

DEVELOPMENT OF SENSOR USING GRAPHICAL USER

INTERFACE

MUHAMAD ZULFIKRI BIN SAIDIN

UNIVERSITY MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN: 2007/2008

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Kolej Universiti Kejuruteraan & Teknologi Malaysia.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

Tarikh: 26 NOVEMBER 2007 Tarikh: : 26 NOVEMBER 2007

78, JLN SERULING EMAS 2,
TMN SERULING EMAS,
14200 SUNGAI BAKAP,
PULAU PINANG.

MR. MUHAMMAD SHARFI
BIN NAJIB

(Nama Penyelia)

DEVELOPMENT OF SENSOR USING GHAPHICAL USER
INTERFACE

MUHAMAD ZULFIKRI BIN SAIDIN (850426-07-5351)

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

“I hereby acknowledge that the scope and quality of this thesis is

qualified for the award of the Bachelor Degree of Electrical Engineering

(Power System)”

Signature: _____________________________

Name: MUHAMMAD SHARFI BIN NAJIB

Date: 26 NOVEMBER 2007

DEVELOPMENT OF SENSOR USING GRAPHICAL USER

INTERFACE

MUHAMAD ZULFIKRI BIN SAIDIN

This thesis is submitted as partial fulfillment of the requirements for the

award of the Bachelor Degree of Electrical Engineering (Power System)

Faculty of Electrical & Electronics Engineering

University Malaysia Pahang

NOVEMBER 2007

ii

“All the trademark and copyrights use here in are property of their

respective owner. References of information from other sources are

quoted accordingly; otherwise the information presented in this report is

solely work of the author.”

 Signature : _______________________________

 Author : MUHAMAD ZULFIKRI BIN SAIDIN

 Date : 26 NOVEMBER 2007

iii

Specially dedicated to

my beloved family and those people who have guided and inspired me

throughout my journey of education.

iv

ACKNOWLEDGEMENT

 First and foremost, I am very grateful to the almighty ALLAH S.W.T for

giving me this opportunity to accomplish my Final Year Project.

 Firstly, I wish to express my deep gratitude to my supervisor, Mr.

Muhammad Sharfi bin Najib for all his valuable guidance, assistance and support all

through this work.

 Secondly, I wish to thank lecturers and technicians, for their suggestions and

support on this project. Their comments on this project are greatly appreciated. My

thanks are also to all my friends who have involved and helped me in this project.

 Most importantly I extend my gratitude to my parents who have encouraged

me throughout my education and I will always be grateful for their sacrifice,

generosity and love.

v

ABSTRACT

 A sensor is a device that measures or detects a real-world condition, such as

motion, heat or light. When flow sensors are devices used for measuring the flow

rate or quantity of a moving fluid or gas. The key in selecting correctly between the

many available flow sensors and flow meters is one of the requirements of the

particular application. The purpose for this project is to interface the flow sensor with

MATLAB GUI. The MATLAB GUI will display the result and the data that will get

from the flow sensor. To interface between them the PIC 16F877 and MAX232 will

be use. The PIC will convert the analog data to digital data and MAX232 will

connect the PIC to serial port at computer. This is to make sure the computer (GUI)

will be able to read the data. As a result, flow measurement using GUI is able to

display generated signal from the developed flow sensor.

vi

ABSTRAK

 Sensor ialah alat yang dapat mengukur keadaan dalam dunia yang nyata ini.

Contohnya seperti pergerakan, haba dan cahaya. Manakala sensor aliran ialah sensor

yang digunakan untuk mengukur kadar aliran ataupun kuantiti bendalir/cecair atau

gas yang melaluinya. Keputusan yang dibuat di dalam memilih diantara banyak

sensor aliran mestilah difahami sebetul-betulnya tentang penggunaan yang

diperlukannya di dalam aplikasi yang dikhususkan. Tujuan projek ini adalah untuk

menghubungkan sensor aliran dengan perisian MATLAB GUI. MATLAB GUI akan

menunjukkan hasil dan data yang boleh diperolehi daripada sensor aliran. Untuk

menyambungkan sensor dengan perisian GUI, PIC 16F877 dan MAX 232 akan

digunakan. Tujuan PIC adalah untuk menukarkan data analog kepada data digital

manakala MAX 232 akan menyambungkan PIC kepada serial port(komputer). Ini

adalah untuk memastikan computer yakni perisian GUI boleh untuk membaca data

bacaan. Secara kesimpulannya, ukuran aliran dengan mengunakn GUI ini mampu

untuk mununjukkan data yang dihasilkan daripada pembanggunan sensor ukuran.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 TITLE PAGE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF APPENDICES xiii

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 1 INTRODUCTION

 1.1 Overview 1

 1.2 Objective 2

 1.3 Scope of Project 3

 1.4 Problem Statement 3

 1.5 Thesis Organization 4

 2 LITERATURE REVIEW

 2.1 Graphical User Interface (GUI) 5

 2.1.1 Definition of GUI 5

 2.2 MATLAB GUI 6

 2.2.1 Introduction 6

 2.2.2 Operation in GUI 7

 2.3 Analog Digital Converter (ADC) 8

 2.3.1 Introduction 8

 2.3.2 Flash ADC 8

 2.4 Peripheral Interface Controller (PIC) 9

 2.4.1 Introduction 9

 2.4.2 Programmer PIC 10

 2.5 Sensor 11

 2.5.1 Definition of Sensor 11

 2.5.2 Flow sensor 12

ix

 3 METHODOLOGY

 3.1 Introduction 15

 3.2 Methodology 15

 3.2.1 Project Diagram 16

 3.2.2 Flow Chart of Project 17

 3.2.3 Creating GUI with GUIDE 19

 3.2.4 Programming the GUI 24

 3.2.5 Programming the PIC 29

 3.2.6 Getting Started With LDmicro 30

 3.2.6.1 Command Line Options 30

 3.2.6.2 Basics 31

 3.2.6.3 Simulation 33

 3.2.6.4 Compiling to Native Code 33

 3.2.7 Programming PIC for This Project 34

 3.2.8 Hardware Installation 40

 4 RESULT AND DISCUSSION

 4.1 Introduction 44

 4.2 Main Menu 44

 4.3 Interfaces with the Air Flow Sensor 46

 4.4 Advanced Development of GUI 52

 4.5 Users Help 55

 5 CONCLUSION AND RECOMMANDATION

 5.1 Conclusion 57

 5.2 Future Recommendation 58

 5.3 Costing and Commercialization 58

REFERENCES 60

Appendices A - G 62 - 77

x

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Some Basic GUI Component 20

3.2 Lists the Callback Properties 25

3.3 Major Sections of the GUI M-file 27

3.4 Serial Port Pin and Signal Assignments 43

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Example of Simple Program 10

3.1 Simplified Block Diagram 16

3.2 Flow Chart 17

3.3 The GUIDE tool Window 19

3.4 Property Inspector 21

3.5 Example Layout GUI (Main Window) 22

3.6 Example Layout GUI (Air Flow Sensor) 22

3.7 Example of M-File 23

3.8 Push Button with Callback 25

3.9 Initialize the Communication Port 28

3.10 Open and Close Communication Port 28

3.11 Read Data from MAX232 29

3.12 Start the program with one empty rung 32

3.13 Programming the PIC 35

3.14 In Simulation Mode 35

3.15 In the Real-Time Simulation 36

3.16 Voltage Regulator 7805 40

3.17 Air Flow Sensor with PIC and Voltage

 Regulator 41

3.18 PIC16F77A and MAX232 42

3.19 Pins and Signals Associated With the

 9-pin Connector 43

4.1 Main Menu of GUI 45

4.2 Info 45

xii

4.3 Credit 46

4.4 Button exit confirmation 46

4.5 Sensor 47

4.6 Air Flow Sensor 47

4.7 Port is Open 48

4.8 Port is Close 48

4.9 Results with High Velocity 49

4.10 Results with Low Velocity 49

4.11 Result from oscilloscope (More Input) 50

4.12 Result from oscilloscope (Less Input) 51

4.13 Future Development of Flow Sensor 51

4.14 Close Confirmation 52

4.15 Temperature, Movement and Encoder Sensor 53

4.16 Movement Sensor 54

4.17 Encoder Sensor 54

4.18 Help 55

4.19 About This Software 55

4.20 Find the Communication Port 56

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Reading Analog Input 62

B RS-232 Communication with PC 64

C Datasheet for PIC16F877 66

D Datasheet for MAX232 67

E Programming M-file for Main Menu 69

F Programming M-file for Air Flow Sensor 72

G Ghant Chart 77

1

CHAPTER 1

INTRODUCTION

1.1 Overview

This is project about flow sensor with using MATLAB GUI. This project will

use few devices that need to be taken into consideration to successfully accomplish

this project. The devices that are need to be considered are flow sensor (movement of

air or liquid), analog to digital converter (ADC), Peripheral interface controller and

graphical user interface using MATLAB GUI.

