DEVELOPMENT OF SENSOR USING GRAPHICAL USER

INTERFACE

MUHAMAD ZULFIKRI BIN SAIDIN

UNIVERSITY MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS*

JupuL: DEVELOPMENT OF SENSOR USING GHAPHICAL USER
INTERFACE

SESI PENGAJIAN: 2007/2008

Saya MUHAMAD ZULFIKRI BIN SAIDIN (850426-07-5351)
(HURUF BESAR)

mengaku membenarkan tesis (Sarjana Muda/Sarjana /Dekter-Falsafah)* ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Kolej Universiti Kejuruteraan & Teknologi Malaysia.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi
pengajian tinggi.
**Sjla tandakan (V)

(Mengandungi maklumat yang berdarjah keselamatan
SULIT atau kepentingan Malaysia seperti yang termaktub
di dalam AKTA RAHSIA RASMI 1972)
TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

78, JLN SERULING EMAS 2,
TMN SERUL ING EMAS, MR. MUHAMMAD SHARFI

14200 SUNGAI BAKAP, BIN NAJIB
PULAU PINANG. (Nama Penyelia)

Tarikh: 26 NOVEMBER 2007 Tarikh: : 26 NOVEMBER 2007

CATATAN: * Potong yang tidak berkenaan.
foled Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.
. Tesis dimaksudkan sebagai tesis bagi ljazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

“l hereby acknowledge that the scope and quality of this thesis is
qualified for the award of the Bachelor Degree of Electrical Engineering

(Power System)”

Signature:

Name: MUHAMMAD SHARFI BIN NAJIB

Date: 26 NOVEMBER 2007

DEVELOPMENT OF SENSOR USING GRAPHICAL USER

INTERFACE

MUHAMAD ZULFIKRI BIN SAIDIN

This thesis is submitted as partial fulfillment of the requirements for the

award of the Bachelor Degree of Electrical Engineering (Power System)

Faculty of Electrical & Electronics Engineering

University Malaysia Pahang

NOVEMBER 2007

“All the trademark and copyrights use here in are property of their
respective owner. References of information from other sources are
quoted accordingly; otherwise the information presented in this report is

solely work of the author.”

Signature

Author : MUHAMAD ZULFIKRI BIN SAIDIN

Date : 26 NOVEMBER 2007

Specially dedicated to
my beloved family and those people who have guided and inspired me

throughout my journey of education.

ACKNOWLEDGEMENT

First and foremost, 1 am very grateful to the almighty ALLAH S.W.T for

giving me this opportunity to accomplish my Final Year Project.

Firstly, 1 wish to express my deep gratitude to my supervisor, Mr.
Muhammad Sharfi bin Najib for all his valuable guidance, assistance and support all

through this work.

Secondly, I wish to thank lecturers and technicians, for their suggestions and
support on this project. Their comments on this project are greatly appreciated. My

thanks are also to all my friends who have involved and helped me in this project.

Most importantly | extend my gratitude to my parents who have encouraged
me throughout my education and | will always be grateful for their sacrifice,

generosity and love.

ABSTRACT

A sensor is a device that measures or detects a real-world condition, such as
motion, heat or light. When flow sensors are devices used for measuring the flow
rate or quantity of a moving fluid or gas. The key in selecting correctly between the
many available flow sensors and flow meters is one of the requirements of the
particular application. The purpose for this project is to interface the flow sensor with
MATLAB GUI. The MATLAB GUI will display the result and the data that will get
from the flow sensor. To interface between them the PIC 16F877 and MAX232 will
be use. The PIC will convert the analog data to digital data and MAX232 will
connect the PIC to serial port at computer. This is to make sure the computer (GUI)
will be able to read the data. As a result, flow measurement using GUI is able to

display generated signal from the developed flow sensor.

Vi

ABSTRAK

Sensor ialah alat yang dapat mengukur keadaan dalam dunia yang nyata ini.
Contohnya seperti pergerakan, haba dan cahaya. Manakala sensor aliran ialah sensor
yang digunakan untuk mengukur kadar aliran ataupun kuantiti bendalir/cecair atau
gas yang melaluinya. Keputusan yang dibuat di dalam memilih diantara banyak
sensor aliran mestilah difahami sebetul-betulnya tentang penggunaan yang
diperlukannya di dalam aplikasi yang dikhususkan. Tujuan projek ini adalah untuk
menghubungkan sensor aliran dengan perisian MATLAB GUI. MATLAB GUI akan
menunjukkan hasil dan data yang boleh diperolehi daripada sensor aliran. Untuk
menyambungkan sensor dengan perisian GUI, PIC 16F877 dan MAX 232 akan
digunakan. Tujuan PIC adalah untuk menukarkan data analog kepada data digital
manakala MAX 232 akan menyambungkan PIC kepada serial port(komputer). Ini
adalah untuk memastikan computer yakni perisian GUI boleh untuk membaca data
bacaan. Secara kesimpulannya, ukuran aliran dengan mengunakn GUI ini mampu

untuk mununjukkan data yang dihasilkan daripada pembanggunan sensor ukuran.

CHAPTER

TABLE OF CONTENTS

TITLE

TITLE PAGE
DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT

ABSTRAK

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

LIST OF APPENDICES

vii

PAGE

Vi

Vil

Xi

Xiii

CHAPTER

11
1.2
1.3
1.4
1.5

2.1

2.2

2.3

2.4

2.5

TABLE OF CONTENTS

TITLE

INTRODUCTION
Overview
Obijective

Scope of Project
Problem Statement

Thesis Organization

LITERATURE REVIEW
Graphical User Interface (GUI)
2.1.1 Definition of GUI
MATLAB GUI

2.2.1 Introduction

2.2.2 Operation in GUI
Analog Digital Converter (ADC)
2.3.1 Introduction

2.3.2 Flash ADC

Peripheral Interface Controller (PIC)
2.4.1 Introduction

2.4.2 Programmer PIC

Sensor

2.5.1 Definition of Sensor

2.5.2 Flow sensor

PAGE

A W W N P

© ©O© 00 00 0O ~N o o U1 O

I
N B P O

viii

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

REFERENCES

Appendices A - G

METHODOLOGY

Introduction

Methodology

3.2.1 Project Diagram

3.2.2 Flow Chart of Project

3.2.3 Creating GUI with GUIDE

3.2.4 Programming the GUI

3.2.5 Programming the PIC

3.2.6 Getting Started With LDmicro
3.2.6.1 Command Line Options
3.2.6.2 Basics
3.2.6.3 Simulation
3.2.6.4 Compiling to Native Code

3.2.7 Programming PIC for This Project

3.2.8 Hardware Installation

RESULT AND DISCUSSION
Introduction

Main Menu

Interfaces with the Air Flow Sensor
Advanced Development of GUI
Users Help

CONCLUSION AND RECOMMANDATION
Conclusion
Future Recommendation

Costing and Commercialization

15
15
16
17
19
24
29
30
30
31
33
33
34
40

44
44
46
52
55

57

58

58

60

62 -77

TABLE NO.

3.1
3.2
3.3
3.4

LIST OF TABLES

TITLE

Some Basic GUI Component
Lists the Callback Properties
Major Sections of the GUI M-file

Serial Port Pin and Signal Assignments

PAGE

20
25
27
43

FIGURE NO.

2.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

3.18
3.19

4.1
4.2

LIST OF FIGURES

TITLE

Example of Simple Program
Simplified Block Diagram

Flow Chart

The GUIDE tool Window

Property Inspector

Example Layout GUI (Main Window)
Example Layout GUI (Air Flow Sensor)
Example of M-File

Push Button with Callback

Initialize the Communication Port
Open and Close Communication Port
Read Data from MAX232

Start the program with one empty rung
Programming the PIC

In Simulation Mode

In the Real-Time Simulation

Voltage Regulator 7805

Air Flow Sensor with PIC and Voltage
Regulator

PIC16F77A and MAX232

Pins and Signals Associated With the
9-pin Connector

Main Menu of GUI

Info

PAGE

10
16
17
19
21
22
22
23
25
28
28
29
32
35
35
36
40

41
42

43
45
45

Xi

43
4.4
45
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Credit

Button exit confirmation

Sensor

Air Flow Sensor

Port is Open

Port is Close

Results with High Velocity

Results with Low Velocity

Result from oscilloscope (More Input)
Result from oscilloscope (Less Input)
Future Development of Flow Sensor
Close Confirmation

Temperature, Movement and Encoder Sensor
Movement Sensor

Encoder Sensor

Help

About This Software

Find the Communication Port

46
46
47
47
48
48
49
49
50
51
51
52
53
54
54
55
55
56

Xii

Xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE
A Reading Analog Input 62
B RS-232 Communication with PC 64
C Datasheet for PIC16F877 66
D Datasheet for MAX232 67
E Programming M-file for Main Menu 69
F Programming M-file for Air Flow Sensor 72
G Ghant Chart 77

CHAPTER 1

INTRODUCTION

1.1 Overview

This is project about flow sensor with using MATLAB GUI. This project will
use few devices that need to be taken into consideration to successfully accomplish
this project. The devices that are need to be considered are flow sensor (movement of
air or liquid), analog to digital converter (ADC), Peripheral interface controller and
graphical user interface using MATLAB GUI.

Flow sensors are devices used for measuring the flow rate or quantity of a
moving fluid or gas. The key to selecting correctly between the many available flow
sensors and flow meters is a clear understanding of the requirements of the particular
application. Measuring the flow of liquids is a critical need in many industrial plants.
In some operations, the ability to conduct accurate flow measurements is so
important that it can make the difference between making a profit and taking a loss.

A PIC microcontroller chip combines the function of microprocessor, ROM
program memory, some RAM memory and input/output interface in one single
package which is economical and easy to use. The PIC-Logicator system is designed
to be used to program a range of 8, 18, 28 pin reprogrammable PIC microcontrollers
which provide a variety of output, digital input and analogue input option to suit

school project uses.

A graphical user interface (GUI) is a pictorial interface to a program. A good
GUI can make programs easier to use by providing them with a consistent
appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,
and so forth. The GUI should behave in an understandable and predictable manner,
so that a user knows what to expect when he or she performs an action.

MATLAB is viewed by many users not only as a high-performance language
for technical computing but also as a convenient environment for building graphical
user interfaces (GUI). Data visualization and GUI design in MATLAB are based on
the Handle Graphics System in which the objects organized in a Graphics Object
Hierarchy can be manipulated by various high and low level commands. If using
MATLAB7 the GUI design more flexible and versatile, they also increase the

complexity of the Handle Graphics System and require some effort to adapt to.

1.2 Objective

i. Design MATLAB GUI for flow sensor GUI

Able to create and design GUI using GUIDE in MATLAB software
package to make an easier for the user to use. The design in GUI must be

user-friendly to make the user understand to use it.

ii. Todisplay a signal that generated by flow sensor through PIC to GUI

To be able display the actual signal that needed for movement liquid or
air in MATLAB GUI. The signal that display in MATLAB GUI must be the

correct one to make sure the project successfully done.

1.3 Scope of Project

The first element need to be considered for scope of this project is hardware.
The main contribution for hardware in this project is Peripheral Interface Controller
(PIC). This PIC use to interface between sensor and computer. For the PIC, must
design the appropriate program and coding for the PIC and the circuit design to

interface with computer using serial port. RS232.

The second element is software that becomes the main part of this project.
The software that use in this project is Graphical User Interface Development
Environment (GUIDE) in MATLAB software package. This software is to design
and create the GUI layout to make a user-friendly for user. For this GUIDE software
is divide into two, first is GUI layout design with a consistent appearance and with
intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. And
second is for the program M-File, must design and use the right coding to make sure

the design in GUI layout is work properly like what is needed.

1.4 Problem Statement

The sensor is able to detect any movement that through it but it’s difficult to
get the value that had been measure by the sensor. Many sensors have been created
to detect any movement but it will not show the value directly. In this development
country, the flow meter has been created to show and display the value that had been
measured by the sensor. Same for this project, but the different with flow meter is the
flow meter show the value at the gauges but with this project the measurement that
has been made by the sensor will able to display at the MATLAB program that is
GUIDE. The advantages of this GUIDE is it will not only display the value but it will
also able to explain the purpose of this program with interesting button and figure

and can guide the users to use this program.

1.5 Thesis Organization

This thesis consists of five chapters including this chapter. The contents of
each chapter are outlined as follows. Chapter 2 contains a detailed description on the
GUI, PIC and the sensor. It will explain the detail about what is GUI and function of
PIC and what sensor that had been used. Chapter 3 includes the project methodology.
This will explain how the project is organized and the flow of the process in
completing this project. Chapter 4 presents the result of the sensor. It will show the
result and display that data at MATLAB GUI and also with comparison with
oscilloscope. Finally the conclusions for this project are presented in Chapter 5. This
chapter also included the future recommendation, costing and commercialization of

this project.

