DEVELOPMENT OF SENSOR USING GRAPHICAL USER INTERFACE

MUHAMAD ZULFIKRI BIN SAIDIN

UNIVERSITY MALAYSIA PAHANG
ABSTRACT

A sensor is a device that measures or detects a real-world condition, such as motion, heat or light. When flow sensors are devices used for measuring the flow rate or quantity of a moving fluid or gas. The key in selecting correctly between the many available flow sensors and flow meters is one of the requirements of the particular application. The purpose for this project is to interface the flow sensor with MATLAB GUI. The MATLAB GUI will display the result and the data that will get from the flow sensor. To interface between them the PIC 16F877 and MAX232 will be use. The PIC will convert the analog data to digital data and MAX232 will connect the PIC to serial port at computer. This is to make sure the computer (GUI) will be able to read the data. As a result, flow measurement using GUI is able to display generated signal from the developed flow sensor.
CHAPTER 1

INTRODUCTION

1.1 Overview

This is project about flow sensor with using MATLAB GUI. This project will use few devices that need to be taken into consideration to successfully accomplish this project. The devices that are need to be considered are flow sensor (movement of air or liquid), analog to digital converter (ADC), Peripheral interface controller and graphical user interface using MATLAB GUI.

Flow sensors are devices used for measuring the flow rate or quantity of a moving fluid or gas. The key to selecting correctly between the many available flow sensors and flow meters is a clear understanding of the requirements of the particular application. Measuring the flow of liquids is a critical need in many industrial plants. In some operations, the ability to conduct accurate flow measurements is so important that it can make the difference between making a profit and taking a loss.

A PIC microcontroller chip combines the function of microprocessor, ROM program memory, some RAM memory and input/output interface in one single package which is economical and easy to use. The PIC-Logicator system is designed to be used to program a range of 8, 18, 28 pin reprogrammable PIC microcontrollers which provide a variety of output, digital input and analogue input option to suit school project uses.
A graphical user interface (GUI) is a pictorial interface to a program. A good GUI can make programs easier to use by providing them with a consistent appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. The GUI should behave in an understandable and predictable manner, so that a user knows what to expect when he or she performs an action.

MATLAB is viewed by many users not only as a high-performance language for technical computing but also as a convenient environment for building graphical user interfaces (GUI). Data visualization and GUI design in MATLAB are based on the Handle Graphics System in which the objects organized in a Graphics Object Hierarchy can be manipulated by various high and low level commands. If using MATLAB 7 the GUI design more flexible and versatile, they also increase the complexity of the Handle Graphics System and require some effort to adapt to.

1.2 Objective

i. Design MATLAB GUI for flow sensor GUI

 Able to create and design GUI using GUIDE in MATLAB software package to make an easier for the user to use. The design in GUI must be user-friendly to make the user understand to use it.

ii. To display a signal that generated by flow sensor through PIC to GUI

 To be able display the actual signal that needed for movement liquid or air in MATLAB GUI. The signal that display in MATLAB GUI must be the correct one to make sure the project successfully done.
1.3 Scope of Project

The first element need to be considered for scope of this project is hardware. The main contribution for hardware in this project is Peripheral Interface Controller (PIC). This PIC use to interface between sensor and computer. For the PIC, must design the appropriate program and coding for the PIC and the circuit design to interface with computer using serial port, RS232.

The second element is software that becomes the main part of this project. The software that use in this project is Graphical User Interface Development Environment (GUIDE) in MATLAB software package. This software is to design and create the GUI layout to make a user-friendly for user. For this GUIDE software is divide into two, first is GUI layout design with a consistent appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. And second is for the program M-File, must design and use the right coding to make sure the design in GUI layout is work properly like what is needed.