Flow sensors are devices used for measuring the flow rate or quantity of a

moving fluid or gas. The key to selecting correctly between the many available flow

sensors and flow meters is a clear understanding of the requirements of the particular

application. Measuring the flow of liquids is a critical need in many industrial plants.

In some operations, the ability to conduct accurate flow measurements is so

important that it can make the difference between making a profit and taking a loss.

A PIC microcontroller chip combines the function of microprocessor, ROM

program memory, some RAM memory and input/output interface in one single

package which is economical and easy to use. The PIC-Logicator system is designed

to be used to program a range of 8, 18, 28 pin reprogrammable PIC microcontrollers

which provide a variety of output, digital input and analogue input option to suit

school project uses.

2

 A graphical user interface (GUI) is a pictorial interface to a program. A good

GUI can make programs easier to use by providing them with a consistent

appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,

and so forth. The GUI should behave in an understandable and predictable manner,

so that a user knows what to expect when he or she performs an action.

 MATLAB is viewed by many users not only as a high-performance language

for technical computing but also as a convenient environment for building graphical

user interfaces (GUI). Data visualization and GUI design in MATLAB are based on

the Handle Graphics System in which the objects organized in a Graphics Object

Hierarchy can be manipulated by various high and low level commands. If using

MATLAB7 the GUI design more flexible and versatile, they also increase the

complexity of the Handle Graphics System and require some effort to adapt to.

1.2 Objective

i. Design MATLAB GUI for flow sensor GUI

Able to create and design GUI using GUIDE in MATLAB software

package to make an easier for the user to use. The design in GUI must be

user-friendly to make the user understand to use it.

ii. To display a signal that generated by flow sensor through PIC to GUI

To be able display the actual signal that needed for movement liquid or

air in MATLAB GUI. The signal that display in MATLAB GUI must be the

correct one to make sure the project successfully done.

3

1.3 Scope of Project

 The first element need to be considered for scope of this project is hardware.

The main contribution for hardware in this project is Peripheral Interface Controller

(PIC). This PIC use to interface between sensor and computer. For the PIC, must

design the appropriate program and coding for the PIC and the circuit design to

interface with computer using serial port.RS232.

 The second element is software that becomes the main part of this project.

The software that use in this project is Graphical User Interface Development

Environment (GUIDE) in MATLAB software package. This software is to design

and create the GUI layout to make a user-friendly for user. For this GUIDE software

is divide into two, first is GUI layout design with a consistent appearance and with

intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. And

second is for the program M-File, must design and use the right coding to make sure

the design in GUI layout is work properly like what is needed.

1.4 Problem Statement

 The sensor is able to detect any movement that through it but it’s difficult to

get the value that had been measure by the sensor. Many sensors have been created

to detect any movement but it will not show the value directly. In this development

country, the flow meter has been created to show and display the value that had been

measured by the sensor. Same for this project, but the different with flow meter is the

flow meter show the value at the gauges but with this project the measurement that

has been made by the sensor will able to display at the MATLAB program that is

GUIDE. The advantages of this GUIDE is it will not only display the value but it will

also able to explain the purpose of this program with interesting button and figure

and can guide the users to use this program.

4

1.5 Thesis Organization

 This thesis consists of five chapters including this chapter. The contents of

each chapter are outlined as follows. Chapter 2 contains a detailed description on the

GUI, PIC and the sensor. It will explain the detail about what is GUI and function of

PIC and what sensor that had been used. Chapter 3 includes the project methodology.

This will explain how the project is organized and the flow of the process in

completing this project. Chapter 4 presents the result of the sensor. It will show the

result and display that data at MATLAB GUI and also with comparison with

oscilloscope. Finally the conclusions for this project are presented in Chapter 5. This

chapter also included the future recommendation, costing and commercialization of

this project.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Graphical User Interface (GUI)

2.1.1 Definition of GUI

 A graphical user interface (GUI) is a human-computer interface (i.e., a way

for humans to interact with computers) that uses windows, icons and menus and

which can be manipulated by a mouse (and often to a limited extent by a keyboard as

well) [1] [2] [3] [19] [20].

GUIs stand in sharp contrast to command line interfaces (CLIs), which use

only text and are accessed solely by a keyboard. The most familiar example of a CLI

too many people is MS-DOS. Another example is Linux when it is used in console

mode (i.e., the entire screen shows text only) [1].

An icon is a small picture or symbol in a GUI that represents a program (or

command), a file, a directory or a device (such as a hard disk or floppy). Icons are

used both on the desktop and within application programs. Examples include small

rectangles (to represent files), file folders (to represent directories), a trash can (to

indicate a place to dispose of unwanted files and directories) and buttons on web

browsers (for navigating to previous pages, for reloading the current page, etc.) [1].

6

Commands are issued in the GUI by using a mouse, trackball or touchpad to

first move a pointer on the screen to, or on top of, the icon, menu item or window of

interest in order to select that object [1] [2] [3]. Then, for example, icons and

windows can be moved by dragging (moving the mouse with the held down) and

objects or programs can be opened by clicking on their icons [1] [2] [19].

2.2 MATLAB GUI

2.2.1 Introduction

A graphical user interface (GUI) is a pictorial interface to a program. A good

GUI can make programs easier to use by providing them with a consistent

appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus,

and so forth [2] [3] [4] [20]. The GUI should behave in an understandable and

predictable manner, so that a user knows what to expect when he or she performs an

action. For example, when a mouse click occurs on pushbutton, the GUI should

initiate the action described on the label of the button. This chapter introduces the

basic elements of the MATLAB GUIs [2] [3] [4]. The chapter does not contain a

complete description of components or GUI features, but it does provide the basics

required to create functional GUIs for your programs [2] [19] [20].

 Applications that provide GUIs are generally easier to learn and use since the

person using the application does not need to know what commands are available or

how they work [3] [4] [20]. The action that results from a particular user action can

be made clear by the design of the interface [2] [3] [4] [20].

7

2.2.2 Operation in GUI

A graphical user interface provides the user with a familiar environment in

which to work. This environment contains pushbuttons, toggle buttons, lists, menus,

text boxes, and so forth [1] [2] [3] [4]. All of which are already familiar to the user,

so that he or she can concentrate on using the application rather than on the

mechanics involved in doing things. However, GUIs are harder for the programmer

because a GUI-based program must be prepared for mouse clicks (or possibly

keyboard input) for any GUI element at any time [1] [2] [3]. Such inputs are known

as events, and a program that responds to events is said to be event driven. The three

principal elements required to create a MATLAB Graphical User Interfaces are [2]:-

1. Components. Each item on a MATLAB GUI (pushbuttons, labels, edit boxes,

etc.) is a graphical component. The types of components include graphical controls

(pushbuttons, edit boxes, lists, sliders, etc.), static elements (frames and text strings),

menus, and axes. Graphical controls and static elements are created by the function

uicontrol, and menus are created by the functions uimenu and uicontextmenu. Axes,

which are used to display graphical data, are created by the function axes [1] [2] [3]

[4].

2. Figures. The components of a GUI must be arranged within a figure, which is

a window on the computer screen. In the past, figures have been created

automatically whenever we have plotted data. However, empty figures can be created

with the function figure and can be used to hold any combination of components [2].

3. Callbacks. Finally, there must be some way to perform an action if a user

clicks a mouse on a button or types information on a keyboard. A mouse click or a

key press is an event, and the MATLAB program must respond to each event if the

program is to perform its function. For example, if a user clicks on a button, that

event must cause the MATLAB code that implements the function of the button to be

executed. The code executed in response to an event is known as a call back. There

must be a callback to implement the function of each graphical component on the

GUI [2] [3].

8

2.3 Analog Digital Converter (ADC)

2.3.1 Introduction

 An analog-to-digital converter (abbreviated ADC, A/D or A to D) is an

electronic circuit that converts continuous signals to discrete digital numbers. The

reverse operation is performed by a digital-to-analog converter (DAC) [17].

