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ABSTRACT 

Polyurethanes (PUs) are unique polymer materials with a wide range of physical and 

chemical properties. With well-designed combinations of monomeric materials, PUs 

can be tailored to meet diversified demands of various applications such as coatings, 

adhesives, fibers, thermoplastic elastomers, and foams. However, PUs also have some 

disadvantages, such as low thermal stability and low mechanical strength, etc. To 

overcome these disadvantages, a great deal of effort has been devoted to the 

development of nanostructured polyurethane (PU)/montmorillonite (MMT) composites 

in recent years. 

 
In general, the structures of polymer/clay nanocomposites are classified according to the 

level of intercalation and exfoliation of polymer chains into the clay galleries. Various 

parameters including clay nature, organic modifier, polymer matrix and preparation 

method are effective on the intercalation and exfoliation level. Therefore depending on 

the nature and properties of clay and polymer as well as preparation methodology of 

nanocomposite, different composite micro-structures can be obtained. The development 

of one a type of nanocomposites that is able to withstand high tensile strength and high 

barrier properties are the results to look for. 
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ABSTRAK 

Poliuretana (PU) adalah bahan polimer yang unik dengan pelbagai ciri-ciri fizikal dan 

kimia. Dengan kombinasi yang direka dengan bahan-bahan monomeric, PU boleh 

disesuaikan untuk memenuhi permintaan pelbagai aplikasi seperti salutan, pelekat, serat, 

elastomer termoplastik dan buih. Walau bagaimanapun, PU  juga mempunyai beberapa 

kelemahan, seperti kestabilan haba yang rendah, kekuatan mekanikal yang rendah dan 

lain-lain. Untuk mengatasi kelemahan ini, banyak usaha telah ditumpukan kepada 

pembangunan poliuretana bernanostruktur (PU) / montmorilonit (MMT) komposit sejak 

kebelakangan ini. 

 

Pada umumnya, struktur-struktur nanokomposit polimer / tanah liat adalah dikelaskan 

mengikut tahap interkalasi dan pengelupasan rantai polimer ke dalam galeri tanah liat. 

Pelbagai parameter termasuk sifat tanah liat, pengubahsuai organik, matriks polimer dan 

kaedah penyediaan telah menjadi salah satu cara yang efektif pada interkalasi dan tahap 

pengelupasan. Oleh itu, komposit mikro-stuktur yang berbeza dapat diperolehi 

bergantung pada jenis dan sifat-sifat tanah liat dan polimer serta kaedah penyediaan 

nanocomposite. Pembangunan sejenis nanokomposit yang mampu menahan kekuatan 

tegangan yang tinggi dan ciri-ciri halangan yang tinggi adalah hasil untuk mencari. 
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CHAPTER ONE 

 

 

INTRODUCTION 

 

1.1  Research Background 

The construction and operation of buildings is responsible for significant 

environmental impacts, predominately through resource consumption, waste production and 

greenhouse gas emissions. Building insulation will be one of the main focuses, where the 

demand for more energy efficient buildings is expected to grow significantly in coming years. 

One of the main problems related to energy consumption in buildings is created by winter 

heating and summer cooling. The presence of glass surfaces and the insulating capacity of the 

outer cladding are the main reasons for heat loss and gain within the building envelope 

(Scalisi, 2009). Insulation is the most effective way to improve the energy efficiency of a 

home. Insulation of the building envelope helps keep heat in during the winter and keep solar 

heat away during summer to improve thermal comfort while saving energy. Insulation 

materials which are used for building insulation include mineral wool, cellulose batting, foam 

plastics and newly emerged materials like nanomaterial. 