CHAPTER 2

LITERATURE REVIEW

2.1 Graphical User Interface (GUI)

2.1.1 Definition of GUI

A graphical user interface (GUI) is a human-computer interface (i.e., a way
for humans to interact with computers) that uses windows, icons and menus and
which can be manipulated by a mouse (and often to a limited extent by a keyboard as
well) [1] [2] [3] [19] [20].

GUIs stand in sharp contrast to command line interfaces (CLIs), which use
only text and are accessed solely by a keyboard. The most familiar example of a CLI
too many people is MS-DOS. Another example is Linux when it is used in console

mode (i.e., the entire screen shows text only) [1].

An icon is a small picture or symbol in a GUI that represents a program (or
command), a file, a directory or a device (such as a hard disk or floppy). Icons are
used both on the desktop and within application programs. Examples include small
rectangles (to represent files), file folders (to represent directories), a trash can (to
indicate a place to dispose of unwanted files and directories) and buttons on web

browsers (for navigating to previous pages, for reloading the current page, etc.) [1].

Commands are issued in the GUI by using a mouse, trackball or touchpad to
first move a pointer on the screen to, or on top of, the icon, menu item or window of
interest in order to select that object [1] [2] [3]. Then, for example, icons and
windows can be moved by dragging (moving the mouse with the held down) and

objects or programs can be opened by clicking on their icons [1] [2] [19].

22 MATLAB GUI

2.2.1 Introduction

A graphical user interface (GUI) is a pictorial interface to a program. A good
GUI can make programs easier to use by providing them with a consistent
appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,
and so forth [2] [3] [4] [20]. The GUI should behave in an understandable and
predictable manner, so that a user knows what to expect when he or she performs an
action. For example, when a mouse click occurs on pushbutton, the GUI should
initiate the action described on the label of the button. This chapter introduces the
basic elements of the MATLAB GUIs [2] [3] [4]. The chapter does not contain a
complete description of components or GUI features, but it does provide the basics
required to create functional GUIs for your programs [2] [19] [20].

Applications that provide GUIs are generally easier to learn and use since the
person using the application does not need to know what commands are available or
how they work [3] [4] [20]. The action that results from a particular user action can
be made clear by the design of the interface [2] [3] [4] [20].

2.2.2 Operation in GUI

A graphical user interface provides the user with a familiar environment in
which to work. This environment contains pushbuttons, toggle buttons, lists, menus,
text boxes, and so forth [1] [2] [3] [4]. All of which are already familiar to the user,
so that he or she can concentrate on using the application rather than on the
mechanics involved in doing things. However, GUIs are harder for the programmer
because a GUI-based program must be prepared for mouse clicks (or possibly
keyboard input) for any GUI element at any time [1] [2] [3]. Such inputs are known
as events, and a program that responds to events is said to be event driven. The three

principal elements required to create a MATLAB Graphical User Interfaces are [2]:-

1. Components. Each item on a MATLAB GUI (pushbuttons, labels, edit boxes,
etc.) is a graphical component. The types of components include graphical controls
(pushbuttons, edit boxes, lists, sliders, etc.), static elements (frames and text strings),
menus, and axes. Graphical controls and static elements are created by the function
uicontrol, and menus are created by the functions uimenu and uicontextmenu. Axes,

which are used to display graphical data, are created by the function axes [1] [2] [3]
[4].

2. Figures. The components of a GUI must be arranged within a figure, which is
a window on the computer screen. In the past, figures have been created
automatically whenever we have plotted data. However, empty figures can be created

with the function figure and can be used to hold any combination of components [2].

3. Callbacks. Finally, there must be some way to perform an action if a user
clicks a mouse on a button or types information on a keyboard. A mouse click or a
key press is an event, and the MATLAB program must respond to each event if the
program is to perform its function. For example, if a user clicks on a button, that
event must cause the MATLAB code that implements the function of the button to be
executed. The code executed in response to an event is known as a call back. There
must be a callback to implement the function of each graphical component on the
GUI [2] [3].

2.3 Analog Digital Converter (ADC)

2.3.1 Introduction

An analog-to-digital converter (abbreviated ADC, A/D or A to D) is an
electronic circuit that converts continuous signals to discrete digital numbers. The
reverse operation is performed by a digital-to-analog converter (DAC) [17].
Typically, an ADC is an electronic device that converts an input analog voltage to a
digital number. The digital output may be using different coding schemes, such as
binary and two's complement binary. However, some non-electronic or only partially

electronic devices, such as rotary encoders, can also be considered ADCs [17].

The resolution of the converter indicates the number of discrete values it can
produce over the range of voltage values. It is usually expressed in bits. For example,
an ADC that encodes an analog input to one of 256 discrete values (0.255) has a
resolution of eight bits, since 2° = 256 [17].

Resolution can also be defined electrically, and expressed in volts. The
voltage resolution of an ADC is equal to its overall voltage measurement range

divided by the number of discrete values [17].

2.3.2 Flash ADC

This is one of the most common ways of implementing an electronic ADC
that is direct conversion ADC. A direct conversion ADC or flash ADC has a
comparator that fires for each decoded voltage range. The comparator bank feeds a
logic circuit that generates a code for each voltage range. Direct conversion is very
fast, but usually has only 8 bits of resolution (256 comparators) or fewer, as it needs
a large, expensive circuit. ADCs of this type have a large die size, a high input
capacitance, and are prone to produce glitches on the output (by outputting an out-of-

sequence code). They are often used for video or other fast signals [17].

2.4 Peripheral Interface Controller (PIC)

2.4.1 Introduction

PIC is a family of Harvard architecture microcontrollers made by Microchip
Technology, derived from the PIC1650 originally developed by General Instrument's
Microelectronics Division. PICs are popular with developers due to their low cost,
wide availability, large user base, extensive collection of application notes,
availability of low cost or free development tools, and serial programming (and re-

programming with flash memory) capability [5].

The original PI1C was built to be used with Gl's new 16-bit CPU, the CP1600.
While generally a good CPU, the CP1600 had poor 1/0O performance, and the 8-bit
PIC was developed in 1975 to improve performance of the overall system by
offloading 1/0 tasks from the CPU. The PIC used simple microcode stored in ROM
to perform its tasks, and although the term wasn't used at the time, it is a RISC

design that runs one instruction per cycle (4 oscillator cycles) [5].

In 1985 General Instruments spun off their microelectronics division, and the
new ownership cancelled almost everything — which by this time was mostly out-
of-date. The PIC, however, was upgraded with EPROM to produce a programmable
channel controller, and today a huge variety of PICs are available with various on-
board peripherals (serial communication modules, UARTS, motor control kernels,
etc.) and program memory from 512 words to 32k words and more (a "word" is one
assembly language instruction, varying from 12, 14 or 16 bits depending on the

specific PIC micro family) [5].

Microchip Technology does not use PIC as an acronym; in fact the brand
name is PICmicro. It is generally regarded that PIC stands for Peripheral Interface
Controller, although General Instruments' original acronym for the PIC1650 was

"Programmable Intelligent Computer" [5].]

10

2.4.2 Programmer PIC

There is much method use to program the PIC. One of those methods is using
ladder logic diagram (LDmicro). The LDmicro generates native code for certain
Microchip PIC16 and Atmel AVR microcontrollers. Usually software for these
microcontrollers is written in a programming language like assembler, C, or BASIC.
A program in one of these languages comprises a list of statements [18]. These
languages are powerful and well-suited to the architecture of the processor, which
internally executes a list of instructions. PLCs, on the other hand, are often

programmed in “ladder logic." A simple program might look like this [18]:

¥buttonl Tdeon Rchatter Tred
1 |1/ oW 1.000 3] —4-———"-]/[———————- | ——
¥buttond Tdof
————————————————— TOF 2.000 3]—+
REchatter Ton Ine Rchatter
2 | |-———-1/[-——— TOM 1.000 2]----[TOF 1.000 3]-———-————- | ——

Figure 2.1: Example of Simple Program

TON is a turn-on delay; TOF is a turn-off delay. The --] [--statements are
inputs, which behave sort of like the contacts on a relay. The --()-- statements are

outputs, which behave sort of like the coil of a relay [18].

11

2.5 Sensor

2.5.1 Definition of Sensor

A detector [6]. A device that measures or detects a real-world condition, such
as motion, heat or light and converts the condition into an analog or digital
representation. An optical sensor detects the intensity or brightness of light, or the
intensity of red, green and blue for color systems [7] [8] [9] [10]. Also means sensing
element, the basic element that usually changes some physical parameter to an

electrical signal [7].

Sensors are normally components of some larger electronic system such as a
computer control and/or measurement system. Analog sensors most often produce a
voltage proportional to the measured quantity [10]. The signal must be converted to
digital form with a {ADC} before the CPU can process it. Digital sensors most often
use serial communication such as {EIA-232} to return information directly to the

controller or computer through a {serial port} [10].

A sensor is a technological device or biological organ that detects, or senses,
a signal or physical condition and chemical compounds [11]. A device that converts
physical conditions into information so that the control system can understand the
commands and turns it into a signal which can be measured or recorded [12]. An
instrument, usually consisting of optics, detectors, and electronics, that collects
radiation and converts it into some other form suitable for obtaining information.
This may be a certain pattern (an image, a profile, etc.), a warning, a control signal,

or some other signal [13].

12

2.5.2 Flow Sensor

A flow sensor is a device for sensing the rate or quantity of fluid flow
whether it be a gas, steam , liquid or solid [14] [15] [16]. The flow sensor directory
will enable you to source single-point sensors as well as multi-point sensors [16].
Flow sensor configurations are available for use in liquids or gases with flow rates
from ultra low flow sensing to fast transient flow sensors [14] [15] [16]. The flow
sensor directory prides itself by the fact it tries to list only quality products, from
well known flow sensor manufacturers with worldwide sales support [16].

The key to selecting correctly between the many available flow sensors and
flow meters is a clear understanding of the requirements of the particular application.
Measuring the flow of liquids is a critical need in many industrial plants. In some
operations, the ability to conduct accurate flow measurements is so important that it
can make the difference between making a profit and taking a loss [16].

With most fluid flow sensors, the flow rate is determined directly or
inferentially by measuring the liquid's velocity or the change in kinetic energy.
Velocity depends on the pressure differential that is forcing the liquid through a pipe
or conduit. Because the pipe's cross-sectional area is known and remains constant,
the average velocity is an indication of the flow rate [16].

Normally a flow sensor is the sensing element used in a flow meter, or flow
logger or a flow data logging device to record the flow of fluids. [14] [15]. The flow
sensor can normally measure whether velocity, flow rate or totalized flow of fluids
flowing through them [14] [15] [16]. Flow sensors are sometimes related to sensors
called velocimeters that measure speed of fluids flowing through them, these use
units like ft/sec [14] [15] [16]. A very basic relationship for determining the fluid's

flow rate in such cases is [16]:

(=V X A ;Where

Q = liquid flow through the pipe; V = average velocity of the flow;

A = cross-sectional area of the pipe.

13

Other factors that affect flow rate include the liquid's viscosity, density and
temperature. Some other factors may be considered such as frictional forces and pipe
configurations [16].

There are three basic types of flow sensors and flow meters. Mass flow
sensors measure flow rate in terms of the mass of the fluid substance and have units
such as Ibs/min. Volumetric flow sensors measure flow rate in terms of how much of
the material is flowing and use units like mol/min [16]. Velocity flow sensors
measure flow rate as in terms of how fast the material is moving. These use units like
ft/sec [14] [15] [16]. Critical specifications for flow sensors and flow meters are the
measuring range, what type of medium and measurement is to be used, and the

operating temperature and pressure ranges [14] [16].

The most common types of Flow sensors are designed to measure the flow of
media through pipes, hoses and systems. They can be classified into three categories
[16]:

I. Mass flow sensors
- Measure flow rate in units of mass flow, for example, Ibs/min [16].
I1. Velocity flow sensors
- Measure flow rate as in units of velocity, for example, ft/sec [14] [15] [16].
I11. Volumetric flow sensors.

- Measure flow rate in units of volumetric flow, for example, mL/min [16].

Most flow sensors are designed to handle a single style of media, while a few
are designed to provide multimedia measurements. Specific are designed as air flow
sensors and other gas flow sensors, water flow sensors and other liquid flow sensors,
or solid flow sensors [16].