Typically, an ADC is an electronic device that converts an input analog voltage to a

digital number. The digital output may be using different coding schemes, such as

binary and two's complement binary. However, some non-electronic or only partially

electronic devices, such as rotary encoders, can also be considered ADCs [17].

 The resolution of the converter indicates the number of discrete values it can

produce over the range of voltage values. It is usually expressed in bits. For example,

an ADC that encodes an analog input to one of 256 discrete values (0.255) has a

resolution of eight bits, since 28 = 256 [17].

 Resolution can also be defined electrically, and expressed in volts. The

voltage resolution of an ADC is equal to its overall voltage measurement range

divided by the number of discrete values [17].

2.3.2 Flash ADC

 This is one of the most common ways of implementing an electronic ADC

that is direct conversion ADC. A direct conversion ADC or flash ADC has a

comparator that fires for each decoded voltage range. The comparator bank feeds a

logic circuit that generates a code for each voltage range. Direct conversion is very

fast, but usually has only 8 bits of resolution (256 comparators) or fewer, as it needs

a large, expensive circuit. ADCs of this type have a large die size, a high input

capacitance, and are prone to produce glitches on the output (by outputting an out-of-

sequence code). They are often used for video or other fast signals [17].

9

2.4 Peripheral Interface Controller (PIC)

2.4.1 Introduction

 PIC is a family of Harvard architecture microcontrollers made by Microchip

Technology, derived from the PIC1650 originally developed by General Instrument's

Microelectronics Division. PICs are popular with developers due to their low cost,

wide availability, large user base, extensive collection of application notes,

availability of low cost or free development tools, and serial programming (and re-

programming with flash memory) capability [5].

The original PIC was built to be used with GI's new 16-bit CPU, the CP1600.

While generally a good CPU, the CP1600 had poor I/O performance, and the 8-bit

PIC was developed in 1975 to improve performance of the overall system by

offloading I/O tasks from the CPU. The PIC used simple microcode stored in ROM

to perform its tasks, and although the term wasn't used at the time, it is a RISC

design that runs one instruction per cycle (4 oscillator cycles) [5].

In 1985 General Instruments spun off their microelectronics division, and the

new ownership cancelled almost everything — which by this time was mostly out-

of-date. The PIC, however, was upgraded with EPROM to produce a programmable

channel controller, and today a huge variety of PICs are available with various on-

board peripherals (serial communication modules, UARTs, motor control kernels,

etc.) and program memory from 512 words to 32k words and more (a "word" is one

assembly language instruction, varying from 12, 14 or 16 bits depending on the

specific PIC micro family) [5].

 Microchip Technology does not use PIC as an acronym; in fact the brand

name is PICmicro. It is generally regarded that PIC stands for Peripheral Interface

Controller, although General Instruments' original acronym for the PIC1650 was

"Programmable Intelligent Computer" [5].]

10

2.4.2 Programmer PIC

 There is much method use to program the PIC. One of those methods is using

ladder logic diagram (LDmicro). The LDmicro generates native code for certain

Microchip PIC16 and Atmel AVR microcontrollers. Usually software for these

microcontrollers is written in a programming language like assembler, C, or BASIC.

A program in one of these languages comprises a list of statements [18]. These

languages are powerful and well-suited to the architecture of the processor, which

internally executes a list of instructions. PLCs, on the other hand, are often

programmed in `ladder logic.' A simple program might look like this [18]:

Figure 2.1: Example of Simple Program

 TON is a turn-on delay; TOF is a turn-off delay. The --] [--statements are

inputs, which behave sort of like the contacts on a relay. The --()-- statements are

outputs, which behave sort of like the coil of a relay [18].

11

2.5 Sensor

2.5.1 Definition of Sensor

A detector [6]. A device that measures or detects a real-world condition, such

as motion, heat or light and converts the condition into an analog or digital

representation. An optical sensor detects the intensity or brightness of light, or the

intensity of red, green and blue for color systems [7] [8] [9] [10]. Also means sensing

element, the basic element that usually changes some physical parameter to an

electrical signal [7].

Sensors are normally components of some larger electronic system such as a

computer control and/or measurement system. Analog sensors most often produce a

voltage proportional to the measured quantity [10]. The signal must be converted to

digital form with a {ADC} before the CPU can process it. Digital sensors most often

use serial communication such as {EIA-232} to return information directly to the

controller or computer through a {serial port} [10].

A sensor is a technological device or biological organ that detects, or senses,

a signal or physical condition and chemical compounds [11]. A device that converts

physical conditions into information so that the control system can understand the

commands and turns it into a signal which can be measured or recorded [12]. An

instrument, usually consisting of optics, detectors, and electronics, that collects

radiation and converts it into some other form suitable for obtaining information.

This may be a certain pattern (an image, a profile, etc.), a warning, a control signal,

or some other signal [13].

12

2.5.2 Flow Sensor

A flow sensor is a device for sensing the rate or quantity of fluid flow

whether it be a gas, steam , liquid or solid [14] [15] [16]. The flow sensor directory

will enable you to source single-point sensors as well as multi-point sensors [16].

Flow sensor configurations are available for use in liquids or gases with flow rates

from ultra low flow sensing to fast transient flow sensors [14] [15] [16]. The flow

sensor directory prides itself by the fact it tries to list only quality products, from

well known flow sensor manufacturers with worldwide sales support [16].

The key to selecting correctly between the many available flow sensors and

flow meters is a clear understanding of the requirements of the particular application.

Measuring the flow of liquids is a critical need in many industrial plants. In some

operations, the ability to conduct accurate flow measurements is so important that it

can make the difference between making a profit and taking a loss [16].

With most fluid flow sensors, the flow rate is determined directly or

inferentially by measuring the liquid's velocity or the change in kinetic energy.

Velocity depends on the pressure differential that is forcing the liquid through a pipe

or conduit. Because the pipe's cross-sectional area is known and remains constant,

the average velocity is an indication of the flow rate [16].

Normally a flow sensor is the sensing element used in a flow meter, or flow

logger or a flow data logging device to record the flow of fluids. [14] [15]. The flow

sensor can normally measure whether velocity, flow rate or totalized flow of fluids

flowing through them [14] [15] [16]. Flow sensors are sometimes related to sensors

called velocimeters that measure speed of fluids flowing through them, these use

units like ft/sec [14] [15] [16]. A very basic relationship for determining the fluid's

flow rate in such cases is [16]:

 ; Where

Q = liquid flow through the pipe; V = average velocity of the flow;

A = cross-sectional area of the pipe.

13

Other factors that affect flow rate include the liquid's viscosity, density and

temperature. Some other factors may be considered such as frictional forces and pipe

configurations [16].

There are three basic types of flow sensors and flow meters. Mass flow

sensors measure flow rate in terms of the mass of the fluid substance and have units

such as lbs/min. Volumetric flow sensors measure flow rate in terms of how much of

the material is flowing and use units like mol/min [16]. Velocity flow sensors

measure flow rate as in terms of how fast the material is moving. These use units like

ft/sec [14] [15] [16]. Critical specifications for flow sensors and flow meters are the

measuring range, what type of medium and measurement is to be used, and the

operating temperature and pressure ranges [14] [16].

 The most common types of Flow sensors are designed to measure the flow of

media through pipes, hoses and systems. They can be classified into three categories

[16]:

I. Mass flow sensors

 - Measure flow rate in units of mass flow, for example, lbs/min [16].

II. Velocity flow sensors

 - Measure flow rate as in units of velocity, for example, ft/sec [14] [15] [16].

III. Volumetric flow sensors.

 - Measure flow rate in units of volumetric flow, for example, mL/min [16].

 Most flow sensors are designed to handle a single style of media, while a few

are designed to provide multimedia measurements. Specific are designed as air flow

sensors and other gas flow sensors, water flow sensors and other liquid flow sensors,

or solid flow sensors [16].

 In addition to the main classification, the flow sensor technology can be

based on such things as light, heat, electromagnetic properties, ultrasonic and many

other technologies in a wide spectrum. Some of the most common types of flow

sensor technologies are magnetic flow sensors, turbine flow sensors and ultrasonic

flow sensors. [15] [16]. Ultrasonic flow sensors use sound frequencies above audible

pitch to determine flow rates. They can be either Doppler Effect sensors or Time-of-

Flight sensors [14] [16].