Forms of insulation are felt or plastic sheeting, sometimes with a reflective surface, 

installed directly below the tiles or other material; synthetic foam batting laid above the 

ceiling and recycled paper products and other such materials that can be inserted or sprayed 

into roof cavities. So called cool roofs are becoming increasingly popular, and in some cases 

are mandated by local codes. Cool roofs are defined as roofs with both high reflectivity and 

high thermal emittance. (Jelle et. al., 2010) 

Malaysia, having a warm and dense climate makes roof insulation important. Poorly 

insulated and ventilated roofing can suffer from problems such as spaces below the roof 

absorb heat easily hence causing temperature to rise. These problems normally result in the 

installation of air-conditions which is uneconomical and bring damage to the environment. 
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A common material that is being used as paint application is plastic which is polymer 

by classification. Polymer is a high molecular weight compound that made up of multiple 

repeating structural units usually by covalent chemical bonds. The process polymerization is 

an action taking place where all monomers are linked together to form a polymer. Monomer 

is a group that can only consists of one or more substituted chemical groups. Polymer can be 

categorized into two classes – natural and synthetic. Natural polymers consists of examples 

like starch, cotton, proteins and wool while synthetic polymers has a wider range of 

properties. 

Polymer alone is not enough as its properties consists of advantages and 

disadvantages. Material combinations and ranges have been, and are yet being, extended by 

the development of composite materials. A composite is considered to be any multiphase 

material that exhibits a significant proportion of the properties of both constituent phases 

such that a better combination of properties is realised. According to the principle of 

combined properties, better property combinations are fashioned by judicious combination of 

two or more distinct materials (Callister & Rethwisch, 2008). 

A type of combination will be with nanotechnology. Nanotechnology is widely being 

used in the built environment for its advantages in many improved engineering properties of 

the nano materials. Nano insulating materials open up new possibilities for ecologically 

oriented sustainable infrastructure development. The most widely used nano material in built 

environment is for the purpose of insulation to improve the energy efficiency namely in the 

buildings and dwellings. Nanotechnology has now provided an effective and affordable 

means to increase energy efficiency in pre-existing buildings as well as new construction by 

increasing thermal resistance. The major advantage of nano insulation materials is its benefit 

of translucent coatings which increase the thermal envelope of a building without reducing 

the square footage. The intrinsic property of nano insulating material is it can be applied to 

windows to reduce heat transfer from solar radiation due it its thermal resistant property and 

the translucent property allows diffusing of day light. The nano insulating material has 

significant advantage in reducing the operational energy aspects of buildings due to its 

valuable insulating properties. (Gammampila et. al., 2010)  

More than ten years before, nanocomposite based nano-layered silicates have 

attracted much attention due to its low cost, the availability and non-isometric structure that 

derived from a high aspect ratio of nanofillers. Even though the nanocomposite technology is 
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growing quickly, there are certain industries that still using the conventional composite or 

microcomposites. Previous research that conducted by Stec and Hull (2010) has proved that 

nano-layered silicates in the polymer matrix significantly increase strength and heat 

resistance although decrease in gas permeability and flammability is observed. However, a 

good dispersion of the organoclay in the polymer matrixes is crucial to achieve the 

improvement manner of polymer nanocomposite (Johanne et. al., 2005). The intimate 

enclosure of nanoparticles in the polymer matrixes can change lots of the materials properties. 

The nanoparticles can serve as matrix reinforcement as transformation of material properties 

such as mechanical, chemical and morphological can as well be achieved. Nowadays, there 

are many researches based on the development of the polymer nanocomposite (Ujhelyioova, 

2007).  

Polymer nanocomposite benefited from improved barrier properties. The impact of 

nanofillers with high aspect ratio characteristic is trusted to increase this property by 

producing tortuous path, so that the gas molecules movement would be slow down passing 

through the nanocomposite matrix. Currently, there are many developments and publications 

on preparing polyurethane nanocomposite were established. Nevertheless, the study of 

polyurethane nanocomposite in the mechanism of development of polyurethane properties 

and the effect of nanofillers on the surface mechanical properties of polyurethane 

nanocomposite has received less attention. It is required to know the effect of nanofillers on 

the viscoelastic performance of polyurethane (Yusoh, 2010). Therefore the continuity of 

polymer nanocomposite study should be done to achieve better result in improving the 

characteristic. 