1.4 Problem Statement

The sensor is able to detect any movement that through it but it’s difficult to get the value that had been measure by the sensor. Many sensors have been created to detect any movement but it will not show the value directly. In this development country, the flow meter has been created to show and display the value that had been measured by the sensor. Same for this project, but the different with flow meter is the flow meter show the value at the gauges but with this project the measurement that has been made by the sensor will able to display at the MATLAB program that is GUIDE. The advantages of this GUIDE is it will not only display the value but it will also able to explain the purpose of this program with interesting button and figure and can guide the users to use this program.
1.5 Thesis Organization

This thesis consists of five chapters including this chapter. The contents of each chapter are outlined as follows. Chapter 2 contains a detailed description on the GUI, PIC and the sensor. It will explain the detail about what is GUI and function of PIC and what sensor that had been used. Chapter 3 includes the project methodology. This will explain how the project is organized and the flow of the process in completing this project. Chapter 4 presents the result of the sensor. It will show the result and display that data at MATLAB GUI and also with comparison with oscilloscope. Finally the conclusions for this project are presented in Chapter 5. This chapter also included the future recommendation, costing and commercialization of this project.
2.1 Graphical User Interface (GUI)

2.1.1 Definition of GUI

A graphical user interface (GUI) is a human-computer interface (i.e., a way for humans to interact with computers) that uses windows, icons and menus and which can be manipulated by a mouse (and often to a limited extent by a keyboard as well) [1] [2] [3] [19] [20].

GUIs stand in sharp contrast to command line interfaces (CLIs), which use only text and are accessed solely by a keyboard. The most familiar example of a CLI too many people is MS-DOS. Another example is Linux when it is used in console mode (i.e., the entire screen shows text only) [1].

An icon is a small picture or symbol in a GUI that represents a program (or command), a file, a directory or a device (such as a hard disk or floppy). Icons are used both on the desktop and within application programs. Examples include small rectangles (to represent files), file folders (to represent directories), a trash can (to indicate a place to dispose of unwanted files and directories) and buttons on web browsers (for navigating to previous pages, for reloading the current page, etc.) [1].
Commands are issued in the GUI by using a mouse, trackball or touchpad to first move a pointer on the screen to, or on top of, the icon, menu item or window of interest in order to select that object [1] [2] [3]. Then, for example, icons and windows can be moved by dragging (moving the mouse with the held down) and objects or programs can be opened by clicking on their icons [1] [2] [19].

2.2 MATLAB GUI

2.2.1 Introduction

A graphical user interface (GUI) is a pictorial interface to a program. A good GUI can make programs easier to use by providing them with a consistent appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth [2] [3] [4] [20]. The GUI should behave in an understandable and predictable manner, so that a user knows what to expect when he or she performs an action. For example, when a mouse click occurs on pushbutton, the GUI should initiate the action described on the label of the button. This chapter introduces the basic elements of the MATLAB GUIs [2] [3] [4]. The chapter does not contain a complete description of components or GUI features, but it does provide the basics required to create functional GUIs for your programs [2] [19] [20].

Applications that provide GUIs are generally easier to learn and use since the person using the application does not need to know what commands are available or how they work [3] [4] [20]. The action that results from a particular user action can be made clear by the design of the interface [2] [3] [4] [20].
2.2.2 Operation in GUI

A graphical user interface provides the user with a familiar environment in which to work. This environment contains pushbuttons, toggle buttons, lists, menus, text boxes, and so forth [1] [2] [3] [4]. All of which are already familiar to the user, so that he or she can concentrate on using the application rather than on the mechanics involved in doing things. However, GUIs are harder for the programmer because a GUI-based program must be prepared for mouse clicks (or possibly keyboard input) for any GUI element at any time [1] [2] [3]. Such inputs are known as events, and a program that responds to events is said to be *event driven*. The three principal elements required to create a MATLAB Graphical User Interfaces are [2]:-

1. Components. Each item on a MATLAB GUI (pushbuttons, labels, edit boxes, etc.) is a graphical component. The types of components include graphical controls (pushbuttons, edit boxes, lists, sliders, etc.), static elements (frames and text strings), menus, and axes. Graphical controls and static elements are created by the function `uicontrol`, and menus are created by the functions `uimenu` and `uicontextmenu`. Axes, which are used to display graphical data, are created by the function `axes` [1] [2] [3] [4].

2. Figures. The components of a GUI must be arranged within a figure, which is a window on the computer screen. In the past, figures have been created automatically whenever we have plotted data. However, empty figures can be created with the function `figure` and can be used to hold any combination of components [2].