14

Doppler flow sensors measure the frequency shifts caused by fluid flow [14]

[16]. The frequency shift is proportional to the liquid's velocity.

Time of flight sensors use the speed of the signal traveling between two transducers

that increases or decreases with the direction of transmission and the velocity of the

fluid being measured [16].

Turbine flow sensors measure the rate of flow in a pipe or process line via a

rotor that spins as the media passes through its blades. The rotational speed is a direct

function of flow rate and can be sensed by magnetic pick-up, photoelectric cell, or

gears [16].

Magnetic flow sensors apply Farraday's law to measure liquid flow. The

sensor contains two electrodes that produce a magnetic field when energized. When a

conductive liquid passes through the electrodes in the flow meter, a voltage is

induced. The voltage is proportional to the electric field strength, diameter of the

pipe, and flow velocity [16].

A fluid dynamics problem is easily solved (especially in non-compressible

fluids) by knowing the flow at all nodes in a network [14]. Alternatively, pressure

sensors can be placed at each node, and the fluid network can be solved by knowing

the pressure at every node [14] [16]. These two situations are analogous to knowing

the voltages or knowing the currents at every node (noncompressible fluid being

conserved in the same manner as Kirchoff's current or voltage laws, in which

conservation of fluid is analogous to conservation of electrons in a circuit).Flow

meters generally cost more than pressure sensors, so it is often more economical to

solve a fluid dynamics network monitoring problem by way of pressure sensors, than

to use flow meters [14] [16].

15

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology of this project. It describes on how the

project is organized and the flow of the steps in order to complete this project. The

methodology is diverged in two parts, first is software with the main part using

MATLAB GUI. Design the layout GUI to display the result from the sensor. The

second part is software with using peripheral interface controller (PIC) to interface

with computer.

3.2 Methodology

There is few mains method in order to develop this project. Before interface

the main parts hardware and software. The PIC can be simulating with using PIC

simulator IDE program. This program can simulate the hardware part before the real

project is developing to interface with MATLAB GUI. The ladder logic diagram

(Ldmicro) is use to program the PIC. This program also can simulate before burn to

real PIC. The figure below show the diagram and flow chart for this project.

16

3.2.1 Project Diagram

Figure 3.1: Simplified Block Diagram

 From this project, the flow sensor will be an input and the output it will show

at MATLAB GUI. The flow sensor will detect movement of liquid or air and from

that the sensor will capture the data about that movement and produced in analog

signal. And it will go through PIC. The PIC is to convert the input analog to digital

number. From that the PIC will connect to MAX232 and the MAX232 will connect

to the computer with communication port using DB9. It will connect to MATLAB

GUI through serial port of computer. The PIC will transfer the data that get from the

sensor via ADC to MATLAB GUI and from that the data will show in MATLAB

GUI. It will show the data that we need from the movement of air or liquid like

waveform, quantity, velocity and so forth.

17

3.2.2 Flow Chart of Project

Figure 3.2: Flow Chart

18

From the flow chart above after get the topic of the project and go to case

study to find more related information and to deep knowledge about the project. Find

the information whether at internet, book or anything else that is related to the topic.

After that, define the part of the project and divide it into two parts. The first part is

about the hardware. First is defining the hardware that want to use after that design

the circuit for this hardware and interfacing it. After done with interfacing the

circuits that have design test it whether is okay or not okay. If not okay redesign the

circuit and try to troubleshoot the circuit until the circuit have function correctly.

The second part for this project is about the software. For this project the

software that has to use is MATLAB GUI. First, study about the software

programming and understand how to use it. For this software has divide by two parts,

first is GUI layout design with a consistent appearance and with intuitive controls

like pushbuttons, list boxes, sliders, menus, and so forth. And second is for the

program M-File, must design and use the right coding to make sure the design in

GUI layout is work properly like what is needed. After the two parts have done, test

it to make sure the software that has been design is work properly. Is not, identify the

problem and overcome it.

 After the hardware and software part have work properly, interface the two of

this part. Simulate and testing it whether is okay or not. And troubleshoot this part if

not okay until get the satisfied result. After the testing is work properly and correctly,

finally these projects have done and submit the thesis about this project.

19

3.2.3 Creating GUI with Guide

 This is the main part of this project. GUIDE, the MATLAB graphical user

interface development environment, provides a set of tools for creating graphical

user interfaces (GUIs). These tools simplify the process of laying out and

programming GUIs.

 This tool allows a programmer to layout the GUI, selecting and aligning the

GUI components to be placed in it. Once the components are in place, the

programmer can edit their properties: name, color, size, font, text to display, and so

forth. When guide saves the GUI, it creates working program including skeleton

functions that the programmer can modify to implement the behavior of the GUI.

When guide is executed, it creates the Layout Editor as shown in Figure 3.3. The

large white area with grid lines is the layout area, where a programmer can layout the

GUI. A user can create any number of GUI components by first clicking on the

desired component, and then dragging its outline in the layout area. The top of the

window has a toolbar with a series of useful tools that allow the user to distribute and

align GUI components, modify the properties of GUI components, add menus to

GUIs, and so on. There are few basic steps required to create a MATLAB GUI.

Figure 3.3: The GUIDE Tool Window

20

 Firstly, decide what elements are required for the GUI and what the function

of each element will be and then make a rough layout of the components by hand on

a piece of paper. Then, after that use a MATLAB tool called guide (GUI

Development Environment) to layout the Components on a figure. The size of the

figure and the alignment and spacing of components on the figure can be adjusted

using the tools built into guide. This figure below show some basic component of

GUI that can be use to design the layout GUI.

Table 3.1: Some Basic GUI Component [1]

21

 After design the layout, MATLAB tool called the Property Inspector (built

into guide) is use to give each component a name (a "tag") and to set the

characteristics of each component, such as its color, the text it displays, and so on.

This figure below had shown the example of property inspector on push button.

Figure 3.4: Property Inspector

 After done with setting the property inspector in all components and then

save the figure to a file. When the figure is saved, two files will be created on disk

with the same name but different extents. The fig file contains the actual GUI that

has been created, and the M-file contains the code to load the figure and skeleton call

backs for each GUI element. Figure 3.5 and Figure 3.6 show the layout GUI after

done with the designation with few basic components that had been used like push

button and axes.

22

Figure 3.5: Example Layout GUI (Main Window)

Figure 3.6: Example Layout GUI (Air Flow Sensor)

23

 Finally, when save GUI layout, it will automatically generate an M-file and

then write code to implement the behavior associated with each callback function in

M-file as shown in Figure 3.7. This last step is the difficult part in GUIDE. This part

is where the programmer can add code to the callbacks to perform the functions that

what we want. If the coding is not correct then it cannot perform the function that we

want.

Figure 3.7: Example of M-file

 Unlike GUI objects, MATLAB does not automatically create callback strings

and stub functions for menu items. The programmer must perform this function

manually. Only the Label, Tag, Callback, Checked, and Separator properties of a

menu item can be set from the Menu Editor. If want to set any of the other properties,

use the Property Editor (propedit) on the figure, and select the appropriate menu item

to edit.

24

3.2.4 Programming the GUI

 After the layer out GUI is been created then need to program its behavior.

The code that had been write, control how the GUI responds to events such as button

clicks, slider movement, menu item selection, or the creation and deletion of

components. This programming takes the form of a set of functions, called callbacks,

for each component and for the GUI figure itself.

 A callback is a function that writes and associates with a specific GUI

component or with the GUI figure. It controls GUI or component behavior by

performing some action in response to an event for its component. This kind of

programming is often called event-driven programming. When an event occurs for a

component, MATLAB invokes the component’s callback that is triggered by that

event. As an example, suppose a GUI has a button that triggers the plotting of some

data. When the user clicks the button, MATLAB calls the callback that associated

with clicking that button, and the callback, which have programmed, then gets the

data and plots it.

 The GUI figure and each type of component have specific kinds of callbacks

with which it can be associated. The callbacks those are available for each

component is defined as properties of that component. For example, a push button

has five callback properties: Callback, CreateFcn, DeleteFcn, ButtonDownFcn, and

KeyPressFcn as shown in Figure 3.8 after right click at the push button. The

programmer can, but are not required to, create a callback function for each of these

properties. The GUI itself, which is a figure, also has certain kinds of callbacks with

which it can be associated. Each kind of callback has a triggering mechanism or

event that causes it to be called. The following Table 3.2 is lists the callback

properties that GUIDE makes available, their triggering events, and the components

to which they apply.

