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Abstract. To date nano fillers are renowned reinforcing agent for polymer materials.  In this 

work, unsaturated polyester (UPR) nanocomposites were fabricated by 0.1, 0.3 and 0.5 wt% 

multi walled carbon nanotubes (MWCNTs) through solution dispersion and casting method. 

The influence of MWCNT content was investigated by thermo-mechanical properties. 

Dispersion of nanotubes was observed by fracture morphology. The strength of 

nanocomposites rose with raising the CNT content. Moreover, DSC thermograms of 

nanocomposites represent noticeable improvement of glass transition temperature (Tg), melting 

temperature (Tm) and enthalpy (∆Hm).  Micro-crystallinity of nanocomposites increased with 

increasing the CNT content. Moreover, the stiffness increased with increasing the CNT 

content.  

 Key word: Solvent dispersion, Nanocomposites, Characterization 
1. Introduction 

The unsaturated polyester resins (UPRs) are common thermosetting resins and steadily increasing their 

applications for several purposes because of their sound properties, cost effectiveness as well as 

simple handling. However, cross-linked UPRs have limited structural  reliability, therefore , before 

cross-linking they are often mixed with reinforcing materials such as  natural fibers, synthetic fibers,  

nanofillers as well as  mineral fillers  and so on  [1,2,3,4] . The reinforced composites are devoted for 

construction, marine and automotive industries due to their light weight and durability.  

The carbon nanotubes (CNTs) are more attractive fillers in the vicinity of polymer composites 

because of their outstanding properties therefore they are substitute of conventional macro and micro 

fillers [5,6,7]. CNTs are geometrically distinctive to their surface area, provide an immense resources 

of interaction with any continuous phase giving rise to great opportunity for effective load transfer 

[8].Moreover, small amount of CNT with efficient dispersion in matrix exhibit considerable 

enhancement of different properties [9].The significant improvement of properties are determined by 

the degree of CNTs dispersion and interfacial adhesion into the composite system [10]. Conversely, 

several phenomena restrict carbon nanotube dispersions, such as nanotube morphology and Van der 

Waal’s forces between nanotube surfaces. Not only that but also the high aspect ratios together with 

the high flexibilities noticeably increase the possibilities for entanglements. These entangled 

aggregates are very complicated to separate into individual nanotubes [11].The interaction of CNTs 

reveal high potential energy
 
which naturally making them more difficult to separate as individuals 

nanotubes [12,13].Therefore, different physical and chemical methods are demonstrated for control 

dispersion of individual nano tubes in matrix. Physical methods consider for direct mixing through 

mechanical force. Chemical methods are carried out by surfactants action, functionalization of carbon 

nanotube, surface modification, and polymer wrapping technology [14,15]. For instance, studies 

related to thermoset nanocomposite systems have shown that share mixing strategies for dispersion of 

CNT. It has carried out at room temperature with different non hydrogen bonding Lewis base solvents 

to take away the nanotube surface interaction [16,17,18]. 
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Moreover, UPR has huge market compare to other resins, there have only been limited 

investigations of MWCNT dispersions in UPR [19,20]. Apparently, the small number of efforts has 

been paid to disperse MWCNTs in UPR and characterization of thermo-mechanical properties. 

Consequently, first of all we have emphasis on the dispersion of MWCNTs in UPR matrix in 

association of solution and sonication techniques. We report the effect of CNT content in UPR, as well 

as focus on the interaction between matrix and MWCNTs in the nanocomposite networking system. 

Furthermore, compare the properties of neat resin and nanocomposites for determining efficiency of 

MWCNT.  

2. Materials and methods 

2.1 Materials 

The orthopthalic unsaturated polyester resin (Polymal) was used as received from Luxchem Polymer 

Industries Sdn. Bhd., Malaysia. The viscosity of resin is 700-800mPa.s at 25⁰C.volatile content 30-

35%, Gel time 8-15min. Multi Wall Carbon Nanotubes (MWCNT) produced by moving-bed catalysis 

technique, diameter  <8nm, length between 10 - 30 µm, and the carbon purity 95%   received from 

Timesnano, China. Tetra-hydro Furan (THF), received from Merk, Germany. Methyl Ethyl keton 

peroxide (MEKP) purchased from Sigma Aldrich, USA. 