In addition to the main classification, the flow sensor technology can be
based on such things as light, heat, electromagnetic properties, ultrasonic and many
other technologies in a wide spectrum. Some of the most common types of flow
sensor technologies are magnetic flow sensors, turbine flow sensors and ultrasonic
flow sensors. [15] [16]. Ultrasonic flow sensors use sound frequencies above audible
pitch to determine flow rates. They can be either Doppler Effect sensors or Time-of-
Flight sensors [14] [16].

14

Doppler flow sensors measure the frequency shifts caused by fluid flow [14]
[16]. The frequency shift is proportional to the liquid's velocity.
Time of flight sensors use the speed of the signal traveling between two transducers
that increases or decreases with the direction of transmission and the velocity of the
fluid being measured [16].

Turbine flow sensors measure the rate of flow in a pipe or process line via a
rotor that spins as the media passes through its blades. The rotational speed is a direct
function of flow rate and can be sensed by magnetic pick-up, photoelectric cell, or
gears [16].

Magnetic flow sensors apply Farraday's law to measure liquid flow. The
sensor contains two electrodes that produce a magnetic field when energized. When a
conductive liquid passes through the electrodes in the flow meter, a voltage is
induced. The voltage is proportional to the electric field strength, diameter of the
pipe, and flow velocity [16].

A fluid dynamics problem is easily solved (especially in non-compressible
fluids) by knowing the flow at all nodes in a network [14]. Alternatively, pressure
sensors can be placed at each node, and the fluid network can be solved by knowing
the pressure at every node [14] [16]. These two situations are analogous to knowing
the voltages or knowing the currents at every node (noncompressible fluid being
conserved in the same manner as Kirchoff's current or voltage laws, in which
conservation of fluid is analogous to conservation of electrons in a circuit).Flow
meters generally cost more than pressure sensors, so it is often more economical to
solve a fluid dynamics network monitoring problem by way of pressure sensors, than
to use flow meters [14] [16].

15

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology of this project. It describes on how the
project is organized and the flow of the steps in order to complete this project. The
methodology is diverged in two parts, first is software with the main part using
MATLAB GUI. Design the layout GUI to display the result from the sensor. The
second part is software with using peripheral interface controller (PIC) to interface

with computer.

3.2 Methodology

There is few mains method in order to develop this project. Before interface
the main parts hardware and software. The PIC can be simulating with using PIC
simulator IDE program. This program can simulate the hardware part before the real
project is developing to interface with MATLAB GUI. The ladder logic diagram
(Ldmicro) is use to program the PIC. This program also can simulate before burn to

real PIC. The figure below show the diagram and flow chart for this project.

3.2.1 Project Diagram

16

PIC16FTT7A Connect using Serial Port
Sensor *| PIC Microcontroller M MAKX232
[Flow Sensor]
Peripheral Interface Controller
Computer MATLAB
PC GLI
s [Graphical -
I_il User Interface]

Flow Sensor: PIC: MAXD32: GUI:

Device for Dievice that Device that use to Malke programs sasier

sensing converts an interface between touse by providing

The rate/quantity input analog hardware (sensor) them with a consistent

of fluid flow voltage to a and software appearance and with

whether ithe a digital number (MATLAB GUI) intuitive controls like

gas, steam, through computer pushbuttons, list

liquid or solid. using DBY hoxes, sliders, menus,

and so forth.

Figure 3.1: Simplified Block Diagram

From this project, the flow sensor will be an input and the output it will show

at MATLAB GUI. The flow sensor will detect movement of liquid or air and from

that the sensor will capture the data about that movement and produced in analog

signal. And it will go through PIC. The PIC is to convert the input analog to digital
number. From that the PIC will connect to MAX232 and the MAX232 will connect

to the computer with communication port using DB9. It will connect to MATLAB

GUI through serial port of computer. The PIC will transfer the data that get from the
sensor via ADC to MATLAB GUI and from that the data will show in MATLAB

GUI. It will show the data that we need from the movement of air or liquid like

waveform, quantity, velocity and so forth.

3.2.2 Flow Chart of Project

17

1

in
in
El
3
i1}
[=]
=
(=)
T
I
[t
(=9
i
5
in
(=)

Integration Hardw
th

Figure 3.2: Flow Chart

18

From the flow chart above after get the topic of the project and go to case
study to find more related information and to deep knowledge about the project. Find
the information whether at internet, book or anything else that is related to the topic.
After that, define the part of the project and divide it into two parts. The first part is
about the hardware. First is defining the hardware that want to use after that design
the circuit for this hardware and interfacing it. After done with interfacing the
circuits that have design test it whether is okay or not okay. If not okay redesign the
circuit and try to troubleshoot the circuit until the circuit have function correctly.

The second part for this project is about the software. For this project the
software that has to use is MATLAB GUI. First, study about the software
programming and understand how to use it. For this software has divide by two parts,
first is GUI layout design with a consistent appearance and with intuitive controls
like pushbuttons, list boxes, sliders, menus, and so forth. And second is for the
program M-File, must design and use the right coding to make sure the design in
GUI layout is work properly like what is needed. After the two parts have done, test
it to make sure the software that has been design is work properly. Is not, identify the
problem and overcome it.

After the hardware and software part have work properly, interface the two of
this part. Simulate and testing it whether is okay or not. And troubleshoot this part if
not okay until get the satisfied result. After the testing is work properly and correctly,

finally these projects have done and submit the thesis about this project.

19

3.2.3 Creating GUI with Guide

This is the main part of this project. GUIDE, the MATLAB graphical user
interface development environment, provides a set of tools for creating graphical
user interfaces (GUIs). These tools simplify the process of laying out and
programming GUIs.

This tool allows a programmer to layout the GUI, selecting and aligning the
GUI components to be placed in it. Once the components are in place, the
programmer can edit their properties: name, color, size, font, text to display, and so
forth. When guide saves the GUI, it creates working program including skeleton
functions that the programmer can modify to implement the behavior of the GUI.
When guide is executed, it creates the Layout Editor as shown in Figure 3.3. The
large white area with grid lines is the layout area, where a programmer can layout the
GUI. A user can create any number of GUI components by first clicking on the
desired component, and then dragging its outline in the layout area. The top of the
window has a toolbar with a series of useful tools that allow the user to distribute and
align GUI components, modify the properties of GUI components, add menus to

GUIs, and so on. There are few basic steps required to create a MATLAB GUI.

Align Menu Property
~Objects — Editor—— Inspector-

Eile Edit Wiew Lawout Tools g
GUI D E © & Gleges -
Compone.nts ' © 20 0 90 l=0 1so 1so @lo 240 270 200 220 280 29C
| | Push Button i
Mgz Silider =
@\ Fadio Bution || %
) ck Box 5
Desi 6l Edlit Tesxt e
eslgn i Static Tewt 2l .
=
Fad
Area =3 Pop-up Menu || S
=l Listhox g
& Toggle Button || .
Il ses =
Drag to = 3
g_ %] Pansl =
Resize L8 Button Group ||«
Design X Activex Control
=
-
Area 3
o
=

Figure 3.3: The GUIDE Tool Window

20

Firstly, decide what elements are required for the GUI and what the function
of each element will be and then make a rough layout of the components by hand on
a piece of paper. Then, after that use a MATLAB tool called guide (GUI
Development Environment) to layout the Components on a figure. The size of the
figure and the alignment and spacing of components on the figure can be adjusted
using the tools built into guide. This figure below show some basic component of
GUI that can be use to design the layout GUI.

Table 3.1: Some Basic GUI Component [1]

Element Created By Description

Graphical Controls

Pushbutton uicontrol A graphical component that implements a pushbutton. It triggers a
callback when clicked with a mouse.

Toggle button uicontrol A graphical component that implements a toggle button. A toggle
button is either “on™ or “off,” and it changes state each time that it
is clicked. Each mouse button click also triggers a callback.

Radio button uicontrol A radio button is a type of toggle button that appears as a small
circle with a dot in the middle when it is “on.”™ Groups of radio
buttons are used to implement mutually exclusive choices. Each
mouse click on a radio button triggers a callback.

Check box uicontrol A check box is a type of toggle button that appears as a small
square with a check mark in it when it is “on.”” Each mouse click
on a check box triggers a callback.

Edit box uicontrol An edit box displays a text string and allows the user to modify
the information displayed. A callback is triggered when the user
presses the Enter key.

List box uicontrol A list box is a graphical control that displays a series of text
strings. A user can select one of the text strings by single- or
double-clicking on it. A callback is triggered when the user selects
a string.

Popup menus uicontrol A popup menu is a graphical control that displays a series of text
strings in response to a mouse click. When the popup menu is not
clicked on, only the currently selected string is visible.

Slider uicontrol A slider is a graphical control to adjust a value in a smooth,
continuous fashion by dragging the control with a mouse. Each
slider change triggers a callback.

Static Elements

Frame uicontrol Creates a frame, which is a rectangular box within a figure. Frames
are used to group sets of controls together. Frames never trigger
callbacks.

Text field uicontrol Creates a label, which is a text string located at a point on the

figure. Text fields never trigger callbacks.
Menus and Axes

Menu items uimenu Creates a menu item. Menu items trigger a callback when a mouse
button is released over them.

Context menus uicontextmenu Creates a context menu, which is a menu that appears over a graph-
ical object when a user right-clicks the mouse on that object.

Axes axes Creates a new set of axes to display data on. Axes never trigger
callbacks.

21

After design the layout, MATLAB tool called the Property Inspector (built
into guide) is use to give each component a name (a "tag") and to set the
characteristics of each component, such as its color, the text it displays, and so on.

This figure below had shown the example of property inspector on push button.

¥ 1
Eﬁ Property Inspector = 0O X

uicaontrol (pushbuttond "Fush Button™)

+ - BackgroundColor () — ~
BeingDeleted
EusyAction E]queue
ButtonDownFcn
Chata
Callback Fautomatic
Clipping [=]on
CreateFon
DeleteFcn
Enahble E] on

+ - Extent
Fontanole E]normal
FontMame MS Sans Serif
FontSize 20
Fontlnits E] points
Fontieight (=] normal

+ - Foreground Color B]
Handlevisibility [=]on
HitTest [=]on
HarizantalAlignment E] center
Interruptible E] an
KeyPressFcn
ListbhoxTop 1.0
hax 1.0
hin 0.0

+ Position [41.818.92313.8 1.7649]
SelectionHighlight [=)on

+— SliderStep [0.01 0.1]
String Fush Button
Style E]pushbuﬂcln
Tag pushbuttan P

Figure 3.4: Property Inspector

After done with setting the property inspector in all components and then
save the figure to a file. When the figure is saved, two files will be created on disk
with the same name but different extents. The fig file contains the actual GUI that
has been created, and the M-file contains the code to load the figure and skeleton call
backs for each GUI element. Figure 3.5 and Figure 3.6 show the layout GUI after
done with the designation with few basic components that had been used like push

button and axes.

File Edit
0=
k Selact

] Push Buttan

o Slicer

@ Radio Button
B check Box

[#F Edlit Text

T Static Text

ES Pop-up Menu

6t Toggle Button

i{ﬂAxes

e
| =] Panel

"8 Button Group

=X Activel Contral

Wiew Layout

Tonls

20

Project3.fig

Help

&0

e RS e

490 120 150 180 210 240 270 300

220

260

290

4z0 450 480

510

540

422

292

202 222

272

1z 152 182 212

92

62

22

INFO

CREDIT

PROJECT

HELF

EXIT

Figure 3.5: Example Layout GUI (Main Window)

m=m Slider

@® Radio Button
B Check Box
[T E it Tesd

7l Static Text
=5 Pop-up Menu
El Listhox

T Toggle Button
o s

%] Panel

"8 Button Group

580

550

520

agn

480

az0

400

270

240

120 1E0 190 220 250 230 210

Loo

Air Flow Sensor

axes]

430 510 540

570

axesh

Click Here:

Fudure

Development

Figure 3.6: Example Layout GUI (Air Flow Sensor)

22

23

Finally, when save GUI layout, it will automatically generate an M-file and
then write code to implement the behavior associated with each callback function in
M-file as shown in Figure 3.7. This last step is the difficult part in GUIDE. This part
is where the programmer can add code to the callbacks to perform the functions that
what we want. If the coding is not correct then it cannot perform the function that we

want.

Editor - D\ Education’, PSM' Project PSM' flow4.m

File Edit Text Cel Tools Debug Desktop window Help A X
Ol 2R« & & Ff, 88 008 EEEa HOH= O

25 owe text to wodify the response to help MyProl -~

26

27 ed by GUIDE 2.5 30-0ct-2007 12:57:00

28

28 alization code — DO NOT EDIT =

30 - = 1:

31 - truct ('gui_MName', mfilename, ...

32 'gui_SZingleton', cui_Singleton, ...

a3 'gui_OCpeningFen', @HyProl_Openinchn, -

a4 'gui_ OutputFen', BMyProl OutputFon, ...