25

Figure 3.8: Push Button with Callback

Table 3.2: Lists the Callback Properties [3]

26

 User interface controls include push buttons, sliders, radio buttons, check

boxes, editable text boxes, static text boxes, list boxes, and toggle buttons. They are

sometimes referred to as uicontrols.

27

 The GUI M-file that GUIDE generates is a function file. The name of the

main function is the same as the name of the M-file. For example, if the name of the

M-file is mypro.m, then the name of the main function is mypro. Each callback in the

file is a subfunction of the main function. When GUIDE generates an M-file, it

automatically includes templates for the most commonly used callbacks for each

component. The M-file also contains initialization code, as well as an opening

function callback and an output function callback. The code must add to the

component callbacks for the GUI to work as we want. The programmer may also

want to add code to the opening function callback and the output function callback.

The major sections of the GUI M-file are ordered as shown in the following table.

Table 3.3: Major Sections of The GUI M-file [3]

 The opening is so important to the people who want to create the M-file in

this GUIDE. For this project the important for opening function is to initialize the

communication port in the computer. This is important before want to interface with

the hardware using DB9 through communication port. First, we have to know the

communication port name with located at my computer < properties < hardware <

device manager < communication port. Then setting the communication port as

shown in Figure 3.9 at the opening function.

28

Figure 3.9: Initialize the Communication Port

 Then after done with the setting, the port that had been initializing must be

open to read the data from MAX232. If want to read the data the port must be open

and when want to close the program the port must close to avoid the error and

problem that can be occur. This Figure 3.10 shown the coding to open and close the

port using radio button.

Figure 3.10: Open and Close Communication Port

 After the communication port has opened, to read the data that come from the

sensor through PIC and MAX232 using DB9 then the coding as shown in Figure

3.11 had been used. The function fread(serial) is read binary data from the device.

29

Then set the function with out = fread(s) reads binary data from the device connected

to obj, and returns the data to S. The maximum number of values to read is specified

by size. After read the data then, use function plot (out) to display the signal data at

axes in GUI.

Figure 3.11: Read Data from MAX232

3.2.5 Programming the PIC

 There is much method use to program the PIC, such as P Basic and assembly

language. But for this project, at the PIC part the ladder logic diagram (LDmicro)

had been used. The ladder logic is much more like programming the PLC. Only the

content and command will be different.

 The program is presented in graphical format, not as a textual list of

statements. Many people will initially find this easier to understand. At the most

basic level, programs look like circuit diagrams, with relay contacts (inputs) and

coils (outputs). This is intuitive to programmers with knowledge of electric circuit

theory. The ladder logic compiler takes care of what gets calculated where. Don’t

have to write code to determine when the outputs have to get recalculated based on a

change in the inputs or a timer event, and don’t have to specify the order in which

these calculations must take place. The PLC tools do that for you.

30

3.2.6 Getting Started with LDmicro

 Using LDmicro, the user can draw a ladder diagram for their program. This

program can simulate the logic in real time on your PC. Then when users are

convinced that it is correct the user can assign pins on the microcontroller to the

program inputs and outputs. Once users have assigned the pins, they can compile PIC

or AVR code for their program. The compiler output is a .hex file that anyone can

program into their microcontroller using any PIC/AVR programmer.

 LDmicro is designed to be somewhat similar to most commercial PLC

programming systems. There are some exceptions, and a lot of things aren't standard

in industry anyways. The description of each instruction in the help must read

carefully, even if it looks familiar. This part will assume basic knowledge of ladder

logic and of the structure of PLC software (the execution cycle: read inputs,

compute, and write outputs).

3.2.6.1 Command Line Options

 Ldmicro.exe is typically run with no command line options. That means

that the users can just make a shortcut to the program, or save it to their desktop and

double-click the icon when they want to run it, and then they can do everything from

within the GUI.

31

3.2.6.2 Basics

 If LDmicro is run with no arguments then it starts with an empty program.

If the LDmicro run with the name of a ladder program (xxx.ld) on the command line

then it will try to load that program at startup. LDmicro uses its own internal format

for the program it cannot import logic from any other tool.

 If users did not load an existing program then users will be given a program

with one empty rung. The users could add an instruction to it; for example they could

add a set of contacts (Instruction -> Insert Contacts) named `Xnew'. `X' means that

the contacts will be tied to an input pin on the microcontroller. This program could

assign a pin to it later, after choosing a microcontroller and renaming the contacts.

The first letter of a name indicates what kind of object it is. For example:

 * Xname -- tied to an input pin on the microcontroller

 * Yname -- tied to an output pin on the microcontroller

 * Rname -- `internal relay': a bit in memory

 * Tname -- a timer; turn-on delay, turn-off delay, or retentive

 * Cname -- a counter, either count-up or count-down

 * Aname -- an integer read from an A/D converter

 * name -- a general-purpose (integer) variable

32

Figure 3.12: Start the program with one empty rung

 Choose the rest of the name so that it describes what the object does, and so

that it is unique within the program. The same name always refers to the same object

within the program. Variable names can consist of letters, numbers, and underscores

(_). A variable name must not start with a number. Variable names are case-

sensitive.

 At the bottom of the screen it will show a list of all the objects in the

program. This list is automatically generated from the program; there is no need to

keep it up to date by hand. Most objects do not need any configuration. `Xname',

`Yname', and `Aname' objects must be assigned to a pin on the microcontroller,

however. First choose which microcontroller you are using (Settings ->

Microcontroller). Then assign your I/O pins by double-clicking them on the list.

 The users can modify the program by inserting or deleting instructions. The

cursor in the program display blinks to indicate the currently selected instruction and

the current insertion point. If it is not blinking then press <Tab> or click on an

instruction. Now the users can delete the current instruction, or users can insert a new

instruction to the right or left (in series with) or above or below (in parallel with) the

33

selected instruction. Some operations are not allowed. For example, no instructions

are allowed to the right of a coil.

 Once the program has been written, the program can test it in simulation,

and then the program can be compile it to a HEX file for the target microcontroller.

3.2.6.3 Simulation

 To enter simulation mode, choose Simulate -> Simulation Mode or press

<Ctrl+M>. The program is shown differently in simulation mode. There is no longer

a cursor. The instructions that are energized show up bright red; the instructions that

are not appear greyed. Press the space bar to run the PLC one cycle. To cycle

continuously in real time, choose Simulate -> Start Real-Time Simulation, or press

<Ctrl+R>. The display of the program will be updated in real time as the program

state changes.

 The state of the inputs to the program can be set by double-clicking them in

the list at the bottom of the screen, or by double-clicking an `Xname' contacts

instruction in the program. When change the state of an input pin then that change

will not be reflected in how the program is displayed until the PLC cycles, this will

happen automatically if real time simulation is running, or when the space bar is

press.

3.2.6.4 Compiling to Native code

 Ultimately the point is to generate a .hex file that can be program into any

microcontroller. Firstly, select the part number of the microcontroller, under the

Settings -> Microcontroller menu. Then assign an I/O pin to each `Xname' or

`Yname' object. This can be done by double-clicking the object name in the list at the

bottom of the screen. A dialog will pop up where an unallocated pin from a list can

be chosen.

34

 Then choose the cycle time that users will run with, and set the compiler

what clock speed the micro will be running at. These are set under the Settings ->

MCU Parameters... menu. In general there not need to change the cycle time; 10 ms

is a good value for most applications. Type in the frequency of the crystal that this

value will use with the microcontroller (or the ceramic resonator, etc.) and click

okay.

 Now with this it can generate code from the program that had been made.

Choose Compile -> Compile, or Compile -> Compile As... if the users have

previously compiled this program and want to change the specify a different output

file name. If there are no errors then LDmicro will generate an Intel IHEX file ready

for programming into any chip.

 Use whatever programming software and hardware that want to load the

hex file into the microcontroller. Remember to set the configuration bits (fuses)! For

PIC16 processors, the configuration bits are included in the hex file, and most

programming software will look there automatically. For AVR processors there must

set the configuration bits by hand.

3.2.7 Programming PIC for This Project

 This below figure is show the programming of the PIC using this ladder

logic diagram (LDmicro) for this project. The instruction that used in this program is

contact, ADC, compare (greater than or equal), UART send and move.