3. Callbacks. Finally, there must be some way to perform an action if a user clicks a mouse on a button or types information on a keyboard. A mouse click or a key press is an event, and the MATLAB program must respond to each event if the program is to perform its function. For example, if a user clicks on a button, that event must cause the MATLAB code that implements the function of the button to be executed. The code executed in response to an event is known as a call back. There must be a callback to implement the function of each graphical component on the GUI [2] [3].
2.3 Analog Digital Converter (ADC)

2.3.1 Introduction

An analog-to-digital converter (abbreviated ADC, A/D or A to D) is an electronic circuit that converts continuous signals to discrete digital numbers. The reverse operation is performed by a digital-to-analog converter (DAC) [17]. Typically, an ADC is an electronic device that converts an input analog voltage to a digital number. The digital output may be using different coding schemes, such as binary and two's complement binary. However, some non-electronic or only partially electronic devices, such as rotary encoders, can also be considered ADCs [17].

The resolution of the converter indicates the number of discrete values it can produce over the range of voltage values. It is usually expressed in bits. For example, an ADC that encodes an analog input to one of 256 discrete values (0.255) has a resolution of eight bits, since $2^8 = 256$ [17].

Resolution can also be defined electrically, and expressed in volts. The voltage resolution of an ADC is equal to its overall voltage measurement range divided by the number of discrete values [17].

2.3.2 Flash ADC

This is one of the most common ways of implementing an electronic ADC that is direct conversion ADC. A direct conversion ADC or flash ADC has a comparator that fires for each decoded voltage range. The comparator bank feeds a logic circuit that generates a code for each voltage range. Direct conversion is very fast, but usually has only 8 bits of resolution (256 comparators) or fewer, as it needs a large, expensive circuit. ADCs of this type have a large die size, a high input capacitance, and are prone to produce glitches on the output (by outputting an out-of-sequence code). They are often used for video or other fast signals [17].
2.4 Peripheral Interface Controller (PIC)

2.4.1 Introduction

PIC is a family of Harvard architecture microcontrollers made by Microchip Technology, derived from the PIC1650 originally developed by General Instrument's Microelectronics Division. PICs are popular with developers due to their low cost, wide availability, large user base, extensive collection of application notes, availability of low cost or free development tools, and serial programming (and reprogramming with flash memory) capability [5].

The original PIC was built to be used with GI's new 16-bit CPU, the CP1600. While generally a good CPU, the CP1600 had poor I/O performance, and the 8-bit PIC was developed in 1975 to improve performance of the overall system by offloading I/O tasks from the CPU. The PIC used simple microcode stored in ROM to perform its tasks, and although the term wasn't used at the time, it is a RISC design that runs one instruction per cycle (4 oscillator cycles) [5].

In 1985 General Instruments spun off their microelectronics division, and the new ownership cancelled almost everything — which by this time was mostly out-of-date. The PIC, however, was upgraded with EPROM to produce a programmable channel controller, and today a huge variety of PICs are available with various on-board peripherals (serial communication modules, UARTs, motor control kernels, etc.) and program memory from 512 words to 32k words and more (a "word" is one assembly language instruction, varying from 12, 14 or 16 bits depending on the specific PIC micro family) [5].

Microchip Technology does not use PIC as an acronym; in fact the brand name is PICmicro. It is generally regarded that PIC stands for Peripheral Interface Controller, although General Instruments' original acronym for the PIC1650 was "Programmable Intelligent Computer" [5].
2.4.2 Programmer PIC