35 'gui_LayoutFen!', [1 .

36 ‘gui_Callback', [11:

S| = ischar (varargin{1})

38 - .gui_Callback = strifunc(varargini{ll):

siEl=

40

4l [=

4z - t{linargout}] = gui mwainfen(gui State, varargini{:});

E =

44 — cnigui_State, warargin{:i]:

45 —

46 ization code - DO NOT EDIT

47

48

49 =2 just hefore MyProl iz mwade wvisikble.

=1u} ol OpeningFon(hChiject, eventdata, handles, warargin) -

4 il >
iy Pro Ln 45 Col 40

Figure 3.7: Example of M-file

Unlike GUI objects, MATLAB does not automatically create callback strings
and stub functions for menu items. The programmer must perform this function
manually. Only the Label, Tag, Callback, Checked, and Separator properties of a
menu item can be set from the Menu Editor. If want to set any of the other properties,
use the Property Editor (propedit) on the figure, and select the appropriate menu item
to edit.

24

3.2.4 Programming the GUI

After the layer out GUI is been created then need to program its behavior.
The code that had been write, control how the GUI responds to events such as button
clicks, slider movement, menu item selection, or the creation and deletion of
components. This programming takes the form of a set of functions, called callbacks,

for each component and for the GUI figure itself.

A callback is a function that writes and associates with a specific GUI
component or with the GUI figure. It controls GUI or component behavior by
performing some action in response to an event for its component. This kind of
programming is often called event-driven programming. When an event occurs for a
component, MATLAB invokes the component’s callback that is triggered by that
event. As an example, suppose a GUI has a button that triggers the plotting of some
data. When the user clicks the button, MATLAB calls the callback that associated
with clicking that button, and the callback, which have programmed, then gets the
data and plots it.

The GUI figure and each type of component have specific kinds of callbacks
with which it can be associated. The callbacks those are available for each
component is defined as properties of that component. For example, a push button
has five callback properties: Callback, CreateFcn, DeleteFcn, ButtonDownFcn, and
KeyPressFcn as shown in Figure 3.8 after right click at the push button. The
programmer can, but are not required to, create a callback function for each of these
properties. The GUI itself, which is a figure, also has certain kinds of callbacks with
which it can be associated. Each kind of callback has a triggering mechanism or
event that causes it to be called. The following Table 3.2 is lists the callback
properties that GUIDE makes available, their triggering events, and the components
to which they apply.

Puzh Bitton I

Cut
Copy

Clear
Cuplicate

Bring ta Front
Send to Back

Froperty Inspectar
Chject Browser
-file Editor

q

Callback
CreateFcn
CieleteFcn
ButtonDownFcn
KeyPressFon

Figure 3.8: Push Button with Callback

Table 3.2: Lists the Callback Properties [3]

25

Callback Property Triggering Event Components
ButtonDownFon Executes when the user Axes,
presses a mouse button figure,
while the pointer 1s on or button group,
within five pixels of a panel,
component or figure. If the user interface
component is a user controls
interface control, 1ts Enable
property must be on.
Callback Component action. Context menu,
E=xecutes, for example, when menu,
a user clicks a push button user interface
or selects a menu item. controla
CloseRequeastFen E=xecutes before the figure Figure
closos.
CreateFon Component creation. It can Axes,
be uso to initialize the figure,

component when it 1s
creatad. It executes after the
component or figure 1=
creatad, but before it i=s

diaplayed.

button group,
context menu,
menu,

panel,

user interface
controla

26

Callback Property Triggering Event Components
DeleteFcn Component deletion. It can Axes,
be used to perform cleanup figure,
operations just before the button group,
component or figure is context menu,
destroved. memnti,
panel,
user interface
controls
KeyPressFen Executes when the user Figure,
presses a kevboard key and user interface
the callback’s component or controls
fipure has focus.
ResizeFcn Executes when a user Button group,
resizes a panel, button figure,
group, or fizure whose fipure panel
Resize property is set to On.
SelectionChangeFon Executes when a user Button group
selects a different radio
button or toggle button in a
button group compoanent.
WindowButtonDownFon Executes when vou press a Figure
mouse button while the
pointer is in the figure
window.
WindowButtonMotionFon Executes when you move the Figure
pointer within the fizure
window.
WindowButtonUpFon Executes when you releasea Figure

mouse button.

User interface controls include push buttons, sliders, radio buttons, check

boxes, editable text boxes, static text boxes, list boxes, and toggle buttons. They are

sometimes referred to as uicontrols.

27

The GUI M-file that GUIDE generates is a function file. The name of the
main function is the same as the name of the M-file. For example, if the name of the
M-file is mypro.m, then the name of the main function is mypro. Each callback in the
file is a subfunction of the main function. When GUIDE generates an M-file, it
automatically includes templates for the most commonly used callbacks for each
component. The M-file also contains initialization code, as well as an opening
function callback and an output function callback. The code must add to the
component callbacks for the GUI to work as we want. The programmer may also
want to add code to the opening function callback and the output function callback.

The major sections of the GUI M-file are ordered as shown in the following table.

Table 3.3: Major Sections of The GUI M-file [3]

Section Description

Comments Displaved at the command line in response to the
help command. Edit these as necessary for vour
GLIT.

Initialization GUIDE initialization tasks. Do not edif this code.

Oipening function Porforms vour initialization tasks before the usor

has access to the GLUT.

Chutput function Reoturns outputs to the MATLAB command line
after the opening function returns control and
before control returns to the command line.

Component amd Control the behavior of the GUI fizure and of

figure callbacks mndividual components. MATLAB calls a callback
in responze to a particular event for a component
or for the figure itself

Utilitwhelper Perform miscellaneous functions not directly
functions associated with an evont for the fizure or a
component.

The opening is so important to the people who want to create the M-file in
this GUIDE. For this project the important for opening function is to initialize the
communication port in the computer. This is important before want to interface with
the hardware using DB9 through communication port. First, we have to know the
communication port name with located at my computer < properties < hardware <
device manager < communication port. Then setting the communication port as

shown in Figure 3.9 at the opening function.

28

49
=0
Sl
5z
53
sS4
55
56
57
=1=]
59
a0
a1
6z
63
=

% ——— Executes Jjust khefore MyFProl is made wisible.
&unctian HyProl openingFen(hObject, eventdata, handles, varargin)

e

This function has no output args, seese OutputFon.

% hilbject handle to ficgure

% ewventdata reserwved - to be defined in a future wersion of MATLAE
% handlesz structure with handlez and user data (gee GUIDLTL)

L warargin comrand line arcguwmnents to MyProl (see VARLRGIN)

mowvegul [center!')
s=gerial('coml')

o=z.status

handles.status=c

% set (s, 'tutpucBufferfi=ze! 4098)

handle=s.op==s % store data
guidata(hCbhiject, handles); fsave datas

Figure 3.9: Initialize the Communication Port

Then after done with the setting, the port that had been initializing must be

open to read the data from MAX232. If want to read the data the port must be open

and when want to close the program the port must close to avoid the error and

problem that can be occur. This Figure 3.10 shown the coding to open and close the

port using radio button.

154
185
156
167
165
159
170
171
17z
173
17
175
178
177
175
179
1is0
i1=1
15z
i1s3
154
1855
i1=6
157
iss
1859
1390
191

% ——— Executes on button press in radiobuttonl.

function radiocbuttonl Callback(hObject, eventdata, handles)

E hikbject handle to radiokbuttonl [(ss= GCEO)

% eventdata reserved — to be defined in & future wersion of MATLAEB
% handles structure with handles snd user dats (see GUIDATL)

Z Hint: get{hibject, 'Valuse')l returns toggle state of radiokbuttonl
if (get (hdbject, 'Valus!')l ==get (hOkbject, 'M=ax')) 2

s=handles.on % retrieve data
fopen (=)
guidataihOhject, handles) -
axes (handles.axes4d)
[%,map] = imread('open','Jpg'l:
imacre ()
et (goa, 'wisikhle!' 'off!)

Tasave data z
el=e

s=handles.opn

folo=se (=)

cuaidata(htbhject, handles)

axes (handles.axes43)

[%x,m=p] = imresad('cla! ,'Jpg'l:
image (=]

et (goa, 'wisikhle!' 'off!)

end Fhawah end ni mangkin ada handles gak koo
cuidata(hfhiject handle=s) ;

Figure 3.10: Open and Close Communication Port

After the communication port has opened, to read the data that come from the

sensor through PIC and MAX232 using DB9 then the coding as shown in Figure

3.11 had been used. The function fread(serial) is read binary data from the device.

29

Then set the function with out = fread(s) reads binary data from the device connected
to obj, and returns the data to S. The maximum number of values to read is specified
by size. After read the data then, use function plot (out) to display the signal data at

axes in GUI.
=1 % ——— Executes on button press in pushbuttonl.
a7 function pushbuttonl Callback(hObject, eventdata, handles)
a5 % hilbject handle to pushbuttonl [(see GCED)
EIE] % epventdata reserved - to bhe defined in & future wversion of MATLAE
100 % handles structure with handles and user data (see GUIDATAL)
101 - s=handles.op
102 — handles.output = hobhject;
103 - axesihandles.axesl)
104
105 - out=fread|(s)
106 = plot{out);
107 = set(findobjigeas,'Type','line', 'Colox! [0 O 1]),'Color!', [0 1 0], 'LineWidch',1.0)
1058 = =etc(gea, 'color! [0.027 0.702 0.5947])
109 - grid on

Figure 3.11: Read Data from MAX232

3.2.5 Programming the PIC

There is much method use to program the PIC, such as P Basic and assembly
language. But for this project, at the PIC part the ladder logic diagram (LDmicro)
had been used. The ladder logic is much more like programming the PLC. Only the
content and command will be different.

The program is presented in graphical format, not as a textual list of
statements. Many people will initially find this easier to understand. At the most
basic level, programs look like circuit diagrams, with relay contacts (inputs) and
coils (outputs). This is intuitive to programmers with knowledge of electric circuit
theory. The ladder logic compiler takes care of what gets calculated where. Don’t
have to write code to determine when the outputs have to get recalculated based on a
change in the inputs or a timer event, and don’t have to specify the order in which

these calculations must take place. The PLC tools do that for you.

30

3.2.6 Getting Started with LDmicro

Using LDmicro, the user can draw a ladder diagram for their program. This
program can simulate the logic in real time on your PC. Then when users are
convinced that it is correct the user can assign pins on the microcontroller to the
program inputs and outputs. Once users have assigned the pins, they can compile PIC
or AVR code for their program. The compiler output is a .hex file that anyone can

program into their microcontroller using any PIC/AVR programmer.

LDmicro is designed to be somewhat similar to most commercial PLC
programming systems. There are some exceptions, and a lot of things aren't standard
in industry anyways. The description of each instruction in the help must read
carefully, even if it looks familiar. This part will assume basic knowledge of ladder
logic and of the structure of PLC software (the execution cycle: read inputs,

compute, and write outputs).

3.2.6.1 Command Line Options

Ldmicro.exe is typically run with no command line options. That means
that the users can just make a shortcut to the program, or save it to their desktop and
double-click the icon when they want to run it, and then they can do everything from
within the GUI.

31

3.2.6.2 Basics

If LDmicro is run with no arguments then it starts with an empty program.
If the LDmicro run with the name of a ladder program (xxx.ld) on the command line
then it will try to load that program at startup. LDmicro uses its own internal format

for the program it cannot import logic from any other tool.

If users did not load an existing program then users will be given a program
with one empty rung. The users could add an instruction to it; for example they could
add a set of contacts (Instruction -> Insert Contacts) named “Xnew'. “X' means that
the contacts will be tied to an input pin on the microcontroller. This program could
assign a pin to it later, after choosing a microcontroller and renaming the contacts.

The first letter of a name indicates what kind of object it is. For example:

* Xname -- tied to an input pin on the microcontroller

* Yname -- tied to an output pin on the microcontroller

* Rname -- “internal relay': a bit in memory

* Tname -- a timer; turn-on delay, turn-off delay, or retentive
* Cname -- a counter, either count-up or count-down

* Aname -- an integer read from an A/D converter

* name -- a general-purpose (integer) variable

32

File Edit Settings Instruction Simulate Compile Help

[darme: Type Shate Biman Processar IMEL Rk

Figure 3.12: Start the program with one empty rung

Choose the rest of the name so that it describes what the object does, and so
that it is unique within the program. The same name always refers to the same object
within the program. Variable names can consist of letters, numbers, and underscores
(). A variable name must not start with a number. Variable names are case-

sensitive.