35

Figure 3.13: Programming the PIC

Figure 3.14: In Simulation Mode

 The above Figure 3.14 show the programming that had been made is in the

simulation mode. There is no longer a cursor. The instructions that are energized

show up bright red, the instructions that are not appear greyed.

36

Figure 3.15(a): In the Real-Time Simulation

Figure 3.15(b): In the Real-Time Simulation

 This figure as shown as above is when the real-time simulation is started.

When the real-time simulation is started, firstly double click at the Xstart and the

current (red line) will go through the ADC. And then it will go to the compare. The

instruction compare is compare when the value of the ADC is greater than or equal

300 that had been setting. When the value is true then the instruction compare will

allow the current go through the next instruction. The next instruction is UART

Send. This instruction will just to transmit the data that had been converted to

connect with the MAX232. This instruction must be with move instruction. When no

37

error or warning occurs at this simulation then the programming can be compiling in

.hex file that can be program into any microcontroller that supported with this ladder

logic diagram (LDmicro).

3.2.7.1 Instructions Reference

> CONTACT, NORMALLY OPEN Xname Rname Yname
 ----] [---- ----] [---- ----] [----

 If the signal going into the instruction is false, then the output signal is

false. If the signal going into the instruction is true, then the output signal is true if

and only if the given input pin, output pin, or internal relay is true, else it is false.

This instruction can examine the state of an input pin, an output pin, or an internal

relay.

> A/D CONVERTER READ Aname
 --{READ ADC}--

 LDmicro can generate code to use the A/D converters built in to certain

microcontrollers. If the input condition to this instruction is true, then a single sample

from the A/D converter is acquired and stored in the variable `Aname'. This variable

can subsequently be manipulated with general variable operations (less than, greater

than, arithmetic, and so on). Assign a pin to the `Axxx' variable in the same way that

can be assign a pin to a digital input or output, by double-clicking it in the list at the

bottom of the screen. If the input condition to this rung is false then the variable

`Aname' is left unchanged.

 For all currently-supported devices, 0 volts input corresponds to an ADC

reading of 0, and an input equal to Vdd (the supply voltage) corresponds to an ADC

reading of 1023. If using an AVR, then connect AREF to Vdd. There can use

arithmetic operations to scale the reading to more convenient units afterwards, but

remember that this instruction are using integer math. In general not all pins will be

available for use with the A/D converter. The software will not allow the users to

assign non-A/D pins to an analog input. This instruction must be the rightmost

instruction in its rung.

38

> COMPARE [var ==] [var >] [1 >=]
 -[var2]- -[1]- -[Ton]-

 [var /=] [-4 <] [1 <=]
 -[var2]- -[vartwo]- -[Cup]-

 If the input to this instruction is false then the output is false. If the input is

true then the output is true if and only if the given condition is true. This instruction

can be used to compare (equals, is greater than, is greater than or equal to, does not

equal, is less than, is less than or equal to) a variable to a variable, or to compare a

variable to a 16-bit signed constant.

> MOVE {destvar := } {Tret := }
 -{ 123 MOV}- -{ srcvar MOV}-

 When the input to this instruction is true, it sets the given destination

variable equal to the given source variable or constant. When the input to this

instruction is false nothing happens. This instruction can assign to any variable with

the move instruction; this includes timer and counter state variables, which can be

distinguished by the leading `T' or `C'. For example, an instruction moving 0 into

`Tretentive' is equivalent to a reset (RES) instruction for that timer. This instruction

must be the rightmost instruction in its rung.

39

> UART (SERIAL) SEND var
 --{UART SEND}--

 LDmicro can generate code to use the UARTs built in to certain

microcontrollers. On AVRS with multiple UARTs only UART1 (not UART0) is

supported. Configure the baud rate using Settings -> MCU Parameters. Certain baud

rates may not be achievable with certain crystal frequencies; LDmicro will warn if

this is the case.

 If the input condition to this instruction is false, then nothing happens. If

the input condition is true then this instruction writes a single character to the UART.

The ASCII value of the character to send must previously have been stored in `var'.

The output condition of the rung is true if the UART is busy (currently transmitting a

character), and false otherwise.

 These characters take some time to transmit. The output condition of this

instruction must be checked to ensure that the first character has been transmitted

before trying to send a second character, or use a timer to insert a delay between

characters. There must only bring the input condition true (try to send a character)

when the output condition is false (UART is not busy). The formatted string

instruction (next) must be investigate before using this instruction. The formatted

string instruction is much easier to use, and it is almost certainly capable of doing

what users want.

40

3.2.8 Hardware Installation

 For this part in hardware installation design, firstly is design the power supply

module using voltage regulator 7805. This is to supply 5V fixed to PIC and MAX232

IC. This voltage regulator is so important to prevent the higher input supply to the

device which can bring damage to PIC and MAX232 IC. The schematic diagram for

the voltage regulator 7805 as shown in Figure 3.16. Input to the power supply must

greater than 7V to achieve the 5V output supply to PIC and max232.

Figure 3.16: Voltage Regulator 7805

 The second part is the flow sensor. For this project the air flow sensor had

been designed and created as shown in Figure 3.17. The sensor used photo infrared

sensor. The brown wire has connected to power supply that setting 12.5V and the

blue wire is connecting to the ground. The air flow sensor works when there a

movement (fan) cut light from the device transmit and receive at the sensor. When

sensor detect the movement then its will give 10V to black wire. The black wire

connects to two resistances in series to decrease the voltage to 5V. Then from the

two resistance in series (voltage divider), its will connect to PIC to convert into

digital data.

41

Figure 3.17: Air Flow Sensor with PIC and Voltage Regulator

 Then the third part is building the connection between PIC16F877A and

MAX232. After get the data from the sensor, the program in PIC will convert the

data into digital data then transmit the data to MAX232. Then the MAX232 will send

the data to computer through communication port with using DB9. The Figure 3.18

is show the schematics diagram for PIC 16F877A and MAX232.

42

Figure 3.18: PIC16F77A and MAX232

 The last part is to design the connection from communication port (DB9

female connection) from computer to the device. The pin assignment is shown in

Table 3.4 below and the figure of RS 232 communication port shown on Figure 3.19.

Only three pins are required for serial port communications: one for receiving data,

one for transmitting data, and another one for the signal ground. The connection only

on pin 2, 3 and pin 5.

43

Table 3.4: Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type
1 CD Carrier Detect Control
2 RD Received Data Data
3 TD Transmitted Data Data
4 DTR Data Terminal Ready Control
5 GND Signal Ground Ground
6 DSR Data Set Ready Control
7 RTS Request to Send Control
8 CTS Clear to Send Control
9 RI Ring Indicator Control

Figure 3.19: Pins and Signals Associated With the 9-pin Connector

44

CHAPTER 4

RESULT DISCUSSION

4.1 Introduction

This chapter consists of the discussions on the results from the simulations

using the MATLAB GUI that the results come from flow sensor. This chapter shows

the result that can display to MATLAB GUI with the information come from the

sensor. All the figures of the layout GUI is 100 percent working. The GUI has

performed the task that had been given. This part will explain the main menu of GUI,

interface with hardware, advance development of GUI, user guide (help)

4.2 Main Menu

 This part is show the main menu for the flow sensor. This main menu consists

5 push buttons that had been named with info, credit, project, help and lastly the

button exit as shown is Figure 4.1. The part for info button will explain about the

detail for this project. For part credit button it will show the detail about GUI

programmer and also the supervisor that support and help to make sure this project is

successful. The project button will show the subtopic for this project. The part for

help button is to help the users more understanding this project and also try to guide

the users to use this software. The last part is button exit confirmation, the user will

45

ask whether want to close or not. When click yes it will close the main menu and all

figure.

Figure 4.1: Main Menu of GUI

Figure 4.2: Info

46

Figure 4.3: Credit

Figure 4.4: Button exit confirmation

4.3 Interfaces with the Air Flow Sensor

 After select the project button, it will show the new window as show in

Figure 4.5. Then to go to air flow sensor figure, click at button air flow sensor then

the figure as shown in Figure 4.6 will display. To run the program, first is needed to

open the port with select the communication port (Radio Button). Then port will

open as show in Figure 4.7. The status for this port can be check with click at button

check. Then if the port had been open it will show ‘opened’ as shown also in Figure

4.7. Then for the close port as shown in Figure 4.8.

47

Figure 4.5: Sensor

Figure 4.6: Air Flow sensor

48

Figure 4.7: Port is Open

Figure 4.8: Port is closed

 After the port has opened, then the program will be run with click at run

button. When the hardware is ready the result will display at the GUI. At the air flow

sensor when the air through this with high velocity then the fan will rotate fast and it

will give more input as shown in Figure 4.9. But if the air coming through this sensor

with low velocity then the fan will rotate slow then less input will display as shown

in Figure 4.10.