There is much method use to program the PIC. One of those methods is using ladder logic diagram (LDmicro). The LDmicro generates native code for certain Microchip PIC16 and Atmel AVR microcontrollers. Usually software for these microcontrollers is written in a programming language like assembler, C, or BASIC. A program in one of these languages comprises a list of statements [18]. These languages are powerful and well-suited to the architecture of the processor, which internally executes a list of instructions. PLCs, on the other hand, are often programmed in `ladder logic.' A simple program might look like this [18]:

```
||
|| Xbutton1  Tdon  Rchatter  Yred
|| 1 |--------[/-----------------[TON 1.000 s]----------------]/------------------( )--
|| 1 |--------
||
|| Xbutton2  Tdif  |
|| 1 |--------[/-----------------[TOF 2.000 s]--
|| 1 |
||
||
||
||
|| Rchatter  Ton  Tnew  Rchatter
|| 2 |--------[/-----------------[TON 1.000 s]----[TOF 1.000 s]--------( )--
|| 2 |--------
|| 1 |
|| 1 |
||
||
|| |-----------------[END]-------------------------------------------------
|| 1 |
||
||

Figure 2.1: Example of Simple Program

TON is a turn-on delay; TOF is a turn-off delay. The --] [--statements are inputs, which behave sort of like the contacts on a relay. The --( )-- statements are outputs, which behave sort of like the coil of a relay [18].
2.5 Sensor

2.5.1 Definition of Sensor

A detector [6]. A device that measures or detects a real-world condition, such as motion, heat or light and converts the condition into an analog or digital representation. An optical sensor detects the intensity or brightness of light, or the intensity of red, green and blue for color systems [7] [8] [9] [10]. Also means sensing element, the basic element that usually changes some physical parameter to an electrical signal [7].

Sensors are normally components of some larger electronic system such as a computer control and/or measurement system. Analog sensors most often produce a voltage proportional to the measured quantity [10]. The signal must be converted to digital form with a {ADC} before the CPU can process it. Digital sensors most often use serial communication such as {EIA-232} to return information directly to the controller or computer through a {serial port} [10].

A sensor is a technological device or biological organ that detects, or senses, a signal or physical condition and chemical compounds [11]. A device that converts physical conditions into information so that the control system can understand the commands and turns it into a signal which can be measured or recorded [12]. An instrument, usually consisting of optics, detectors, and electronics, that collects radiation and converts it into some other form suitable for obtaining information. This may be a certain pattern (an image, a profile, etc.), a warning, a control signal, or some other signal [13].
2.5.2 Flow Sensor

A flow sensor is a device for sensing the rate or quantity of fluid flow whether it be a gas, steam, liquid or solid [14] [15] [16]. The flow sensor directory will enable you to source single-point sensors as well as multi-point sensors [16]. Flow sensor configurations are available for use in liquids or gases with flow rates from ultra low flow sensing to fast transient flow sensors [14] [15] [16]. The flow sensor directory prides itself by the fact it tries to list only quality products, from well known flow sensor manufacturers with worldwide sales support [16].

The key to selecting correctly between the many available flow sensors and flow meters is a clear understanding of the requirements of the particular application. Measuring the flow of liquids is a critical need in many industrial plants. In some operations, the ability to conduct accurate flow measurements is so important that it can make the difference between making a profit and taking a loss [16].

With most fluid flow sensors, the flow rate is determined directly or inferentially by measuring the liquid's velocity or the change in kinetic energy. Velocity depends on the pressure differential that is forcing the liquid through a pipe or conduit. Because the pipe's cross-sectional area is known and remains constant, the average velocity is an indication of the flow rate [16].

Normally a flow sensor is the sensing element used in a flow meter, or flow logger or a flow data logging device to record the flow of fluids [14] [15]. The flow sensor can normally measure whether velocity, flow rate or totalized flow of fluids flowing through them [14] [15] [16]. Flow sensors are sometimes related to sensors called velocimeters that measure speed of fluids flowing through them, these use units like ft/sec [14] [15] [16]. A very basic relationship for determining the fluid's flow rate in such cases is [16]:

\[ Q = V \times A \]

Where

- \( Q \) = liquid flow through the pipe;
- \( V \) = average velocity of the flow;
- \( A \) = cross-sectional area of the pipe.
Other factors that affect flow rate include the liquid's viscosity, density and temperature. Some other factors may be considered such as frictional forces and pipe configurations [16].