2.2 Composite fabrication 

First of all, 0.1, 0.3 and 0.5 wt% MWCNT mixed separately with THF solvent, the MWCNT: THF 

ratio was maintained as 1:25. The suspension stirred by magnetic stirrer for 15 minutes followed by 

sonication in ultra sound bath for 1hour.  After that, it mixed with resin and stirred again for 15 

minutes, subsequently sonicated for 2 hours.  Secondly the resin/CNT suspension heated at the boiling 

temperature of THF (66⁰C) for 5 minutes to evaporate the solvent. The warm suspension placed in a 

cold water bath to cool at room temperature. 1 wt% MEKP added in this suspension and gently stirred 

for 3 minutes, then placed in vacuum to remove the bubbles. Finally, the bubble free mixture poured 

on the specimen mold and cured at room temperature. In this manner, the samples prepared for 

subsequent analysis were neat unsaturated polyester resin (UPR), 0.1wt% MWCNT reinforced UPR 

nanocomposite (0.1MWCNT- UPR), 0.3wt% MWCNT reinforced UPR nanocomposite (0.3MWCNT- 

UPR) and 0.5wt% MWCNT reinforced UPR nanocomposite (0.5MWCNT- UPR). 

2.3 Field emission scanning electron microscopy (FESEM) 

Composites fracture surfaces investigated by using a (JOEL, JSM-7800F, Japan) field emission 

scanning electron microscope. Samples mounted on aluminium stubs with carbon tape followed by 

sputter coated with platinum to make them conductive prior to FESEM observation. 

2.4 Tensile testing of composites 

Tensile testing was conducted according to ASTM 638-08, using a Shimadzu (Model: AG-1) 

Universal tensile testing machine fitted with a 5 kN load cell operated at a cross-head speed of 

1mm/min and keeping 65 mm gauge length. Tensile strength (TS), tensile modulus (TM) and 

elongation at break (EB) are obtained by this testing method. Five samples of each category were 

tested for analysis the data. 

2.5 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) was performed to determine  transition states of material, for 

instance, the glass transition temperature (Tg),  crystallization temperature (Tc) and melting 

temperature (Tm), using a TA/Q1000 apparatus under nitrogen atmosphere. During DSC analysis, the 

samples were initially heated at 30 – 400⁰C with a heating rate 10⁰C min
-1

 in nitrogen atmosphere.  

3. Result and discussion 
3.1 Mechanical properties 

Figure 1 represents the (a) TS and TM and (b) EB of nanocomposites as a function of MWCNTs 

content. The results represent those MWCNTs able to improve the mechanical properties of UPR. 

Furthermore, 0.1, 0.3 and 0.5 wt% MWCNTs loaded MWCNT-UPR nanocomposites exhibited 

enhancement of TS, TM. The increased TS of 0.1MWCNT-UPR, 0.3MWCNT-UPR and 0.5MWCNT-
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UPR nanocomposites are 10%, 29% and 21% correspondingly, similarly the TM rose of 51%, 88%, 

and 80% respectively and the EB% decreased as well.   
It is obvious, that the 0.3MWCNT-UPR exhibits better mechanical performance than 0.1MWCNT-

UPR and 0.5MWCNT-UPR. When the CNT content increased more than 0.3 wt% MWCNT undergo 

partial agglomeration represents in FESEM micrograph, which limits the efficiency of reinforcement. 

Such a phenomenon also observed in other reports   [21,22].  It is true that, individual nano tubes 

enjoy both large surface area and strong interfacial interactions with matrix these inherent advantages 

lead to efficient stress transfer between the MWCNTS and the UPR, and avoid the deformation or 

fracture of the composites under external force [21]. In addition, the lowest elongation of  

0.3MWCNT-UPR nanocomposite credibly MWCNTs are complimentary of the non elastic 

deformation. 