 

1.2 Problem Statement  

Nowadays, the traditional method commonly used to increase the thermal 

conductivity values is, by increasing the thicknesses of the insulation materials in the building 

envelopes. Nevertheless, the method is not applicable due to several reasons, considering 

space issues with respect to economy architectural restrictions and other limitations, material 

usage and existing building techniques. In the other hand, the recent studies pointed out that 

energy efficiency measures are the most cost-effective ones, whereas measures like solar 

photovoltaic and wind energy are far less cost-effective than insulation retrofit for buildings 

(Jelle, 2011). 
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Currently, polyurethane is more widely used as thermal insulation material rather than 

the other material such as expanded polystyrene (EPS) and extruded polystyrene (XPS). It is 

important to consider several factors on why polyurethane as a good thermal insulation 

material for the end used for coatings and the operating cost is selected. Firstly, the properties 

of modified polyurethane should be determined. The properties are hardness, strength, 

stiffness, permeability and expansion coefficient. Then, the barrier, mechanical and chemical 

behaviour of the modified polyurethane must be tested to examine the product is in the best 

quality and environmentally safe. Other than that, the thermal stress ought to minimize and 

provide good modified polyurethane adhesion (Chattopadhyay et. al., 2006). 

 

1.3  Objectives 

1.3.1 To produce polyurethane-clay nanocomposites that is very thin yet has a high flame 

retardancy and resistance. 

1.3.2  To study the barrier, mechanical and physical properties including permeability and 

resistance of polyurethane-clay nanocomposites. 

1.4  Scope of Study 

1.4.1 To fabricate very thin thermal building insulation materials (TIMs) using 

polyurethane-clay nanocomposites 

1.4.2 To characterize the pristine polyurethane and polyurethane based nano-insulation-

materials (NIMs) using field emission scanning electron microscopy (FESEM), gas 

absorption test, X-ray diffraction (XRD) and Fourier transform infrared spectrometer 

(FTIR) 

 

1.4.3 To determine the permeability and permeability coefficient of the materials using a 

new fabricated gas permeability test. The purpose is to examine the permeability of 

the materials against presence of high pressure as well as the safety of PU-NIMs as 

thermal building insulation materials. Then, the samples will be tested for mechanical 

properties using tensile test. 
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1.5  Motivation 

Currently, polyurethane has been widely used in industry as building materials 

regarding to its unique and versatile polymeric material. It is apply as thermal insulation 

materials, coatings, adhesives, foams and composites (Chen et. al., 2000). These types of 

materials have received extraordinary attention for their synthesis, morphological, chemical 

and mechanical behaviour (Cai et. al., 2009). However, PUs also has some disadvantages, 

such as high permeation rate and low mechanical strength, etc. In order to decrease the global 

warming effect, thermal efficiency building construction materials has been introduced to 

improve the energy efficiency of buildings. With the aim of achieving the demands of 

enhancing the energy efficiency of building by reducing the pore size of the nanocomposites, 

the thermal insulations of buildings play a crucial role. Therefore, new thermal insulation 

materials and solutions with low thermal conductivity values have been and are being 

pursued instead of improving the traditionally method which is increase thicknesses in the 

building coatings. Energy efficiency of buildings could be saved if they are properly designed 

and operated. In addition, a least cost energy strategy should be support by conservation of 

energy future. Therefore, resources of the energy will be saved by every unit of energy saved 

give measure of technology. Thus, the operating costs associated with energy unit generated 

will be reduced / eliminated. So, appropriate early design can be made on the subject of 

choosing the building components (Al-Homoud, 1997). Nevertheless, the thermal insulation 

materials will support the world-wide campaign in order to reduce the heat reaches on our 

earth. One promising method for reducing the energy consumption of building systems is by 

introducing the thermal nano insulation materials (NIMs) either as outer layers or by 

sandwiched inner layers using polyurethane nanocomposites. Thus in this research work the 

potential application of polyurethane nanocomposites as a thermal insulation building 

materials has been developed as an alternative solution to conventional insulation materials 

such as extruded polystyrene and the experimental work are carried out to examine the 

thermal conductivity and the effect of nano-pore of PU nanocomposites to the final properties 

of polyurethane nano insulation materials (PU-NIMs). Besides that, a series of thermal 

conductivity assessment (TCA) is conducted and the experimental data from thermal 

conductivity are validated through the modified TCA models to predict the PU-NIMs surface 

temperature. Major expected outcome in this work is to achieve the highest possible thermal 

insulation resistance using new synthesis insulation materials as a solution for improving the 

energy efficiency for building material applications. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

