7131; 𝑃 > 0.05) (Figure 5 and Table 3). [13] encountered
a similar problem. By analysing the parameter of filtering
time windows; Pascolo et al. reached a conclusion that
the nonlinear characteristics from COP cannot distinguish
between Parkinson’s disease patients and normal controls. Of
course, this method makes it more difficult to distinguish
the data of normal subjects in this experiment. Since single
accelerometer data are also considered as a one-dimensional

time series, the same effect occurs on the LLE values from
accelerometer data. All the𝑃 values of each body segment are
greater than the significant difference level of 0.05 (Table 3).

When a subject is fighting against a sinusoidal stimulus,
he/she typically changes sway speed to match the periodic
perturbation, and the amplitude of high-frequency sway
increases obviously (Figure 2). If human body is regarded
as an inverted pendulum [33], which is controlled by a
PID or PD controller, high-frequency sway may originate
from the system overshoot fighting against the perturbation.
According to the automatic control theory, the overshoot
characteristics are determined by both amplitude of pertur-
bation and properties of the controller. The phenomenon
implies that the bigger the amplitude of perturbation is, the
lager the amplitude of the high-frequency sway increases.
Thus a more complex signal is generated by a superposition
of perturbation and overshoot sway, and by using (3), the
LLE values (for the COP or acceleration time series) show an
increasing trend.

(2) Can Individuals with Different Balance Ability Be Dis-
tinguished by the LLE? Methods of nonlinear time series
analysis are usually focused on single variable time series,
but in actual problem, a given single variable time series may
not be sufficient to reconstruct a complex dynamical system
[17, 19]. Standing balance is the ability that enables the central
nervous system (CNS) to coordinate all body segments,
which consists of a multiseries structure with a motion
coupling relationship. This capability cannot be completely
expressed by the dynamical data of just one part of body;
therefore, single time series of COP and the acceleration data
only contain partial characteristics of chaotic systems.

In Tables 1 and 2, most LLE values for passive standing
condition have a significant increment compared with the
LLE for quiet standing condition, but the increment does
not show deterministic regular. It perhaps implies a more
complex motion relationship among back, hip, and knee.
Assuming these irregular variations of LLE are indirectly
related with the hidden dynamic properties of the human
standing balance, CLLE is defined to represent the difference
of LLE values for back, hip, and knee, which can compensate
the defect of LLE from the one-dimensional time series.
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In Figure 6(b), the boundary at f6 is significant, andCLLE
is larger on the right, where it contains all the subjects in
unstable group.The subjects in excellent and stable groups are
on the left of the boundary, which implies that the subjects
with good balance are those with smaller CLLE values. But
in Figure 6(a), there are no obvious trends to express the
relationship between balance ability and different subjects.
The results indicate that the given metric method, based on
multidimensional time series is more beneficial than the one-
dimensional method, and passive standing CLLE values of
most subjects show greater consistency with their balance
performance. Subjects f3, f5, f6, and f8 in Figure 6(a) are
close to the left part, while these same subjects are gathered
close to the right part in Figure 6(b), but there is no obvious
change in other subjects. This difference may demonstrate
that, when individuals with poor balance suffer a sinusoidal
interference, their potential dynamic characteristics become
more obvious, whereas, while they are in quiet standing
mode, their partly chaotic characteristics are hidden.

In Figure 7, the mean LLECOP values among the groups
show no significant difference (𝐹(2,19) = 0.713; 𝑃 = 0.512),
while the differences of mean CLLE values among groups
are significant (𝐹(2,19) = 12.67; 𝑃 = 0.000427). There is a
large CLLE mean value in the unstable group (0.55), while
the standard deviation is small (0.0452). Since the 𝑃 value
of CLLE values among the groups is much less than 0.05,
a definitive result that the subjects in the unstable group
can be effectively distinguished by passive standing CLLE
values is obtained (stable versus unstable: 𝐹(1,13) = 13.832;
𝑃 = 0.00293; excellent versus unstable: 𝐹(1,10) = 30.376;
𝑃 = 0.0003746). But the mean CLLE values between the
stable group and the excellent group show no significant
difference (𝐹(1,14) = 3.540; 𝑃 = 0.08248), because the
standard deviation values of both groups are large (0.1315 and
0.1237).

The traditional viewpoint is that a single variable contains
overall dynamics of the system [29, 34]; therefore the dynamic
process of any segment should contain whole dynamic
characteristics of human structural model. However, in this
research a different conclusion that the nonlinear parameters
(the LLEback, LLEhip, LLEknee, and LLECOP in the passive
standing or quiet standing condition) are unable to show
good classification characteristics of subjects in different
groups is obtained.

One-dimensional time series (COP and the acceleration)
only contain partial characteristics of chaotic systems. In fact,
this single-dimension time series is more suitable to describe
the dynamic characteristics of an inverted pendulum, as has
been verified by simulation results based on the inverted
pendulum model [33]. However, multisegment as the body
is, the inherent control mechanisms of balance are related
with the coordination of all body segments. Some researchers
have establishedmultisegment bodymodels in order to study
complex process. Reference [20] investigated equilibrium
maintenance during standing. The body was treated as a
three-joint (ankle, knee, and hip) sagittal model, and each
equilibrium Eigen-movement involved different eigenvectors
by independent feedback control.

In addition, CNS may take some specific control strate-
gies to affect the behaviours. Reference [35] suggests that the
body will take some specific control strategies to reduce the
complexity of posture control, which may be the reason for
the failure to describe the subjects’ characteristics. Different
selections of control strategies diversify individuals’ dynamic
process, so one-dimensional time series is not sufficient to
characterize a whole system dynamic. In other words, it is
not enough to extract balance-related characteristics from
a one-dimensional time series, and balance-related features
need information inmore variables andmore comprehensive
analysis method. One could not simply suggest that the
LLE values are associated with balance function, which is
implicit in the individual’s physical coordination. CLLE value,
which is an ingenious usage of LLE from one-dimensional
data, reflects the overall coordination between multisegment
movements. Balance performance is consistent with passive
standing CLLE, and individuals with poor balance can be
distinguished by their passive standing CLLE values.
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