 But the problem with this result is not consistent. The time and voltage show

in GUI figure also not consistent. It only show the time that had been detected. The

problem came from this sensor because the sensor can’t detect a very fast movement

of fan. It will effective if fan rotate in slow movement.

49

Figure 4.9: Result with High Velocity

Figure 4.10: Result with Low Velocity

 From above figure, we can see the difference for both figures. The both signal

waveform has a little bit difference which Figure 4.9 give more input than Figure

4.10. That because Figure 4.9 is shows the result when the air coming through the

sensor with high velocity but for Figure 4.10 is shows the result when the air coming

through the sensor with low velocity. For the normal condition, when click at button

run it will take 10s to display at GUI. The time is measure in milliseconds. The both

figure also shows the difference at the time and amplitude of signal. The difference

in time for both signals it is because the GUI will display the signal when there are

inputs at that time. That why when no input is detected by the sensor the GUI will

50

not display the signal. For the amplitude it shows the amplitude in voltage after been

converted in binary. Than the value for amplitudes is display in binary number.

 The comparison with this result that display at GUI and oscilloscope had

been done. The oscilloscope is connect to the pin at MAX232 that at pin T2out. The

comparison is show in Figure 4.11 and 4.12. Figure 4.11 show the result with high

velocity of air that because at that time the sensor is detect more input when the fan

moving fast and the result will display as shown in figure. Figure 4.12 shows the

result with low velocity of air when the sensor is detecting the fan moving slowly via

transmits and receive of sensor. When that happens it will provide less input and

show in oscilloscope as shown in Figure 4.12. The result in oscilloscope can display

signal in positive and negative side. But the result show in GUI is only display on

positive side. The oscilloscope can display the signal continuously but for the

MATLAB GUI it will display signal when clicking at button run and the signal that

display on GUI is only at that time.

Figure 4.11: Result from oscilloscope (More Input)

51

Figure 4.12: Result from oscilloscope (Less Input)

 From this window of air flow sensor when click at button ‘click here’ it will

display the future development of this sensor. For the future development the flow

sensor not only can detect movement of air but also this flow sensor can detect solid,

liquid and also steam/gas flow sensor. Figure 4.13 show the future development of

flow sensor.

Figure 4.13: Future Development of Flow Sensor

52

 After the project had been done then this program will close with click at

close button. The figure close confirmation will appear an ask user whether to close

or not as shown in Figure 4.14. This close confirmation is to reminder the user to

close the port when want to close this GUI.

Figure 4.14: Close Confirmation

4.4 Advanced Development of GUI

 For this part will explain about advanced development that had been designed

for this project. This part is just to show not only flow sensor can be used to interface

with this software but temperature sensor, movement sensor and encoder sensor also

can interfaces using this software program. Figure 4.15 show the sensor in advanced

development.

53

Figure 4.15: Temperature, Movement and Encoder Sensor

 For this part, the movement sensor and encoder sensor had been designed.

The design that had been creates only on GUI. The movement sensor is work when

there is any movement through this sensor. When the movement if detect then it will

give 5V but 0V when no movement if detected. For the encoder sensor, the

waveform that will display at GUI is like pulse. This sensor is like wheel it will

rotate continuously and the graph will display as shown in Figure 4.17.

54

Figure 4.16: Movement Sensor

Figure 4.17: Encoder Sensor

55

4.5 Users Help

 For this part, it will help and guide the user to understand this project. When

click at help button, Figure 4.18 will display. This help consists of two parts. The

first part is tried to explain to the user about the detail of this project. The second is

to guide the users on how to select the communication port as shown in Figure 4.20.

Figure 4.18: Help

Figure 4.19: About This Software

56

Figure 4.20: Find the Communication Port

57

CHAPTER 5:

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

 From this project, the implement of PIC and MATLAB GUI has been

presented. There are many function in using MATLAB, with the function in

MATLAB, it can create GUIDE and design the layout of the GUI. From the GUI, it

can show many thing based on its application. Based on this project, the GUI is

creating to display the information of the signal from flow sensor. But to display the

information of the signal the sensor must be interface to computer using PIC where

it’s the other part of this project. Through the study of this project, it’s difficult to

interface the PIC and MATLAB GUI because the PIC and MATLAB GUI need the

right coding and program to interface between these two parts. The graph that shown

in GUI is the actual signal that came from the sensor.

 The objective of this project is to interface the MATLAB GUI and flow

sensor that is achieved. The main contribution of this project is to interfacing the

GUI with air flow sensor.

58

5.2 Future Recommendations

 For the future development, to improve this project many other sensors can

be use besides this flow sensor for this project such as temperature, movement and

encoder sensor. These varieties of sensor can detect difference input and provided

difference output that can be display at MATLAB GUI. From this development, it

can add more features and functions to this project. In future development, maybe air

flow sensor can be changing or adding with other flow sensor like solid, liquid or gas

flow sensor.

 To make this project more advance and interesting is with adding the

feedback to this project. The sensor and the speed of fan can be control with GUI and

then the sensor will detect the movement and will display the signal data back to

GUI. The GUI design can be improve with additional more features and make more

interesting like use slider to control the speed and pop-up menu to select difference

task. Also can be adding toggle button, check box or list box for this project in future

development.

5.3 Costing and Commercialization

 For this topic, it will discuss about the future of this project for

commercialization. The total cost of this project is dividing for 2 parts that is for

hardware and software. For the hardware, it is include voltage regulator,

PIC16F877A, MAX232, DB9 connecter and air flow sensor. The total cost for this

project is about RM200. The air flow sensor is quite expensive. The second hand part

for this air flow sensor is around RM100 and above. For the software, it is very

expensive because this project is involving with MATLAB. The license for this

MATLAB must be renewing every year and it is very high cost.

59

 For the commercialization, this project is a very big opportunity for

commercialization. This is because, the MATLAB GUI is quite difficult and not

many user know and using it to interface with their hardware. Many users use visual

basic to interface with their hardware because visual basic is easy to learn. The

student can use this reference project for their further study. The industry side can

implement such this project to their own development. Maybe the Industry can use

this project when there are sensor usages. They can set the sensor to be more

accurately and also they can check the performance of their sensor with just click at

computer (MATLAB GUI). For the further development, this project can make

easier to anybody who involve with any sensor and MATLAB GUI.

60

REFERENCE

 [1] bellevuelinux. Retrieved on 21 January 2007 from

 http://www.bellevuelinux.org/gui.html

[2] Ghaphical User Interface Retrieved on 21 January 2007 from

http://www.ewh.ieee.org/r8/uae/GUI.pdf

[3] MATLAB - The Language of Technical Computing Retrieved on

 15 February 2007 from

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/buildgui.pdf

[4] MATLAB GUI Retrieved on 15 February 2007 from

 http://rclsgi.eng.ohio-

state.edu/~gateway/docs/pres_and_prog_reports/MatlabGUI.ppt

[5] PIC Microcontroller Retrieved on 15 February 2007 from

http://en.wikipedia.org/wiki/PIC_microcontroller

[6] 20 February 2007, Citing Internet source URL

http://whyfiles.larc.nasa.gov/text/kids/Problem_Board/problems/light/glossary.ht

ml

[7] 20 February 2007, Citing Internet source URL

http://www.pcmag.com/encyclopedia_term/0,2542,t=sensor&i=51107,00.asp

[8] 20 February 2007, Citing Internet source URL

www.stjude.org/glossary

[9] 20 February 2007, Citing Internet source URL

www.ueidaq.com/support/glossary/S/

61

[10] 20 February 2007, Citing Internet source URL

http://www.definethat.com/define/1916.htm

[11] Sensor Retrieved on 21 February 2007 from

http://en.wikipedia.org/wiki/Sensor

[12] 21 February 2007, Citing Internet source URL

www.ticms.com/wizard/glossary.htm

[13] 21 February 2007, Citing Internet source URL

www.gaf.de/presshelp/glossary/p81.htm

[14] Flow Sensor Retrieved on 22 February 2007 from

http://en.wikipedia.org/wiki/Flow_sensor

[15] Flow Meter Retrieved on 22 February 2007 from

http://www.flowmeterdirectory.com/flowmeter_flowsensors.html

[16] Flow Sensor Retrieved on 22 February 2007 from

http://www.flowmeterdirectory.com/flow_sensors.html

[17] Analog to Digital Converter Retrieved on 22 February 2007 from

http://en.wikipedia.org/wiki/Analog-to-digital_converter

[18] Ladder Logic Diagram Retrieved on 11 July 2007 from

http://Cq.ladder.cl

[19] Duane Hanselman and Bruce Little Field. Mastering MATLAB 7,

: Pearson/ Prentice Hall. 2005

[20] Yan-Fang Li, Saul Harari, Hong Wong and Vikram Kapila (2004).