 

2.1 Polyurethane 

Polyurethane is a polymer composed of a chain of organic units joined 

by carbamate (urethane) links. While most polyurethanes are thermosetting polymers that do 

not melt when heated, thermoplastic polyurethanes are also available. 

Polyurethane polymers are formed by reacting an isocyanate with a polyol. Both the 

isocyanates and polyols used to make polyurethanes contain on average two or 

more functional groups per molecule. Polyurethane products often are simply called 

“urethanes”, but should not be confused with ethyl carbamate, which is also called urethane. 

Polyurethanes neither contain nor are produced from ethyl carbamate (Chen, et al., 2012). 

 

Figure 2.1: Formation of polyurethane from isocynates with polylol. (Olad, 2011) 
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Polyurethanes are one of the most versatile materials in the world today. Their many 

uses range from flexible foam in upholstered furniture, to rigid foam as insulation in walls, 

roofs and appliances to thermoplastic polyurethane used in medical devices and footwear, to 

coatings, adhesives, sealants and elastomers used on floors and automotive interiors. 

Polyurethanes have increasingly been used during the past thirty years in a variety of 

applications due to their comfort, cost benefits, energy savings and potential environmental 

soundness (Khalid et. al., 2007). 

Polyurethane durability contributes significantly to the long lifetimes of many 

products. The extensions of product life cycle and resource conservation are important 

environmental considerations that often favor the selection of polyurethanes. Polyurethanes 

(PUs) represent an important class of thermoplastic and thermoset polymers as their 

mechanical, thermal, and chemical properties can be tailored by the reaction of various 

polyols and polyisocyanates.  

Polyurethanes (PUs) are unique polymer materials with a wide range of physical and 

chemical properties. With well-designed combinations of monomeric materials, PUs can be 

tailored to meet diversified demands of various applications such as coatings, adhesives, 

fibers, thermoplastic elastomers, and foams. However, PUs also have some disadvantages, 

such as low thermal stability and low mechanical strength, etc. To overcome these 

disadvantages, a great deal of effort has been devoted to the development of nanostructured 

polyurethane (PU)/montmorillonite (MMT) composites in recent years (Cao, et  al., 2004). 

 

2.2 Polymer-clay Nanocomposite 

Nanocomposites are polymers containing nanofillers (Pinnavaia & Beall, 2000). The 

microstructure of nanocomposites has inhomogeneities in the scale range of nanometers. 

Nanocomposite materials cover the range between inorganic glasses and organic polymers 

(Paul & Robeson, 2008). Fillers of polymers have been used for a long time with the goal of 

enhanced performance of polymers, and especially of rubber. Polymer–clay nanocomposites 

were reported in the literature as early as 1961 (Novak, 1993). Nanocomposites demonstrate 

often unusual and beneficial for the user properties. Scientific and technical literature report 

the improvement or enhancement of properties of polymer nanocomposites compared to the 

pristine polymers. This vague statement means an improvement of polymer properties from 

the standpoint of polymer application.  
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The main paradigm is that a valuable nanocomposite is one with the largest possible 

surface of nanofiller. In practice it means avoiding aggregation of nanoparticles and 

exfoliation of nanoclays. Nanoparticles are commercially available from different sources. 

Sols of nanosilica as colloid solutions in water or in organic solvents are used in preparation 

of PU nanocomposites. Fumed silica is available as individual particles ranging from 10–20 

nm to micrometers, and can be more or less successfully dispersed in a polymer (Blumstein, 

1961). 