There are three basic types of flow sensors and flow meters. Mass flow sensors measure flow rate in terms of the mass of the fluid substance and have units such as lbs/min. Volumetric flow sensors measure flow rate in terms of how much of the material is flowing and use units like mol/min [16]. Velocity flow sensors measure flow rate as in terms of how fast the material is moving. These use units like ft/sec [14] [15] [16]. Critical specifications for flow sensors and flow meters are the measuring range, what type of medium and measurement is to be used, and the operating temperature and pressure ranges [14] [16].

The most common types of Flow sensors are designed to measure the flow of media through pipes, hoses and systems. They can be classified into three categories [16]:

I. Mass flow sensors
   - Measure flow rate in units of mass flow, for example, lbs/min [16].

II. Velocity flow sensors
   - Measure flow rate as in units of velocity, for example, ft/sec [14] [15] [16].

III. Volumetric flow sensors.
   - Measure flow rate in units of volumetric flow, for example, mL/min [16].

Most flow sensors are designed to handle a single style of media, while a few are designed to provide multimedia measurements. Specific are designed as air flow sensors and other gas flow sensors, water flow sensors and other liquid flow sensors, or solid flow sensors [16].

In addition to the main classification, the flow sensor technology can be based on such things as light, heat, electromagnetic properties, ultrasonic and many other technologies in a wide spectrum. Some of the most common types of flow sensor technologies are magnetic flow sensors, turbine flow sensors and ultrasonic flow sensors. [15] [16]. Ultrasonic flow sensors use sound frequencies above audible pitch to determine flow rates. They can be either Doppler Effect sensors or Time-of-Flight sensors [14] [16].
Doppler flow sensors measure the frequency shifts caused by fluid flow [14] [16]. The frequency shift is proportional to the liquid's velocity. Time of flight sensors use the speed of the signal traveling between two transducers that increases or decreases with the direction of transmission and the velocity of the fluid being measured [16].

Turbine flow sensors measure the rate of flow in a pipe or process line via a rotor that spins as the media passes through its blades. The rotational speed is a direct function of flow rate and can be sensed by magnetic pick-up, photoelectric cell, or gears [16].

Magnetic flow sensors apply Faraday's law to measure liquid flow. The sensor contains two electrodes that produce a magnetic field when energized. When a conductive liquid passes through the electrodes in the flow meter, a voltage is induced. The voltage is proportional to the electric field strength, diameter of the pipe, and flow velocity [16].

A fluid dynamics problem is easily solved (especially in non-compressible fluids) by knowing the flow at all nodes in a network [14]. Alternatively, pressure sensors can be placed at each node, and the fluid network can be solved by knowing the pressure at every node [14] [16]. These two situations are analogous to knowing the voltages or knowing the currents at every node (noncompressible fluid being conserved in the same manner as Kirchoff's current or voltage laws, in which conservation of fluid is analogous to conservation of electrons in a circuit). Flow meters generally cost more than pressure sensors, so it is often more economical to solve a fluid dynamics network monitoring problem by way of pressure sensors, than to use flow meters [14] [16].
CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology of this project. It describes on how the project is organized and the flow of the steps in order to complete this project. The methodology is diverged in two parts, first is software with the main part using MATLAB GUI. Design the layout GUI to display the result from the sensor. The second part is software with using peripheral interface controller (PIC) to interface with computer.

3.2 Methodology

There is few mains method in order to develop this project. Before interface the main parts hardware and software. The PIC can be simulating with using PIC simulator IDE program. This program can simulate the hardware part before the real project is developing to interface with MATLAB GUI. The ladder logic diagram (Ldmicro) is use to program the PIC. This program also can simulate before burn to real PIC. The figure below show the diagram and flow chart for this project.
From this project, the flow sensor will be an input and the output it will show at MATLAB GUI. The flow sensor will detect movement of liquid or air and from that the sensor will capture the data about that movement and produced in analog signal. And it will go through PIC. The PIC is to convert the input analog to digital number. From that the PIC will connect to MAX232 and the MAX232 will connect to the computer with communication port using DB9. It will connect to MATLAB GUI through serial port of computer. The PIC will transfer the data that get from the sensor via ADC to MATLAB GUI and from that the data will show in MATLAB GUI. It will show the data that we need from the movement of air or liquid like waveform, quantity, velocity and so forth.