 Matlab-Based Graphical User Interface Development for Basic Stamp 2

Microcontroller Project: Polytechnic University, Brooklyn New York

62

APPENDIX A

EXAMPLE 1: Reading analog input

63

BASIC SOURCE PROGRAM:

Define CONF_WORD = 0x3f72
Define CLOCK_FREQUENCY = 12
AllDigital
ADCON1 = 0x0e

Define LCD_BITS = 8
Define LCD_DREG = PORTD
Define LCD_DBIT = 0
Define LCD_RSREG = PORTE
Define LCD_RSBIT = 0
Define LCD_RWREG = PORTE
Define LCD_RWBIT = 1
Define LCD_EREG = PORTE
Define LCD_EBIT = 2
Define LCD_READ_BUSY_FLAG = 1
Lcdinit

Dim an0 As Word

loop:
 Adcin 0, an0
 Lcdcmdout LcdClear
 Lcdout "Analog input AN0"
 Lcdcmdout LcdLine2Home
 Lcdout "Value: ", #an0
 WaitMs 250
Goto loop

64

APPENDIX B

EXAMPLE 2: RS-232 communication with PC

The screenshot of the PIC Simulator IDE serial port terminal:

65

BASIC SOURCE PROGRAM:

Define CONF_WORD = 0x3f72
Define CLOCK_FREQUENCY = 12
AllDigital

Define LCD_BITS = 8
Define LCD_DREG = PORTD
Define LCD_DBIT = 0
Define LCD_RSREG = PORTE
Define LCD_RSBIT = 0
Define LCD_RWREG = PORTE
Define LCD_RWBIT = 1
Define LCD_EREG = PORTE
Define LCD_EBIT = 2
Define LCD_READ_BUSY_FLAG = 1
Lcdinit

Dim i As Byte

Hseropen 19200
WaitMs 1000

For i = 20 To 0 Step -1
 Hserout "Number: ", #i, CrLf
 Lcdcmdout LcdClear
 Lcdout "Number: ", #i
 WaitMs 1000
Next i

loop:
 Hserin i
 Hserout "Number: ", #i, CrLf
 Lcdcmdout LcdClear
 Lcdout "Number: ", #i
Goto loop

66

APPENDIX C

Data Sheet for PIC16F877

67

APPENDIX D

Datasheet for MAX232

68

69

APPENDIX E

Programming M-file for Main Menu

function varargout = Project3(varargin)
% PROJECT3 M-file for Project3.fig
% PROJECT3, by itself, creates a new PROJECT3 or raises the existing
% singleton*.
%
% H = PROJECT3 returns the handle to a new PROJECT3 or the handle to
% the existing singleton*.
%
% PROJECT3('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PROJECT3.M with the given input
arguments.
%
% PROJECT3('Property','Value',...) creates a new PROJECT3 or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Project3_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Project3_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help Project3

% Last Modified by GUIDE v2.5 29-Oct-2007 23:15:18

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Project3_OpeningFcn, ...
 'gui_OutputFcn', @Project3_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});

70

end
% End initialization code - DO NOT EDIT

% --- Executes just before Project3 is made visible.
function Project3_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Project3 (see VARARGIN)
movegui('center')
% Choose default command line output for Project3
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Project3 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Project3_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function varargout = pushbutton1_Callback(h, eventdata, handles, varargin)
figure(Info)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.
function varargout = pushbutton2_Callback(h, eventdata, handles, varargin)
figure(Cre)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton3.

71

function varargout = pushbutton3_Callback(h, eventdata, handles, varargin)
figure(sensor2)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = close_all('Title','Project3');
switch lower(user_response)
case 'no'
 % take no action
case 'yes'
 % Prepare to close GUI application window
 % .
 % .
 % .
% delete(handles.figure1)
end

% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)
% hObject handle to axes1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes1
[x,map] = imread('backg','jpg');
 image(x)
 set(gca,'visible','off')

% --- Executes on button press in pushbutton5.
function varargout = pushbutton5_Callback(h, eventdata, handles, varargin)
figure(help)
% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

72

APPENDIX F

Programming M-File for Air Flow Sensor

function varargout = MyPro1(varargin)
% MYPRO1 M-file for MyPro1.fig
% MYPRO1, by itself, creates a new MYPRO1 or raises the existing
% singleton*.
%
% H = MYPRO1 returns the handle to a new MYPRO1 or the handle to
% the existing singleton*.
%
% MYPRO1('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MYPRO1.M with the given input arguments.
%
% MYPRO1('Property','Value',...) creates a new MYPRO1 or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before MyPro1_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to MyPro1_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help MyPro1

% Last Modified by GUIDE v2.5 30-Oct-2007 12:57:00

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @MyPro1_OpeningFcn, ...
 'gui_OutputFcn', @MyPro1_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

73

% End initialization code - DO NOT EDIT

% --- Executes just before MyPro1 is made visible.
function MyPro1_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to MyPro1 (see VARARGIN)

movegui('center')
s=serial('com1')
c=s.status
handles.status=c
% set(s,'OutputBufferSize',4096)
handles.op=s % store data
guidata(hObject, handles); %save data

% Choose default command line output for MyPro1
handles.output=hObject;
axes(handles.axes4)
[x,map] = imread('asal','jpg');
 image(x)
 set(gca,'visible','off')

axes(handles.axes5)
[x,map] = imread('mafs','jpg');
 image(x)
 set(gca,'visible','off')

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes MyPro1 wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = MyPro1_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

74

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op
handles.output = hObject;
axes(handles.axes1)

out=fread(s)
plot(out);
set(findobj(gca,'Type','line','Color',[0 0 1]),'Color',[0 1 0],'LineWidth',1.0)
set(gca,'color',[0.027 0.702 0.894])
grid on

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
user_response = closed('Title','flow4');
switch lower(user_response)
case 'no'
 % take no action
case 'yes'
 % Prepare to close GUI application window
 % .
 % .
 % .
 delete(handles.figure1)
end

% --- Executes on button press in checkbox1.
function checkbox1_Callback(hObject, eventdata, handles)
% hObject handle to checkbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of checkbox1

75

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

m=1:0.1:50;
n=-m;
c=m+n;
plot(c);
set(findobj(gca,'Type','line','Color',[0 0 1]),'Color',[1 1 1],'LineWidth',2.5)
set(gca,'color',[1 1 1])
%s set(gca,'color',[0.027 0.702 0.894])

% --- Executes on button press in radiobutton1.
function radiobutton1_Callback(hObject, eventdata, handles)
% hObject handle to radiobutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton1
if (get(hObject,'Value')==get(hObject,'Max'));
 s=handles.op % retrieve data
 fopen(s)
 guidata(hObject,handles);
 axes(handles.axes4)
 [x,map] = imread('open','jpg');
 image(x)
 set(gca,'visible','off')

 %save data ;
else
 s=handles.op
 fclose(s)
 guidata(hObject,handles)
 axes(handles.axes4)
 [x,map] = imread('clo','jpg');
 image(x)
 set(gca,'visible','off')

end %bawah end ni mungkin ada handles gak kot
guidata(hObject,handles);

76

% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% s=handles.op

% handles.output = hObject;
% axes(handles.axes3)

% if 125.5<out<255
% then out=5
%
%
% if 0<out<125
% then out=0

% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op
c=handles.status
b=s.status

set(handles.text6,'string',b)

% --- Executes on button press in pushbutton7.
function varargout = pushbutton7_Callback(h, eventdata, handles, varargin)
figure(flow)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

77

APPENDIX G

Ghant Chart