Layered alumosilicates clays and especially montmorillonite (bentonite) are widely 

used in nanocomposites. Silicates have a characteristic distance between galleries of 1 nm; 

the basal spacing of a gallery is also ca. 1 nm. Inorganic cations like Na+ between galleries 

hold negatively charged galleries together. The replacement of the inorganic cations in the 

galleries of the native clay by alkylammonium (onium) salts or quarternary amines with long 

alkyl substituents (surfactants) leads to a better compatibility between the inorganic clay and 

hydrophobic polymer matrix. The replacement leads to an increase of the space between 

galleries facilitating intercalation of polymer molecules into the clay. Unless stated otherwise, 

in this paper we will describe only such onium salt modified montmorillonites. This is later 

define as organoclay. Three main types of nanocomposites are schematically presented in 

Figure 2.3. 

 

 

Figure 2.2: A sample of organoclay structure (montmorillonite) (Olad, 2011) 
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Figure 2.3: Types of nanocomposite structure (Olad, 2011) 

In most cases exfoliated nanocomposites with a high aspect ratio demonstrate 

enhanced properties compared to the same pristine polymers or polymer with smectic clay. 

Usually the exfoliation of clay nanolayers in a polymer matrix requires polarity match 

between the clay surface and the prepolymer precursors to allow optimal access to the gallery 

(Triantafillidis, LeBaron, & Pinnavaia, 2002). The morphology of nanocomposites is usually 

studied by X-ray techniques (XRD), transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM) (Sanyal, Datta, & Hazra, 2002). 

 

2.3 Nanocomposite structure 

In general, the structures of polymer/clay nanocomposites are classified according to 

the level of intercalation and exfoliation of polymer chains into the clay galleries. Various 

parameters including clay nature, organic modifier, polymer matrix and preparation method 

are affective on the intercalation and exfoliation level. Therefore depending on the nature and 
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properties of clay and polymer as well as preparation methodology of nanocomposite, 

different composite micro-structures can be obtained. 

 

2.3.1 Phase separated structure 

Phase separated structure is obtained when the organic polymer is interacted with 

inorganic clay (unmodified clay), the polymer is unable to intercalate within the clay layers 

and the clay is dispersed as aggregates or particles with layers stacked together within the 

polymer matrix. The obtained composite structure is considered as “phase separated”. The 

properties of phase separated polymer/clay composites are in the range of traditional micro 

composites. 

2.3.2 Intercalated structure 

Intercalated structure happens when one or more polymer chains are inserted into the 

inter layer space and cause to the increasing of the inter layer spacing, but the periodic array 

of the clay layer is still exist, the intercalated nanocomposite is formed. The presence of 

polymer chains in the galleries causes to the decreasing of electrostatic forces between the 

layers but it is not totally dissolved. A well-ordered multilayer hybrid morphology with a 

high interference interactions consisted of polymer chains and clay layer is obtained in this 

configuration. 

2.3.3 Exfoliated structure 

Exfoliated or delaminated structure is obtained when the insertion of polymer chains 

into the clay galleries causes to the separation of the layers one another and individual layers 

are dispersed within the polymer matrix. At all, when the polymer chains cause to the 

increasing of interlayer spacing more than 80-100 Å, the exfoliated structure is obtained. Due 

to the well dispersion of individual clay layers, high aspect ratio is obtained and lower clay 

content is needed for exfoliated nanocomposites. Also most significant improvement in 

polymer properties is obtained due to the large surface interactions between polymer and clay. 

Various polymer/clay structural configurations. 

 

  



11 
 

2.4 Preparation of polymer/clay nanocomposites 

Many efforts have been made for the preparation of intercalated and exfoliated 

polymer/clay nanocomposites with improved properties. A variety of polymer characteristics 

including polarity, molecular weight, hydrophobicity, reactive groups as well as clay 

characteristics such as charge density and its modified structure and polarity are affective on 

the intercalation of polymer chains within the clay galleries. Therefore different synthetic 

approaches have been used for the preparation of polymer/clay nanocomposites. In general 

there are four preparation methods including insitu template synthesis, solution intercalation, 

insitu intercalative polymerization and melt intercalation. 