3.2.2 Flow Chart of Project

Figure 3.2: Flow Chart
From the flow chart above after get the topic of the project and go to case study to find more related information and to deep knowledge about the project. Find the information whether at internet, book or anything else that is related to the topic. After that, define the part of the project and divide it into two parts. The first part is about the hardware. First is defining the hardware that want to use after that design the circuit for this hardware and interfacing it. After done with interfacing the circuits that have design test it whether is okay or not okay. If not okay redesign the circuit and try to troubleshoot the circuit until the circuit have function correctly.

The second part for this project is about the software. For this project the software that has to use is MATLAB GUI. First, study about the software programming and understand how to use it. For this software has divide by two parts, first is GUI layout design with a consistent appearance and with intuitive controls like pushbuttons, list boxes, sliders, menus, and so forth. And second is for the program M-File, must design and use the right coding to make sure the design in GUI layout is work properly like what is needed. After the two parts have done, test it to make sure the software that has been design is work properly. Is not, identify the problem and overcome it.

After the hardware and software part have work properly, interface the two of this part. Simulate and testing it whether is okay or not. And troubleshoot this part if not okay until get the satisfied result. After the testing is work properly and correctly, finally these projects have done and submit the thesis about this project.
3.2.3 Creating GUI with Guide

This is the main part of this project. GUIDE, the MATLAB graphical user interface development environment, provides a set of tools for creating graphical user interfaces (GUIs). These tools simplify the process of laying out and programming GUIs.

This tool allows a programmer to layout the GUI, selecting and aligning the GUI components to be placed in it. Once the components are in place, the programmer can edit their properties: name, color, size, font, text to display, and so forth. When guide saves the GUI, it creates working program including skeleton functions that the programmer can modify to implement the behavior of the GUI. When guide is executed, it creates the Layout Editor as shown in Figure 3.3. The large white area with grid lines is the layout area, where a programmer can layout the GUI. A user can create any number of GUI components by first clicking on the desired component, and then dragging its outline in the layout area. The top of the window has a toolbar with a series of useful tools that allow the user to distribute and align GUI components, modify the properties of GUI components, add menus to GUIs, and so on. There are few basic steps required to create a MATLAB GUI.

![Figure 3.3: The GUIDE Tool Window](image)

Figure 3.3: The GUIDE Tool Window
Firstly, decide what elements are required for the GUI and what the function of each element will be and then make a rough layout of the components by hand on a piece of paper. Then, after that use a MATLAB tool called guide (GUI Development Environment) to layout the Components on a figure. The size of the figure and the alignment and spacing of components on the figure can be adjusted using the tools built into guide. This figure below show some basic component of GUI that can be use to design the layout GUI.

Table 3.1: Some Basic GUI Component [1]

<table>
<thead>
<tr>
<th>Element</th>
<th>Created By</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Graphical Controls</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pushbutton</td>
<td>uicontrol</td>
<td>A graphical component that implements a pushbutton. It triggers a callback when clicked with a mouse.</td>
</tr>
<tr>
<td>Toggle button</td>
<td>uicontrol</td>
<td>A graphical component that implements a toggle button. A toggle button is either “on” or “off,” and it changes state each time that it is clicked. Each mouse button click also triggers a callback.</td>
</tr>
<tr>
<td>Radio button</td>
<td>uicontrol</td>
<td>A radio button is a type of toggle button that appears as a small circle with a dot in the middle when it is “on.” Groups of radio buttons are used to implement mutually exclusive choices. Each mouse click on a radio button triggers a callback.</td>
</tr>
<tr>
<td>Check box</td>
<td>uicontrol</td>
<td>A check box is a type of toggle button that appears as a small square with a check mark in it when it is “on.” Each mouse click on a check box triggers a callback.</td>
</tr>
<tr>
<td>Edit box</td>
<td>uicontrol</td>
<td>An edit box displays a text string and allows the user to modify the information displayed. A callback is triggered when the user presses the Enter key.</td>
</tr>
<tr>
<td>List box</td>
<td>uicontrol</td>
<td>A list box is a graphical control that displays a series of text strings. A user can select one of the text strings by single- or double-clicking on it. A callback is triggered when the user selects a string.</td>