At the bottom of the screen it will show a list of all the objects in the
program. This list is automatically generated from the program; there is no need to
keep it up to date by hand. Most objects do not need any configuration. “Xname',
“Yname', and "Aname' objects must be assigned to a pin on the microcontroller,
however. First choose which microcontroller you are using (Settings ->

Microcontroller). Then assign your 1/O pins by double-clicking them on the list.

The users can modify the program by inserting or deleting instructions. The
cursor in the program display blinks to indicate the currently selected instruction and
the current insertion point. If it is not blinking then press <Tab> or click on an
instruction. Now the users can delete the current instruction, or users can insert a new

instruction to the right or left (in series with) or above or below (in parallel with) the

33

selected instruction. Some operations are not allowed. For example, no instructions
are allowed to the right of a coil.
Once the program has been written, the program can test it in simulation,

and then the program can be compile it to a HEX file for the target microcontroller.

3.2.6.3 Simulation

To enter simulation mode, choose Simulate -> Simulation Mode or press
<Ctrl+M>. The program is shown differently in simulation mode. There is no longer
a cursor. The instructions that are energized show up bright red; the instructions that
are not appear greyed. Press the space bar to run the PLC one cycle. To cycle
continuously in real time, choose Simulate -> Start Real-Time Simulation, or press
<Ctrl+R>. The display of the program will be updated in real time as the program

state changes.

The state of the inputs to the program can be set by double-clicking them in
the list at the bottom of the screen, or by double-clicking an "~Xname' contacts
instruction in the program. When change the state of an input pin then that change
will not be reflected in how the program is displayed until the PLC cycles, this will
happen automatically if real time simulation is running, or when the space bar is

press.

3.2.6.4 Compiling to Native code

Ultimately the point is to generate a .hex file that can be program into any
microcontroller. Firstly, select the part number of the microcontroller, under the
Settings -> Microcontroller menu. Then assign an 1/O pin to each “Xname' or
“Yname' object. This can be done by double-clicking the object name in the list at the
bottom of the screen. A dialog will pop up where an unallocated pin from a list can

be chosen.

34

Then choose the cycle time that users will run with, and set the compiler
what clock speed the micro will be running at. These are set under the Settings ->
MCU Parameters... menu. In general there not need to change the cycle time; 10 ms
is a good value for most applications. Type in the frequency of the crystal that this
value will use with the microcontroller (or the ceramic resonator, etc.) and click

okay.

Now with this it can generate code from the program that had been made.
Choose Compile -> Compile, or Compile -> Compile As... if the users have
previously compiled this program and want to change the specify a different output
file name. If there are no errors then LDmicro will generate an Intel IHEX file ready

for programming into any chip.

Use whatever programming software and hardware that want to load the
hex file into the microcontroller. Remember to set the configuration bits (fuses)! For
PIC16 processors, the configuration bits are included in the hex file, and most
programming software will look there automatically. For AVR processors there must

set the configuration bits by hand.

3.2.7 Programming PIC for This Project

This below figure is show the programming of the PIC using this ladder
logic diagram (LDmicro) for this project. The instruction that used in this program is

contact, ADC, compare (greater than or equal), UART send and move.

35

File Edit Settings Instruction Simulate Compile Help

Astart
11

[dame Type Shate Rim om Processon. MEW Bark
wshark digital in 5 RAZ
adr input a REO
LIART b 25

Figure 3.13: Programming the PIC

File E Sirnulake Help

FEE Type State Piron Processar. MEU Rark
wstark digital in 0 5 RA3

ADC adc input 0 {0x0000) g RED

send UART kx 0 (0:=0000) 25

Figure 3.14: In Simulation Mode

The above Figure 3.14 show the programming that had been made is in the
simulation mode. There is no longer a cursor. The instructions that are energized

show up bright red, the instructions that are not appear greyed.

36

KL
[READ ADC)

Figure 3.15(a): In the Real-Time Simulation

KOC
{READ ADC Y

s
{URRT SEMD]

Figure 3.15(b): In the Real-Time Simulation

This figure as shown as above is when the real-time simulation is started.
When the real-time simulation is started, firstly double click at the Xstart and the
current (red line) will go through the ADC. And then it will go to the compare. The
instruction compare is compare when the value of the ADC is greater than or equal
300 that had been setting. When the value is true then the instruction compare will
allow the current go through the next instruction. The next instruction is UART
Send. This instruction will just to transmit the data that had been converted to

connect with the MAX232. This instruction must be with move instruction. When no

37

error or warning occurs at this simulation then the programming can be compiling in
.hex file that can be program into any microcontroller that supported with this ladder

logic diagram (LDmicro).

3.2.7.1 Instructions Reference

> CONTACT, NORMALLY OPEN Xname Rname Yname
—10-- 10— -1

If the signal going into the instruction is false, then the output signal is
false. If the signal going into the instruction is true, then the output signal is true if
and only if the given input pin, output pin, or internal relay is true, else it is false.
This instruction can examine the state of an input pin, an output pin, or an internal

relay.

> A/D CONVERTER READ Aname
-—{READ ADC}--

LDmicro can generate code to use the A/D converters built in to certain
microcontrollers. If the input condition to this instruction is true, then a single sample
from the A/D converter is acquired and stored in the variable "Aname’. This variable
can subsequently be manipulated with general variable operations (less than, greater
than, arithmetic, and so on). Assign a pin to the "Axxx' variable in the same way that
can be assign a pin to a digital input or output, by double-clicking it in the list at the
bottom of the screen. If the input condition to this rung is false then the variable
“Aname' is left unchanged.

For all currently-supported devices, 0 volts input corresponds to an ADC
reading of 0, and an input equal to \VVdd (the supply voltage) corresponds to an ADC
reading of 1023. If using an AVR, then connect AREF to Vdd. There can use
arithmetic operations to scale the reading to more convenient units afterwards, but
remember that this instruction are using integer math. In general not all pins will be
available for use with the A/D converter. The software will not allow the users to
assign non-A/D pins to an analog input. This instruction must be the rightmost

instruction in its rung.

38

> COMPARE [var == [var >] [1 >=]
-[var2]- -L1 1- -[Ton]-
[var /=] [-4 < 1] [1 <=]
-[var2]- -[vartwo]- -[Cup]-

If the input to this instruction is false then the output is false. If the input is
true then the output is true if and only if the given condition is true. This instruction
can be used to compare (equals, is greater than, is greater than or equal to, does not
equal, is less than, is less than or equal to) a variable to a variable, or to compare a

variable to a 16-bit signed constant.

> MOVE {destvar = } {Tret := }
-{ 123 MOV}- -{ srcvar MOV}-

When the input to this instruction is true, it sets the given destination
variable equal to the given source variable or constant. When the input to this
instruction is false nothing happens. This instruction can assign to any variable with
the move instruction; this includes timer and counter state variables, which can be
distinguished by the leading "T' or "C'. For example, an instruction moving 0 into
“Tretentive' is equivalent to a reset (RES) instruction for that timer. This instruction

must be the rightmost instruction in its rung.

39

> UART (SERIAL) SEND var
-—{UART SEND}--

LDmicro can generate code to use the UARTs built in to certain
microcontrollers. On AVRS with multiple UARTs only UART1 (not UARTO) is
supported. Configure the baud rate using Settings -> MCU Parameters. Certain baud
rates may not be achievable with certain crystal frequencies; LDmicro will warn if
this is the case.

If the input condition to this instruction is false, then nothing happens. If
the input condition is true then this instruction writes a single character to the UART.
The ASCII value of the character to send must previously have been stored in “var'.
The output condition of the rung is true if the UART is busy (currently transmitting a

character), and false otherwise.

These characters take some time to transmit. The output condition of this
instruction must be checked to ensure that the first character has been transmitted
before trying to send a second character, or use a timer to insert a delay between
characters. There must only bring the input condition true (try to send a character)
when the output condition is false (UART is not busy). The formatted string
instruction (next) must be investigate before using this instruction. The formatted
string instruction is much easier to use, and it is almost certainly capable of doing

what users want.

40

3.2.8 Hardware Installation

For this part in hardware installation design, firstly is design the power supply
module using voltage regulator 7805. This is to supply 5V fixed to PIC and MAX232
IC. This voltage regulator is so important to prevent the higher input supply to the
device which can bring damage to PIC and MAX232 IC. The schematic diagram for
the voltage regulator 7805 as shown in Figure 3.16. Input to the power supply must

greater than 7V to achieve the 5V output supply to PIC and max232.

LT

"' 7805
Lt uan wouT T

GHDO

100u 1u

Figure 3.16: Voltage Regulator 7805

The second part is the flow sensor. For this project the air flow sensor had
been designed and created as shown in Figure 3.17. The sensor used photo infrared
sensor. The brown wire has connected to power supply that setting 12.5V and the
blue wire is connecting to the ground. The air flow sensor works when there a
movement (fan) cut light from the device transmit and receive at the sensor. When
sensor detect the movement then its will give 10V to black wire. The black wire
connects to two resistances in series to decrease the voltage to 5V. Then from the
two resistance in series (voltage divider), its will connect to PIC to convert into

digital data.

41

STV
T 7805
i Uom wour 4
J g TEANSMIT RECEIVE
c1 ==}
T Tu i
~
iy
R.eset_zu_ﬁon 10K
1GFETTA
_— U
= WMELRADD RET/PGD
AND] RAOIAND REG/PGC BROWH
KT o RAIANT RES BLACK O O
Diallas <] RAZANIAet-/CAred RB4
o RAGANIhef+ REPGM BLUE
o ReaToCKUCIOUT RE2 SENSOR
o RAGIANAASS/C2OUT RE1
—————REH—(REDARDIANS RBOANT

RE1 {_——(] REIMWR/ANG v
REZ {0 REAC SIANT \es
\ild ROTPSPT B— " ROT
s RDGPSPS 0—(> RDf 100n
OSCHELKI ROSPSPS 0—> RDS
05C2CLKD RO4PSP4 01— R4 =
Servol <=0 RCOTIOSOTICK] RCT/RMOT p——_1Rx =

L_ Servo2 <_—Q RCUTIDSIWCCPE REBMUCK o—L > Tx
il

|

Fiiid <0 RCHCLP RC&S00 0— " 5do
Seliel <=0 RCHSCHISCL

RC4SOIE0A I— > 5dif5da
120Hz RO0<_—- ROOPEPD RO3/PSP 0— RDZ
ROM<——C RO1PSP ROEF5PE o—r RDZ

Figure 3.17: Air Flow Sensor with PIC and Voltage Regulator

Then the third part is building the connection between PIC16F877A and
MAX232. After get the data from the sensor, the program in PIC will convert the
data into digital data then transmit the data to MAX232. Then the MAX232 will send
the data to computer through communication port with using DB9. The Figure 3.18
is show the schematics diagram for PIC 16F877A and MAX232.

42

a5
Feset Button 10K |
Fo—— — 1
| = 1GFSTT4
— WAC LR Avbp = RB7/PGOD B——<_ > RBT
AND [——0] RA0saMD RBE/PGC B——< > RBG
KTY [—] Ralsam rRBS B——""> RBS
Dallas <__>——1] RAZAANZ Mubef-sChubef RBs B> RB4
O RASAMMEAet+ REBZ/PGHM b——_ > RBZ2
O RATOC KA1 OUT RBZ pb——__> RBZ
O RASaaH4nE S/ 00T REB1 p—— > RB1 a5
RED < _»——O REDARDAANS REOJINT Bb——_— RED
sV RE1 < »——oO REIAWRASHG widd
REz < _»—— REZACSHNT wes b
m ROV/PSPY b——__» ROV
o "= ROG/FSPE f——_> ROG 100n
O OSC1/CLEL ROS/PSPS B——_ > ROS
= O OSC2/CLED RONPSPs+ b—— > RO+ —_—
Servol <__>—O RCOVT1O0S 0TI CEI RCT/RM/DOT p——__1Rx =
S Servo? <__r——O RCU/TIOSIFCCP2 RCEBMCK — 1 > Fe—
Lﬂj Pt < +—1O] RCZfCCP1 RCS/AED0 g—__» Sdo
SchiScl <__—— O RC3FSCRISCL RCHS0s0A B——" > SdirSda
12hdHz RO0O <__+——1 ROOSPSPO ROZFPEP3 b——__» RO3
RO1<_>——0 RO1/PEP1 ROZFPEP: b——_ > ROZ

4F0R 47F0R

Tx T s R
Serial Led u " Led
Port
= o 2 e B
E E—< 1
2lg 2 > Fx
9la =

=

Figure 3.18: PIC16F77A and MAX232

The last part is to design the connection from communication port (DB9
female connection) from computer to the device. The pin assignment is shown in
Table 3.4 below and the figure of RS 232 communication port shown on Figure 3.19.
Only three pins are required for serial port communications: one for receiving data,
one for transmitting data, and another one for the signal ground. The connection only

on pin 2, 3 and pin 5.