 

2.4.1 Sol gel synthesis 

In this method the clay layers are synthesized in situ in the presence of polymer 

chains. The polymer and clay primary materials are dissolved in an aqueous solution. 

Typically magnesium hydroxide, silica and lithium fluoride as clay building blocks are mixed 

with polymer in a solvent. The gel or slurry is refluxed usually at high temperatures followed 

by washing and drying. The nucleation and growth of clay layers are take place on the 

polymer chains and the polymer chains are trapped in the clay inter layers. Although the clay 

layers may be well dispersed within the polymer matrix without the modification of clay by 

onium cations, however this method has serious disadvantages. The high temperature applied 

for the synthesis of clay layers causes to the decomposition of polymers. Only hectorite clay 

is synthesized at the lower temperatures. Also the synthesized clay crystals, generated by the 

self-assembly process, have tendency to aggregate. Therefore this method is not widely used 

and only a few nanocomposites using hectorite clay and poly (vinyl alcohol), polyaniline and 

polyacrylonitrile have been synthesized by this method (Alexendre & Dubois, 2000). 

 

2.4.2 Solution intercalation 

In this method the polymer or prepolymer is dissolved in a solvent and the clay is 

dispersed in the same solution. The clay is swollen in the solvent and the polymer chains 

intercalate between the layers. The intercalated nanocomposite is obtained by solvent 

removal through vaporization or precipitation. Clays can be swollen easily in solvents such as 

water, acetone, chloroform and toluene. Delaminated sheets are then used for the absorption 

of the polymer chains. The entropy gained during the solvent evaporation by the exit of 

solvent molecules from the interlayer spacing, allows the polymer chains to diffuse between 
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the layers. We have used the solution intercalation method for the preparation of epoxy /clay 

nanocomposites. Diglycidyl ether bisphenol A (DGEBA), (196-208 epoxy equivalent weight, 

Epiran–05, Khouzestan Petrochemical Company, Iran), was used as the polymer matrix. 

EPIKURE curing agent 3200, Aminoethylpiperazine (AEP) from Hexion Specialty 

Chemicals Inc., was used both as curing agent of epoxy resin and also as intercalating agent 

for montmorillonite (MMT). The inorganic clay used in this study was K-10 grade MMT 

obtained from Sigma-Aldrich Co (USA) with a surface area of 130 m2/g. Organically 

modified clays, Cloisite 30B (d-spacing = 18.5 Å) and Cloisite 15A (d-spacing = 29.88 Å) 

were provided by the Southern Clay Products. Tetraethylammonium chloride (TEA) salt was 

also used as intercalating agent of MMT. Acetone was used as solvent. Depending on the 

interactions between polymer and clay sheets, intercalated or exfoliated structures may be 

obtained in this method. This technique is used for the preparation of epoxy/clay 

nanocomposites. However due to the need for use solvent, this technique cannot be applied in 

industry. The nanocomposite preparation by emulsion polymerization, with the clays 

dispersed in the aqueous solution, is also categorized as solvent intercalation method (Rehab 

& Salahuddin, 2005). Toyota group has been used this technique to produce polyimide/clay 

nanocomposites (Yano et al., 1993). The emulsion and bulk polymerization methods have 

been used for the preparation of polystyrene/clay nanocomposites using the Na-MMT, 

cloisite 30B and cloisite 15A clay materials. The effect of clay swelling method and 

sonication on the inter layer spacing and intercalation have been investigated. Good 

dispersion of Na-MMT in the polystyrene (PS) matrix was observed when an emulsion 

polymerization was employed and good dispersion of cloisite 30B in the PS was observed 

during bulk polymerization. Cloisite 30B showed better dispersion when this clay was 

swollen with the monomer during emulsion polymerization. Sonication had good effect on 

dispersion of the clays in the PS matrix. PS/Cloisite 15A nanocomposites showed minor 

increase in d-spacing compared to the pure cloisite 15A. TGA analysis showed that the 

thermal stability of the nanocomposites has been improved compared to the pure polystyrene. 