  
Figure 1. (a) Tensile strength and tensile modulus (b) Elongation at break of nanocomposites as a 

function of MWCNT content 
 

3.2 Fracture Morphology 

 
Figure 2. Fracture morphology of (a) UPR, (b) 0.3MWCNT- UPR and (c) 0.5MWCNT-UPR 

Figure 2 illustrates the fracture morphology of (a) UPR, (b) 0.3MWCNT- UPR and (c) 0.5MWCNT-

UPR nanocomposites. The surface of neat resin in figure 2(a) is smooth and distinctly cracking 

whereas nanocomposites surfaces are rough and CNTs tend to bridge the cracking. Several bright 

fractured tips of nanotubes represent by doted circle remained in the matrix and they were not pulled 

(a) (b) 
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out during stretching of 0.3MWCNT-UPR nanocomposite shown in figure2b. In this case, matrix 

tends to stick to the CNTs by well wetting and Van der Waals force, as a result, increased the 

composite TS and TM. Furthermore, the nanotubes tend to nucleate cracking and propagate the rough 

surface of nanocomposites which implies that the CNT–UPR interface is strong as well as providing 

for an additional reinforcement effect thus more energy is needed to break the specimens.  On the 

other hand, in case of 0.5MWCNT-UPR nanocomposite in figure 2(c) CNT pull out region evidently 

mentioned by doted circle.  This is because high concentration of CNT formed agglomeration, thus 

declined the resultant composite’s reinforcement. 

3.3 DSC Analysis 

 
Figure 3. DSC thermogram of (i) neat UPR, (ii) 0.1MWCNT-UPR, (iii) 0.3MWCNT-UPR and (iv) 

0.5MWCNT-UPR 

 
Figure 3 illustrates the DSC thermograms of (i) neat UPR, (ii) 0.1MWCNT-UPR, (iii) 0.3MWCNT-

UPR and (iv) 0.5 MWCNT-UPR nanocomposites. They notice the information of chain intercalation 

and thermal transitions of nanocomposites. The endotherm in the lower temperature region around 60-

67⁰C ascribe to the glass transition (Tg). Furthermore, the endothermic transition around 366-382⁰C 

are related to the melting temperature(Tm). 

 

Table1. The Tg , Tm  and ∆Hm values obtained from DSC thermograms. 

 

Samples Tg⁰C Tm⁰C ∆Hm Jg
-1

 

Tm1⁰C Tm2⁰C 

UPR 64 369 --------- 0.56 

0.1MWCNT-UPR 67 371 376 0.64 

0.3MWCNT-UPR 67 371 382 0.81 

0.5MWCNT-UPR 65 371 382 0.61 

 

The nanocomposites exhibit a split melting endotherm into two peaks (Tm1 and Tm2), instead of one 

endothermic peak as shown by pure matrix. The presence of double-melting peaks for the 

nanocomposites may indicate the bond formation between MWCNT and UPR. The melting peak at 

Tm2 is a precursor to indentify the binding energy among nanotubes and UPR molecules. The Tg , Tm 

and ∆Hm values of these samples represent in table 1. 
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MWCNT content significantly influenced the glass transition temperature of nanocomposites, 

which can be explained by the formation of microcrystalline segments, they are relatively well-ordered 

as well as enhance the degree of curing, moreover which restrict the resin chain mobility in the 

surrounding area of CNT [23,24,25].Taking into account, amorphousness of UPR matrix, some 

nucleating effect provided by MWCNTs is to be assumed. In fact, DSC thermogram of neat UPR 

confirms the amorphous behaviour. In presence of MWCNT nanofillers, nucleation of micro 

crystallization takes place in the host matrix. In case of nanocomposites the apparent crystallization 

takes place thus the corresponding melting enthalpies are higher than neat matrix. The greater degree 

of micro crystallinity in 0.3MWCNT-UPR composite is reflected in the higher enthalpy value. It is 

also interesting that the heat of transition increased significantly in case of composite specimens. It is 

obvious that MWCNT acting as a key nucleating agent.  

4. Conclusion

0.3MWCNT-UPR shows the highest mechanical properties compared to neat UPR and other 

nanocomposites. These results indicate a considerable enhancement of materials properties by the 

incorporation of MWCNT in matrix. The fracture morphology confirmed 0.3 wt% MWCNT is 

preferable for well dispersion and interaction between UPR and MWCNT. The glass transition 

temperature and melting temperature and micro crystallinity were noticeably increased in 

nanocomposites. 
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