Table 3.4: Serial Port Pin and Signal Assignments

Pin | Label Signal Name Signal Type
1 CD | Carrier Detect Control
2 RD Received Data Data
3 TD Transmitted Data Data
4 DTR | Data Terminal Ready | Control
5 GND | Signal Ground Ground
6 DSR | Data Set Ready Control
7 RTS | Request to Send Control
8 CTS | Clear to Send Control
9 RI Ring Indicator Control

1 2 3 4 5
o O O 0O O
O O O
& 7 8

Figure 3.19: Pins and Signals Associated With the 9-pin Connector

43

44

CHAPTER 4

RESULT DISCUSSION

4.1 Introduction

This chapter consists of the discussions on the results from the simulations
using the MATLAB GUI that the results come from flow sensor. This chapter shows
the result that can display to MATLAB GUI with the information come from the
sensor. All the figures of the layout GUI is 100 percent working. The GUI has
performed the task that had been given. This part will explain the main menu of GUI,

interface with hardware, advance development of GUI, user guide (help)

4.2 Main Menu

This part is show the main menu for the flow sensor. This main menu consists
5 push buttons that had been named with info, credit, project, help and lastly the
button exit as shown is Figure 4.1. The part for info button will explain about the
detail for this project. For part credit button it will show the detail about GUI
programmer and also the supervisor that support and help to make sure this project is
successful. The project button will show the subtopic for this project. The part for
help button is to help the users more understanding this project and also try to guide

the users to use this software. The last part is button exit confirmation, the user will

Project3

Universiti i
Malaysia =3
PAHANG |

Figure 4.1: Main Menu of GUI

File Edit Yiew Insert Tools Desktop “Window Help

DESCRIPTION

Flow sensors are devices used for measuring the flow rate or guantity of a moving
fluid or gas. The key to selecting correctly between the many available flow sensors
and flow meters is a clear understanding of the requirerments of the particular
application.Measuring the flow of liquids is a critical need in many industrial plants.

In some operations the ability to conduct accurate flow measurements is so important
that it can make the difference between making a profit and taking a loss. The purpose
far this project is to interface the flow sensor with MATLAB GUL The MATLAE GUI will
display the result and the data that will get from the flow sensor. To interface between
them the PIC 16FE77 and MAX232 will be use. The PIC will convert the analog data to
digital data. This is to make sure the computer (GUI) will be able to read the data.

The Graphical User Interface Development and Environment (GUIDE) from MATLAB
software is making easier for the userto read and understand what the information
from the sensor will display. The GUIDE should be user friendly, sothe userwill understand
and able to uged the program without having the problem. Mormally a flow sensar is
the sensing element used in a flowmeter, or a flow datalogging device. The flow sensar
can normally measure velocity, flow rate or totalised flow. Flow sensors are sometimes
telated to sensors called velocimeters that measure speed of fluids flowing through them.
The flow sensor technology can be based on such things as light, heat, electromagnetic
properties, ultrasonic andmany other technologies in a wide spectrum. A flow sensor can
work by direct measurernent orinferential measurement. Several types of flow sensors are
non-rmechanical and normally work by the inferential method.

Figure 4.2: Info

45

ask whether want to close or not. When click yes it will close the main menu and all

46

.. CREDIT ..

Design By

MUHAMAD ZULFIKRI BIM SAIDIN
EC04014 ~ BACHELOR POWER SYSTEM
B50426-07-5351
MO.HP ~ 0134151851
EMAIL ~ Mr_Fkreyi@Yahoo.Com

Supervised By

MUHAMMAD SHARF BIN NAJIE
LECTURER OF FACULTY OF ELECTRIC
£ ELECTRONIGS ENGINEERING
NOHP ~ 0192222620
EMAIL ~ Sharfi@Urmp. Edu My

Close

Figure 4.3: Credit

r
x
Are you sure you want to cloze?
Thiz will cloze all window that vou open.

[Yes J [flo J

Figure 4.4: Button exit confirmation

4.3 Interfaces with the Air Flow Sensor

After select the project button, it will show the new window as show in
Figure 4.5. Then to go to air flow sensor figure, click at button air flow sensor then
the figure as shown in Figure 4.6 will display. To run the program, first is needed to
open the port with select the communication port (Radio Button). Then port will
open as show in Figure 4.7. The status for this port can be check with click at button
check. Then if the port had been open it will show ‘opened’ as shown also in Figure

4.7. Then for the close port as shown in Figure 4.8.

SEnsors

Fubhare

Development

Figure 4.6: Air Flow sensor

47

48

Read Carefully Communcation Port

Communcation Port
@ Sclect

Figure 4.8: Port is closed

After the port has opened, then the program will be run with click at run
button. When the hardware is ready the result will display at the GUI. At the air flow
sensor when the air through this with high velocity then the fan will rotate fast and it
will give more input as shown in Figure 4.9. But if the air coming through this sensor
with low velocity then the fan will rotate slow then less input will display as shown
in Figure 4.10.

But the problem with this result is not consistent. The time and voltage show
in GUI figure also not consistent. It only show the time that had been detected. The
problem came from this sensor because the sensor can’t detect a very fast movement

of fan. It will effective if fan rotate in slow movement.

49

0

100 200 300 400

Figure 4.9: Result with High Velocity

0 20 40 60 80 100 120
Figure 4.10: Result with Low Velocity

From above figure, we can see the difference for both figures. The both signal
waveform has a little bit difference which Figure 4.9 give more input than Figure
4.10. That because Figure 4.9 is shows the result when the air coming through the
sensor with high velocity but for Figure 4.10 is shows the result when the air coming
through the sensor with low velocity. For the normal condition, when click at button
run it will take 10s to display at GUI. The time is measure in milliseconds. The both
figure also shows the difference at the time and amplitude of signal. The difference
in time for both signals it is because the GUI will display the signal when there are
inputs at that time. That why when no input is detected by the sensor the GUI will

50

not display the signal. For the amplitude it shows the amplitude in voltage after been

converted in binary. Than the value for amplitudes is display in binary number.

The comparison with this result that display at GUI and oscilloscope had
been done. The oscilloscope is connect to the pin at MAX232 that at pin T2out. The
comparison is show in Figure 4.11 and 4.12. Figure 4.11 show the result with high
velocity of air that because at that time the sensor is detect more input when the fan
moving fast and the result will display as shown in figure. Figure 4.12 shows the
result with low velocity of air when the sensor is detecting the fan moving slowly via
transmits and receive of sensor. When that happens it will provide less input and
show in oscilloscope as shown in Figure 4.12. The result in oscilloscope can display
signal in positive and negative side. But the result show in GUI is only display on
positive side. The oscilloscope can display the signal continuously but for the
MATLAB GUI it will display signal when clicking at button run and the signal that
display on GUI is only at that time.

Figure 4.11: Result from oscilloscope (More Input)

51

MM AN W ”

Figure 4.12: Result from oscilloscope (Less Input)

From this window of air flow sensor when click at button “click here’ it will
display the future development of this sensor. For the future development the flow
sensor not only can detect movement of air but also this flow sensor can detect solid,
liquid and also steam/gas flow sensor. Figure 4.13 show the future development of

flow sensor.

Solid Flow Jensor

Licpuid Flow 3ensor

BteamiCas Flow Bensor

Cloze

Figure 4.13: Future Development of Flow Sensor

52

After the project had been done then this program will close with click at
close button. The figure close confirmation will appear an ask user whether to close
or not as shown in Figure 4.14. This close confirmation is to reminder the user to

close the port when want to close this GUI.

AT <

Are ol sure yau vwant to close?

[Yes] [Mo

Figure 4.14: Close Confirmation

4.4 Advanced Development of GUI

For this part will explain about advanced development that had been designed
for this project. This part is just to show not only flow sensor can be used to interface
with this software but temperature sensor, movement sensor and encoder sensor also
can interfaces using this software program. Figure 4.15 show the sensor in advanced
development.

53

sensorZ

— ADVANCED
— 1 DEVELOPMENT

Figure 4.15: Temperature, Movement and Encoder Sensor

For this part, the movement sensor and encoder sensor had been designed.
The design that had been creates only on GUI. The movement sensor is work when
there is any movement through this sensor. When the movement if detect then it will
give 5V but OV when no movement if detected. For the encoder sensor, the
waveform that will display at GUI is like pulse. This sensor is like wheel it will

rotate continuously and the graph will display as shown in Figure 4.17.

Movement Sensor

— OpenfClose Port
() Select

— OPERATION —

[porcrama]

- Plot Graph B
son| LPeemne]
[Reeet]

100 200 300 400

=

[

Figure 4.16: Movement Sensor

“aoltage vs Time pulse signal

Yoltage

Figure 4.17: Encoder Sensor

54

55

45 Users Help

For this part, it will help and guide the user to understand this project. When
click at help button, Figure 4.18 will display. This help consists of two parts. The
first part is tried to explain to the user about the detail of this project. The second is

to guide the users on how to select the communication port as shown in Figure 4.20.

P
= X
About This Program
Howe To Select Communiction Paort
Figure 4.18: Help
>
) Transformer Program] x
File Edit “iew Insert Tools Desktop Window Help "

ABOUT THIS SOFWARE

This sofware about flow sensor. this sofware had build
with prograrm that will interface with the hardware that
is air flow sensar. This program not anly can interface
with air flowy sensor but also with anather sensor like
encoder or mavement sensor. This program had build to
make sure everyone that use this program can realy under
stand and know how to use it. Just click at the project
button and then click at air flow sensor buttan. Then air
flow sensor window will be opened. Tao run the program
firstly must open the port with select at communication
port. Then click at the button run. then after a few
second the graph will display at the GUIL With this
program it can make the users easily to use.

Close

Figure 4.19: About This Software

-
J My Fictures
j My M
SHWW Open
Explore
G«’ ConbolPane | Zeart...
Setpogrant '
D=faults
G Connact Te
= Map Netwark Drve, ,
'ﬁ Prirtersand - Discomect Netwotk Drive.
; how on Deskoo
Q_)) HepardSum Fenane
I'J Sezrth Froparties

Systerr HestaF _|§ B.Ltcmatc lea'Jas Hern:t=

FIND THE COMMUNICAION P

“he Davice Manager iss &l the Fadware devicss nstalled
anyour comouter. e e Device Manacerto change the

propariss of a7y devies.
[igvice Manager
| e

%

Dnvers

e eialed drivers 2
pdate lets you setup
s Undats “or arivers,

[Criver Signng /”
Z

Driver Signirg lets you ma<e sure
compatible with VWindows. Vinday
how Wirdows carnectsta Wi

Wirdows Update]

1 j - Ot
A1 - Rioht Chok Ay Compuer And | [- Then At The Hardware Parel, Chex |5 srosoe
Click At Properties Button Device Manager

Fhldwﬁ Profiles

56

L2 DUDJED-ROM drives
) Poppy disk cortrallrs
ﬁ, Floppy disk dives
S8 Humen Irterface Deviees

{2 IDE ATA/ATAP: contralers
9 [EES 1394 Bus hog: contolers
I,Ei Infrared devices

Keyboarcs

[+ B8 Mztwor< acaptars

PCMCIA adapters

B 5‘ Ports (CON &LF7)
V‘ Communizztiors Zort (COM1)
_U ECP Printer Part (L771)

3 Prozessors

@), sound, video and game conirclers

&g 50730 voumes

=

3 - After That, You Can See The
Cotmmunication Port. This corputer
have show ' COMI'

Figure 4.20: Find the Communication Port

57

CHAPTER 5:

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

From this project, the implement of PIC and MATLAB GUI has been
presented. There are many function in using MATLAB, with the function in
MATLAB, it can create GUIDE and design the layout of the GUI. From the GUI, it
can show many thing based on its application. Based on this project, the GUI is
creating to display the information of the signal from flow sensor. But to display the
information of the signal the sensor must be interface to computer using PIC where
it’s the other part of this project. Through the study of this project, it’s difficult to
interface the PIC and MATLAB GUI because the PIC and MATLAB GUI need the
right coding and program to interface between these two parts. The graph that shown
in GUI is the actual signal that came from the sensor.

The objective of this project is to interface the MATLAB GUI and flow
sensor that is achieved. The main contribution of this project is to interfacing the

GUI with air flow sensor.

58

5.2 Future Recommendations

For the future development, to improve this project many other sensors can
be use besides this flow sensor for this project such as temperature, movement and
encoder sensor. These varieties of sensor can detect difference input and provided
difference output that can be display at MATLAB GUI. From this development, it
can add more features and functions to this project. In future development, maybe air
flow sensor can be changing or adding with other flow sensor like solid, liquid or gas
flow sensor.