 

2.4.3 Insitu intercalative polymerization 

This technique was the first method used for the preparation of polymer/clay 

nanocomposite by Toyota research group in the preparation of Nylon-6 nanocomposite from 

caprolactam monomer (Usuki et al., 1993). In this method the organoclay is swollen in 

monomer liquid or monomer solution. The monomers diffused into the inter layer spacing are 
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polymerized by the heat or radiation, by the diffusion of an initiator or by the organic initiator 

present on the organic modifier of clay (Hussain et al., 2006). The polymerization is carried 

out within the clay galleries as well as extra galleries. The growth of polymer chains results 

to the exfoliation and formation of disordered structure.  

 

 

Figure 2.4: Formation of Nylon-6 nanocomposite through in situ polymerization with 

ADA-MMT (http://nanocor.com) 

 

This method is suitable for the preparation of thermoset/clay nanocomposites and has 

been widely used for the epoxies and styrenic polymer nanocomposites (Lan, Kaviratna, & 

Pinnavaia, 1995). The polarity of monomer and clay layers determines the diffusion rate and 

equilibrium concentration of monomer within the clay galleries. Consequently the exfoliation 

and dispersion of clay layers can be tailored by the clay and monomer chemistry (Paviladou 

& Papaspyrides, 2008). Polyaniline/MMT nanocomposites have been prepared by the insitu 

polymerization of aniline in the presence of MMT (Olad & Rashidzadeh, 293-298). Both 

unmodified and organomodified MMT were used in the preparation of nanocomposites. Due 

to the using of acidic aqueous solutions for the polymerization of aniline, the polar organic 

anilinium cations can be interact with both unmodified and modified clays. 
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2.4.4 Melt intercalation 

Clay is mixed within the polymer matrix in molten temperature. The conventional 

methods such as extrusion and injection molding are used for dispersion of clay layers within 

the polymer matrix. This method is effective technique for the preparation of thermoplastic 

nanocomposites (Kornmann, Linderberg, & Bergund, 2001). The polymer chains are 

intercalated or exfoliated into the galleries. Clays are organically modified and polymer 

chains are surface modified with more polar functional groups to enhance their compatibility 

and therefore promote the exfoliation. In melt intercalation method no solvent is required and 

it has many advantages for the preparation of nanocomposites and is a popular method for 

industry (Ray et al., 2003). 

 

2.5 Previous work on PU-Organoclay Composites 

A very impressive industrial application of nanocomposites was demonstrated by the 

Toyota Group in 1988 (Usuki et al., 1993). By using organoclay, they were able to 

polymerize ε-caprolactam in the interlayer gallery region of clay to form Nylon 6-clay hybrid. 

At a loading of only 4.2 wt% the tensile modulus doubled, the tensile strength increased more 

than 50%, and heat distortion temperature (HDT) increased by 80◦ C compared to the pristine 

polymer. The key to this extraordinary performance of Nylon 6-clay nanocomposites was 

explained as the complete exfoliation of the clay nanolayers in the polymer matrix (Usuki et 

al., 1993). This remarkable result stimulated many chemists to search for dramatic 

improvement of polymer properties upon addition of low level of organoclay. 

The effects of organoclays on the properties of PU were studied (Pinnavaia & Beall, 

2000), PU were prepared by the following procedures: (i) distribution of clay in polyol with a 

subsequent reaction with diisocyanate; (ii) interaction of PU with clay in organic solvent with 

a subsequent evaporation of solvent; (iii) reaction of diisocyanate with hydroxyalkyl groups 

of organic modifier in the clay with a subsequent reaction with polyol. 