</tr>
<tr>
<td>Popup menus</td>
<td>uicontrol</td>
<td>A popup menu is a graphical control that displays a series of text strings in response to a mouse click. When the popup menu is not clicked on, only the currently selected string is visible.</td>
</tr>
<tr>
<td>Slider</td>
<td>uicontrol</td>
<td>A slider is a graphical control to adjust a value in a smooth, continuous fashion by dragging the control with a mouse. Each slider change triggers a callback.</td>
</tr>
<tr>
<td><strong>Static Elements</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame</td>
<td>uicontrol</td>
<td>Creates a frame, which is a rectangular box within a figure. Frames are used to group sets of controls together. Frames never trigger callbacks.</td>
</tr>
<tr>
<td>Text field</td>
<td>uicontrol</td>
<td>Creates a label, which is a text string located at a point on the figure. Text fields never trigger callbacks.</td>
</tr>
<tr>
<td><strong>Menus and Axes</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu items</td>
<td>uimenu</td>
<td>Creates a menu item. Menu items trigger a callback when a mouse button is released over them.</td>
</tr>
<tr>
<td>Context menus</td>
<td>uicontextmenu</td>
<td>Creates a context menu, which is a menu that appears over a graphical object when a user right-clicks the mouse on that object.</td>
</tr>
<tr>
<td>Axes</td>
<td>axes</td>
<td>Creates a new set of axes to display data on. Axes never trigger callbacks.</td>
</tr>
</tbody>
</table>
After design the layout, MATLAB tool called the Property Inspector (built into guide) is use to give each component a name (a "tag") and to set the characteristics of each component, such as its color, the text it displays, and so on. This figure below had shown the example of property inspector on push button.

![Property Inspector](image)

Figure 3.4: Property Inspector

After done with setting the property inspector in all components and then save the figure to a file. When the figure is saved, two files will be created on disk with the same name but different extents. The fig file contains the actual GUI that has been created, and the M-file contains the code to load the figure and skeleton call backs for each GUI element. Figure 3.5 and Figure 3.6 show the layout GUI after done with the designation with few basic components that had been used like push button and axes.
Figure 3.5: Example Layout GUI (Main Window)

Figure 3.6: Example Layout GUI (Air Flow Sensor)
Finally, when save GUI layout, it will automatically generate an M-file and then write code to implement the behavior associated with each callback function in M-file as shown in Figure 3.7. This last step is the difficult part in GUIDE. This part is where the programmer can add code to the callbacks to perform the functions that what we want. If the coding is not correct then it cannot perform the function that we want.

Figure 3.7: Example of M-file

Unlike GUI objects, MATLAB does not automatically create callback strings and stub functions for menu items. The programmer must perform this function manually. Only the Label, Tag, Callback, Checked, and Separator properties of a menu item can be set from the Menu Editor. If want to set any of the other properties, use the Property Editor (propedit) on the figure, and select the appropriate menu item to edit.
3.2.4 Programming the GUI

After the layer out GUI is been created then need to program its behavior. The code that had been write, control how the GUI responds to events such as button clicks, slider movement, menu item selection, or the creation and deletion of components. This programming takes the form of a set of functions, called callbacks, for each component and for the GUI figure itself.

A callback is a function that writes and associates with a specific GUI component or with the GUI figure. It controls GUI or component behavior by performing some action in response to an event for its component. This kind of programming is often called event-driven programming. When an event occurs for a component, MATLAB invokes the component’s callback that is triggered by that event. As an example, suppose a GUI has a button that triggers the plotting of some data. When the user clicks the button, MATLAB calls the callback that associated with clicking that button, and the callback, which have programmed, then gets the data and plots it.

The GUI figure and each type of component have specific kinds of callbacks with which it can be associated. The callbacks those are available for each component is defined as properties of that component. For example, a push button has five callback properties: Callback, CreateFcn, DeleteFcn, ButtonDownFcn, and KeyPressFcn as shown in Figure 3.8 after right click at the push button. The programmer can, but are not required to, create a callback function for each of these properties. The GUI itself, which is a figure, also has certain kinds of callbacks with which it can be associated. Each kind of callback has a triggering mechanism or event that causes it to be called. The following Table 3.2 is lists the callback properties that GUIDE makes available, their triggering events, and the components to which they apply.