To make this project more advance and interesting is with adding the
feedback to this project. The sensor and the speed of fan can be control with GUI and
then the sensor will detect the movement and will display the signal data back to
GUI. The GUI design can be improve with additional more features and make more
interesting like use slider to control the speed and pop-up menu to select difference
task. Also can be adding toggle button, check box or list box for this project in future

development.

5.3 Costing and Commercialization

For this topic, it will discuss about the future of this project for
commercialization. The total cost of this project is dividing for 2 parts that is for
hardware and software. For the hardware, it is include voltage regulator,
PIC16F877A, MAX232, DB9 connecter and air flow sensor. The total cost for this
project is about RM200. The air flow sensor is quite expensive. The second hand part
for this air flow sensor is around RM100 and above. For the software, it is very
expensive because this project is involving with MATLAB. The license for this

MATLAB must be renewing every year and it is very high cost.

59

For the commercialization, this project is a very big opportunity for
commercialization. This is because, the MATLAB GUI is quite difficult and not
many user know and using it to interface with their hardware. Many users use visual
basic to interface with their hardware because visual basic is easy to learn. The
student can use this reference project for their further study. The industry side can
implement such this project to their own development. Maybe the Industry can use
this project when there are sensor usages. They can set the sensor to be more
accurately and also they can check the performance of their sensor with just click at
computer (MATLAB GUI). For the further development, this project can make
easier to anybody who involve with any sensor and MATLAB GUI.

60

REFERENCE

[1] bellevuelinux. Retrieved on 21 January 2007 from

http://www.bellevuelinux.org/gui.html

[2] Ghaphical User Interface Retrieved on 21 January 2007 from
http://www.ewh.ieee.org/r8/uae/GUI.pdf

[3] MATLAB - The Language of Technical Computing Retrieved on
15 February 2007 from
http://www.mathworks.com/access/helpdesk/help/pdf doc/matlab/buildgui.pdf

[4] MATLAB GUI Retrieved on 15 February 2007 from
http://rclsgi.eng.ohio-

state.edu/~gateway/docs/pres and prog reports/MatlabGUI.ppt

[5] PIC Microcontroller Retrieved on 15 February 2007 from

http://en.wikipedia.org/wiki/PIC microcontroller

[6] 20 February 2007, Citing Internet source URL
http://whyfiles.larc.nasa.gov/text/kids/Problem Board/problems/light/glossary.ht

ml

[7] 20 February 2007, Citing Internet source URL
http://www.pcmag.com/encyclopedia term/0,2542 t=sensor&i=51107.00.asp

[8] 20 February 2007, Citing Internet source URL

www.stjude.org/glossary

[9] 20 February 2007, Citing Internet source URL

www.ueidag.com/support/glossary/S/

[10] 20 February 2007, Citing Internet source URL
http://www.definethat.com/define/1916.htm

[11] Sensor Retrieved on 21 February 2007 from
http://en.wikipedia.org/wiki/Sensor

[12] 21 February 2007, Citing Internet source URL

www.ticms.com/wizard/glossary.htm

[13] 21 February 2007, Citing Internet source URL
www.gaf.de/presshelp/glossary/p81.htm

[14] Flow Sensor Retrieved on 22 February 2007 from

http://en.wikipedia.org/wiki/Flow sensor

[15] Flow Meter Retrieved on 22 February 2007 from

http://www.flowmeterdirectory.com/flowmeter flowsensors.html

[16] Flow Sensor Retrieved on 22 February 2007 from

http://www.flowmeterdirectory.com/flow sensors.html

[17] Analog to Digital Converter Retrieved on 22 February 2007 from

http://en.wikipedia.org/wiki/Analog-to-digital converter

[18] Ladder Logic Diagram Retrieved on 11 July 2007 from
http://Cq.ladder.cl

[19] Duane Hanselman and Bruce Little Field. Mastering MATLAB 7,
. Pearson/ Prentice Hall. 2005

[20] Yan-Fang Li, Saul Harari, Hong Wong and Vikram Kapila (2004).
Matlab-Based Graphical User Interface Development for Basic Stamp 2

Microcontroller Project: Polytechnic University, Brooklyn New York

APPENDIX A

EXAMPLE 1: Reading analog input

o—__ RAT
——__: RAG
——__» RBs
H—__» RbB4
b——__ RA3
—__» RB2
—__ RB1

m——__ REO

H—__ RO7
b—__» ROG
——__ RO

O—— 1 Rx
b T
—_» &do

o—__ RO3
H—__ ROZ2

- 1
J_ i I_E'_' 16F377 A
= WG LRApp H RET/PGD
AND [——r] RADAAMHD REA/PGT
KT C—o Radian 33:13
Dallaz <__—0 RAziaN2Atef-Cuhet B4
O RAZANI et R B2P G
O RANTOCKIC10UT RBZ
O RAGIAN4NSSICIOUT RA1
RED < _—0 REDARD/ANS FBOSINT
RE1 < ——r] RE1MiRAAHG sald
T RE? <0 REZACSIANT nig
0 “idd ROTIPSPT
O s ROG/PSPE
J_ O 0SC1/CLEI ROSPSPS
= O 0SC2/CLED ROHP5EP4
Senvol € _—0 RCOVTIOSOUTICEI RCT/RAOT
_ Servo? <_— RCUTIOSCCPZ RCETHICK
Lﬂj Pt <__—0o RCZ/CCP RCES00
SohiSel <_—O RCASCKISCL RCHEOIE0A
12hHz RO0 <__—0 ROOVASPO ROMPSPE
RO1<_—0 RO1/PSP1 ROZ/PSP2
[ZX=]] RE1
gz =
—___ 1
i
K o
10K AHD

I T

mﬂ'—ﬂ
[o o}

[s v s
1 1 TTT

—__ RO4

——_" 5dif5da

R

16

=

HOOHHO00CHO00EH
HOOOO0OOOO00000

o 2wif chars LCO module

o

1

7.
3-
4-
5-
G-
7-
3-

BASIC SOURCE PROGRAM:

Define CONF_WORD = 0x3f72
Define CLOCK_FREQUENCY =12
AllDigital

ADCON1 = 0x0e

Define LCD_BITS =8

Define LCD_DREG = PORTD
Define LCD_DBIT =0

Define LCD_RSREG = PORTE
Define LCD_RSBIT =0

Define LCD_RWREG = PORTE
Define LCD_RWBIT =1

Define LCD_EREG = PORTE
Define LCD_EBIT =2

Define LCD_READ BUSY_FLAG =1
Lcdinit

Dim an0 As Word

loop:
Adcin 0, an0
Lcdecmdout LedClear
Lcdout "Analog input ANO"
Lcdemdout LedLine2Home
Lcdout "Value: ", #an0
WaitMs 250

Goto loop

64

APPENDIX B

EXAMPLE 2: RS-232 communication with PC

10K
16FET74

= MCLRABD H REV/PGD p— > RE7

AND C—— RADAAND RBGFGC 0— > RBG

KT ——0 RATMANT RB5S 0—— > RBS

Dallas <__——0 RAZMANI Adef-/Chtef RB4 0— > RB4

O RAZIAMNI et RB3/PGM —— > RB3

O RAWTOCKIC1 OUT RBZ o— > RBZ

O RASIAMANS $/C2OUT REB1 0—— > REB1

RED <_— REDARD/ANS REOINT p— "> RBO
RE! <_——1 RE1AWRIANG “id

RE: <_— REZACSIANT s
“widd RO7/ASR7 p— > RO7
o ves ROG/PSPS f— > ROB 100n
J_ OFC1/CLKI ROS/FEPE p— > RO

0SCHCLKD RO4FSP4 B— > RD4 =
Serval _——0O RCOMI0SO/TICK] RCT/R¥DT B— " Rx -
— Servo? <_—0 RCUTI0SIWCCPE RCBTACK p— > Tx
Lﬂj Pt <__——o RC2/CCPY RCS/SD0 p——> Sdo

SokiSel < _— RCHSCKASCL RCHSDISDA O— > 5difSda
12MHz RO0 <_——0O ROD/PSPD ROPSP3 B—— > RD3
ROD1<_—] RO1/PSP1 RODZ/P5PZ f—C > RO2

[HEEE
12 - DA
UOOOOOOOOOO00HHH] | e

& 2x16 chars LCD module o 16 - Led—

Options Clear

I Input Terminal

Mumber: 12 -
Mumber: 11 "J
Mumber: 10

rumber :
Mumber :
rumber :
Mumber :
Mumber :
rumber :
Mumber :
rumber :
Mumber :
mMumber :
Mumber :

(e Nl APV O, Fa BN BraRle)

28

I Output T erminal

eErd BitE (Ee]] Send Bute (Hexl | Send Sting |

[~ &lways On Top Cloze I

65

BASIC SOURCE PROGRAM:

Define CONF_WORD = 0x3f72
Define CLOCK_FREQUENCY =12
AllDigital

Define LCD_BITS =8

Define LCD_DREG =PORTD
Define LCD_DBIT =0

Define LCD_RSREG = PORTE
Define LCD_RSBIT =0

Define LCD_RWREG = PORTE
Define LCD_RWBIT =1

Define LCD_EREG = PORTE
Define LCD_EBIT =2

Define LCD_READ_BUSY_FLAG =1
Lcdinit

Dim i As Byte

Hseropen 19200
WaitMs 1000

Fori=20To 0 Step -1
Hserout "Number: ", #i, CrLf
Lcdemdout LedClear
Lcdout "Number: ", #i
WaitMs 1000

Next i

loop:
Hserin i
Hserout "Number: ", #i, CrLf
Lcdecmdout LedClear
Lcdout "Number: ", #i
Goto loop

66

APPENDIX C

Data Sheet for PIC16F877

L.

MICROCHIP

PIC16F87X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

= PIC1BFET3 + PIC16FETE
= PIC1BFET4 + PIC1GFBTT

Microcontroller Core Features:

= High performancs RISC CPU

= Only 35 single word instructions fo l=arm

= Al single cycle instructions except for program
branches which are two cycle

= Dperating speed: DC - 20 MHz clock input

DC - 200 ns instruction cycle

= Up to 8K x 14 words of FLASH Program Memorny,
Up to 388 » 8 bytes of Data Memory (RAM)
Up to 258 x 8 bytes of EEFROM Data Memory

= Pinout compatible to the PIC18CTIBT4BITEATT

= Interrupt capability (up to 14 sources)

= Eight level deep hardware stack

= Dirzct, indirsct and relative addressing modes

» Power-on Resest (POR)

= Power-up Timer (PWRT) and
Cegillator Start-up Timer (O5T)

= Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation

» Programmable code protection

= Power saving SLEEP mods

» Zelectable oscillator options

» Low power, high speed CMOS FLASH/EEPROM
technology

= Fully static design

= In-Circuit Serial Programming™ (IC5P) via two
pins

= Single 8V In-Circuit Serial Programming capability

= In-Circuit Debugging via two pins

= Processor readiwrite access to program memany

= Wide cperafing voliage rangs: 2.0V 1o 5.5V

= High Sink/Source Current: 25 mé,

= Commercial, Industrial and Extended temperature
ranges

= Low-power consumption:
- < (0.8 mA typical @ 3V, 4 MHz
- 20 pA typical @ 3V, 32 kHz
- = 1 pA typical standby current

Pin Diagram
POIP

MCLR e ——= [1 e £

LI [— EE)
RAANT —] 2 EES

ST TS Sp— Enl
[AEETEUERN T p— E
I — EH

RASANAEE - [7 £
REDFIVANE ——e]
REAWRIANE +—]
REZTEMNT w—w]
Vot — [
W58 e [] 12

CECAMLEN — 11

awm

PICIGFATT /T4

CECHCLECUT e[14 b
RCOTICENTICH -—=[] 15 =0 RCTIRADT
RCATICEICCR2 - [15 =0 RCETHTE
[l — P =h RCEEDO
REaECHECL —=[] 12 =0 ROASOIE0A
ROCFER] =[] 13 =0 ROIFESS
ROFEF w—=[] 20 EiN | ROZFESZ

Peripheral Features:

= Timerl: 8-bit timer'counter with 8-bit prescaler

= Timeri: 16-bit imer/counter with prescaler,
zan be incremented during SLEEP via external
crystaliclock

= Timerd: 8-hbit timer'counter with 2-bit period
register, prescaler and postscalsr

= Two Capiure, Compare, PYWM modules
- Capture is 18-bit, max. resolution is 12.5 ns
- Compare is 16-bit, max. resolution is 200 ns
- PWM mae. resolution is 10-bit

= 10-bit mutti-channel Analog-to-Digital converter

* Synchronous S_Er al Port (S5P) with SPI™ (Master
made) and T (MastenSlava)

= Universal Synchronous Asynchronous Receiver
Transmitter (USART/SCI) with 8-bit address
detection

= Parallel Slave Port (PSP) 8-bits wide, with
axternal RD. WR and CS controls (40/44-pin only)

= Brown-out detection circuitry for
Brown-out Reset (BOR)

APPENDIX D

Datasheet for MAX232

MAXZ232, MAX232]
DUAL EIA-232 DRIVERS/RECEIVERS

SLLAMTL - FEBRUARY 1080 - REVISED MARCH 3004
e

® Meets or Exceeds TIA/EIA-232F and ITU MA¥23Z_ .. D, DW, M, OF N3 FACKAGE
Recommendation V.28 Maxzadl..]?ﬁ?\:::r FACHAGE
Dperates From a Single 3V Power Supply
With 1.0-uF Charge-Pump Capacitors c1e 1 = 1 ves
Operates Up To 120 kbit's e Iz 3] GND
® Two Drivers and Two Receivers E;' E i :: % R:ﬁdﬂ
C2+
® £30-V Input Levels . o [ricuT
® Low Supply Current . - . 3 mA Typical vo [l T
® ESD Protection Excesds JESD 22 T2OUT [7 10[] TaM
— 2000-V Human-Body Model [A114-A) azm [l e a[] R2oUT

® Upgrade With Improved ESD [153-kV HEM)
and 0.1 F Charge-Pump Capacitors is
HAvailable With the MAXZ02Z
® Applications
— TIAEIA-232-F. Battery-Powerad Systems,
Terminals, Modems, and Computers

descriptionfordering informaticon

The MAX232 is a dual driverireceiver that indudes 3 capacitive volfage penerator to supply TIAEIA-ZI2F
wortage levels from a single 5V supply. Each rzcever converts TIAEIA-232-F inputs to 50 TTLICMOS levels
These receivers have a typical threshoid of 1.2V, a typical hysteresis of 0.5 W, and can accept £30-V inpuis.
Each driver comverts TTUCMOS input levels inte TIAEIA-Z32-F levels. The driver, receiver, and
wotage-pensrator funchions are available as c2lls in the Texas Instrurnents LinASIC™ librany.

ORDERING INFORMATION

m ercrncet el
FOIF (M) Tube of 25 MAXIIIN MAXZIZN
_] Tube ol 43 MAXZ320 .
BN) Feel of 2200 MAXIII0R MR
FERTre _ Tube ol 43 MAXZII0E .
BT (Y] Feel of 2000 MAXIIIOWR MR
S0P [N3) Reel of 2000 MAXZIINER MAXZI2
FOIR M) Tube of 25 MAXIIZIN FAAXZIZM
_] Tube ol 43 MAXIZ32ID o
-40°C fo B5°C BN) Feel of 2200 MAXIIZIOA MK
R Tube ol 43 MAXIIZICH P
Reel of 2000 MAXIIZICWR

TFal:tau: drawings, sfandard packing guandlies, fhemal data, symbolizafion, and PCH d=sign
guid=in=s ar= 2valable at wew H comiscpackape.

FPlzxte b= sware nat an Important noce concerning avalabdlifty, standard warmanty, and use In orifical appllcations of
Texas Instrumenis semiconductor products and dlsciamers inerelo axozars af the end of this dats shest.

LINAZIC |5 & irademark of Texas instnuments.
-

68

+5V-Powered, Multichannel RS-232

Drivers/Receivers

3
)

3

\
y

W+

- VOLTAGE DOUELER

W,

TOP VIEW
. =
EHE
V2]
(3] maxim
i [4] Mo
MAxZ22
-[5] waxzas
“[&
TQUUTE
H2|NE
DIP/SO
CAPACITANCE {uF)
E [

e

MAX220

10 10 10

0047 033 033 033 033

MAN232A 01 01 01

VA

a1

]
=

1 Taur
T ;

T2qur

Ry

Skit

-
w5
I
) -
=

=1

1

MAXZ220/MAX232/MAXZ32A Pin Configuration and Typical Operating Circuit

TOP VIEW
— (MNCIEN 4]
(e B[] 5] 0N O[]
01+ E E Ve Ve E
Vs E E ND c1- E

(4] mamam [l T 2[5
C2+ E MAXZ22 E Ry - E

MAX242
c2- 4]] b - [7]
v-[1] 12 Ty T2 [8]
Taour E E Tam Ray E
few [3] [10] Roour Reaur [1g)
DIP/SO
{) ARE FOR MAX222 ONLY.

PIN NUMBERS IN TYPICAL OPERATING CIRCUIT ARE FOR DIFYS0 PACKAGES ONLY.

SUNUT G301 camacrmons o

T

£1- VOLTAGE DOUBLER

3]

V-
C2- YOLTAGE INVERTER

L| -1V
o

ST)
200k ::_ (EXCEPT MAX220)
T 5 ™., Tiour

15,5

sk S (BECEPT MA220)
T2our

y R5-232
OUTRUTS

8

RIIN

=2
z B

r

55

| R

8

INANDANN

A A

o
el B
=| =
=/

j INPUTS

=

i

MANZZZMAXZ4Z Pin Configurations and Typical Operating Circuit

APPENDIX E

Programming M-file for Main Menu

function varargout = Project3(varargin)
% PROJECT3 M-file for Project3.fig

% PROJECTS, by itself, creates a new PROJECT3 or raises the existing

% singleton*.

%

% H=PROJECTS3 returns the handle to a new PROJECT3 or the handle to
% the existing singleton*.

%

% PROJECT3('CALLBACK'hObject,eventData,handles,...) calls the local
% function named CALLBACK in PROJECT3.M with the given input
arguments.

%

% PROJECT3('Property','Value',...) creates a new PROJECTS3 or raises the
% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before Project3_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Project3_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help Project3

% Last Modified by GUIDE v2.5 29-Oct-2007 23:15:18

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1,
gui_State = struct(‘gui_Name’, mfilename, ...

‘gui_Singleton’, gui_Singleton, ...
‘gui_OpeningFcn', @Project3_OpeningFcn, ...
‘gui_OutputFen', @Project3_OutputFcn, ...
'gui_LayoutFcen',], ...

'gui_Callback', []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfcn(gui_State, varargin{:});

69

70

end
% End initialization code - DO NOT EDIT

% --- Executes just before Project3 is made visible.

function Project3_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Project3 (see VARARGIN)
movegui('center")

% Choose default command line output for Project3

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Project3 wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = Project3_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbuttonl.

function varargout = pushbutton1_Callback(h, eventdata, handles, varargin)
figure(Info)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.

function varargout = pushbutton2_Callback(h, eventdata, handles, varargin)
figure(Cre)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton3.

71

function varargout = pushbutton3_Callback(h, eventdata, handles, varargin)
figure(sensor2)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = close_all('Title','Project3");

switch lower(user_response)

case 'no'
% take no action
case 'yes'
% Prepare to close GUI application window
%
%
% :
% delete(handles.figurel)
end

% --- Executes during object creation, after setting all properties.
function axes1l_CreateFcn(hObject, eventdata, handles)

% hObject handle to axesl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axesl
[x,map] = imread(‘backg','jpg");

image(x)

set(gca,'visible','off")

% --- Executes on button press in pushbutton5.

function varargout = pushbutton5_Callback(h, eventdata, handles, varargin)
figure(help)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

APPENDIX F

Programming M-File for Air Flow Sensor

function varargout = MyProl(varargin)

% MYPRO1 M-file for MyProl.fig

% MYPROL, by itself, creates a new MYPROL1 or raises the existing

% singleton*.

%

% H=MYPROL1 returns the handle to a new MYPROL or the handle to
% the existing singleton*.

%

% MYPROL('CALLBACK'hObject,eventData,handles,...) calls the local

72

% function named CALLBACK in MYPRO1.M with the given input arguments.

%

% MYPROL('Property','VValue',...) creates a new MYPROL or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before MyProl_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to MyProl OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help MyProl
% Last Modified by GUIDE v2.5 30-Oct-2007 12:57:00

% Begin initialization code - DO NOT EDIT

gui_Singleton =1,

gui_State = struct(‘gui_Name’', mfilename, ...
'gui_Singleton’, gui_Singleton, ...
‘gui_OpeningFcn', @MyProl_OpeningFcn, ...
‘gui_OutputFcn', @MyProl_OutputFcn, ...
'gui_LayoutFcen',], ...
‘gui_Callback’, []);

if nargin && ischar(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});
end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfcn(gui_State, varargin{:});
end

73

% End initialization code - DO NOT EDIT

% --- Executes just before MyProl is made visible.

function MyProl_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to MyProl (see VARARGIN)

movegui('center")

s=serial(‘coml")

c=s.status

handles.status=c

% set(s,'OutputBufferSize',4096)
handles.op=s % store data
guidata(hObject, handles); %save data

% Choose default command line output for MyProl
handles.output=hObiject;
axes(handles.axes4)
[x,map] = imread(‘asal’,'jpg");
image(x)
set(gca,'visible','off")

axes(handles.axes5)

[x,map] = imread(‘'mafs','jpg");
image(x)
set(gca,'visible','off")

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes MyProl wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = MyProl_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbuttonl.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op

handles.output = hObject;

axes(handles.axesl)

out=fread(s)

plot(out);

set(findobj(gca, Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',1.0)
set(gca,'color',[0.027 0.702 0.894])

grid on

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = closed('Title',' flow4");
switch lower(user_response)
case 'no'
% take no action
case 'yes'
% Prepare to close GUI application window
%
%
% :
delete(handles.figurel)
end

% --- Executes on button press in checkbox1.

function checkbox1_Callback(hObject, eventdata, handles)

% hObject handle to checkbox1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of checkbox1

75

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

m=1:0.1:50;

n=-m;

c=m+n;

plot(c);

set(findobj(gca, Type','line’,'Color',[0 0 1]),'Color',[1 1 1],'LineWidth',2.5)
set(gca,'color',[1 1 1])

%s set(gca,'color',[0.027 0.702 0.894])

% --- Executes on button press in radiobuttonl.

function radiobutton1_Callback(hObject, eventdata, handles)

% hObject handle to radiobuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'VValue') returns toggle state of radiobuttonl
if (get(hObject,'Value')==get(hObject,'Max'));
s=handles.op % retrieve data
fopen(s)
guidata(hObject,handles);
axes(handles.axes4)
[x,map] = imread(‘open’,'jpg’);
image(x)
set(gca,'visible','off")

%save data
else

s=handles.op

fclose(s)

guidata(hObject,handles)

axes(handles.axes4)

[x,map] = imread(‘clo’,'jpg");
image(x)
set(gca,'visible','off")

end %Dbawah end ni mungkin ada handles gak kot
guidata(hObject,handles);

% --- Executes on button press in pushbutton5.

function pushbutton5_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% s=handles.op

% handles.output = hObject;
% axes(handles.axes3)

% if 125.5<0ut<255
% then out=5

%

%

% if O<out<125

% then out=0

% --- Executes on button press in pushbutton6.

function pushbutton6_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op

c=handles.status

b=s.status

set(handles.text6,'string',b)

% --- Executes on button press in pushbutton?.

function varargout = pushbutton7_Callback(h, eventdata, handles, varargin)
figure(flow)

% hObject handle to pushbutton7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

76

77

APPENDIX G

Ghant Chart

— PRGNS 1=l |
-] uoipeledald sisay)
- panILgns yoog Bo gy jeip podal ajeu
| UOIEIEUDLIER pUE JEUIISS 1587
- 12anig uo jea eurd
— PEBILIGNS oday Joensgy (N4
—_— (s154]euy 3 wone) 1aalolq funsa)
—— juqns v Moda o JeIp puoaes uoleledald
I - Buiwieifiold 3 alespiey pajelfia
e yugns v uodal o Jelp 15 uoededalg
N BIEMOS J|d 818813 J1d AuEp|
A | BlempIEL N00e UolleuLaU Buayies

Zsd

—_ yoog Aoy Jodal | Sd Hwgng
watdojana Bunnwefiol4 7 ufisag ng
_— ADMIS [19) GEfE
— | Wsd | eullag

N | nwgns 7 uoneledald uoijejuasaid apisg

- Josiadns A |esoidde esodolg

ll H_E%mdm_c_“_:m_m%a_mm_“_%_i

(alaal aunjedal) uonewopl palejad Bulayies
| WS JEUILIAS NOqe UolJanpol|
- B | Wsd alsiiay
- AU Bl | WSd
AN EEAREEANEEANEEEANREER AEEAREEANEEEAREEED Ayl
AON | 100 1435 5090 | AP WA M4y | OwW | 34 NyT