PU nanocomposites prepared with 1–6 wt% of clay demonstrate peaks on XRD 

patterns with a distance between galleries (basal spacing) in the range of 1.6–3.2 nm 

depending on the clay nature and its level (Chang & An, 2002). It is possible to conclude 

based on XRD and SEM and other spectroscopy, that polymer intercalated into the 

organoclay, it is not exfoliated, and organoclay is not homogeneously dispersed in a PU 

matrix. Many composites with an added non-exfoliated clay still demonstrate improved 
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mechanical and physical properties and thermal stability, lower permeability of dioxygen 

compared to the pristine PU. At the same time presented data of property vs organoclay level 

are not simple in a series of similar nanocomposites: it can be a curve with a maximum 

(minimum), it can be a permanent decrease or an increase of a property. It is documented that 

high temperature resistance of PU nanaocomposites is higher than that of pristine PU (Chang 

& An, 2002). 

Wang and Pinnavaia prepared PU nanocomposites by solvation of organoclay by 

polyol first. Loading of polyol with clay up to 10–20 wt% makes a pourable mixture. XRD 

demonstrates that intercalation of polyol into clay results in an increase of with basal spacing 

from 1.8–2.3 nm to 3.2–3.9 nm. Such spacing testifies that there is intercalation of polyol into 

clay. Formation of PU results in further increase of basal spacing up to more than 5 nm. The 

latter case may be considered as exfoliation of a clay or dispersal of nanolayers. Important, 

that onium ions of the clay were considered as active reagents for coupling with diisocyanate. 

Loading of PU with 5–10 wt% of clay results in a two-three times improvement of tensile 

properties of a polymer, namely increase of strain-at-break, tensile modulus and tensile 

strength (Wang & Pinnavaia, 1998).  

Common inorganic fillers are commonly used in PU chemistry to reduce formation 

cost and to increase stiffness, but the improvements in modulus for conventional PU 

composites are compromised by a sacrifice of elastomer properties. 

The nanocomposites reported according to Wang and Pinnavaia, 1998 exhibited an 

improvement in both elasticity and tensile modulus. Clay nanolayers, even when aggregated 

in the form of intercalated tactoids, strengthen, stiffen and toughen the matrix in the studied 

case. 

The enhancement in strength and modulus is directly attributed to the reinforcement 

provided by the disperse clay nanolayers. The improvement in elasticity is tentatively 

attributed to the plasticizing effect of onium ions, which contribute to dangling chain 

formation in the matrix, as well as to conformational effects on the polymer at the clay–

matrix interface. 

A complete exfoliation of nanoclay was observed in PU nanocomposites with high 

concentration of nanoclay (up to 40%) (Ni, et al., 2006). In this work organoclay was 

additionally functionalized with diamine, which served a chain extender under PU 
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nanocomposite formation. Tensile strength and elongation-to-break reaches maximum at 5 wt% 

of nanofiller loading (Ni, et al., 2006). Another study of PU nanocomposites demonstrates 

that the maximum values of flexural and tensile strengths are obtained at only few percent of 

a clay content (Seo, et al., 2006) Several PU nanocomposites prepared in (Chang & An, 2002) 

were studied in the range of organoclay loading of 0–8 wt%. Tensile properties demonstrate 

optimal properties at 3–4 wt% loading by different organoclays. Ultimate strength and initial 

modulus have increased in nanocomposites, as well as increased gas barrier properties, the 

thermal stability of one nanocomposite only increased with increasing clay content (Chang & 

An, 2002). A gradual increase of tensile strength with clay content increase up to 5 wt% of 

PU nanocomposites and only slight increase of glass-transition temperature (Tg) and slight 

increase of thermal stability was observed for PU nanocomposites prepared in Ref. 

(Pattanayak & Jana, 2005). It was concluded based on WAXD and TEM that PU intercalated 

into clay galleries (Pattanayak & Jana, 2005). 

Organically-treated synthetic fluoromica, which is a layered silicate as well, of 

different size has a modest effect on the properties of PU nanocomposites (Paul & Robeson, 

Polymer nanotechnology: Nanocomposites, 2008). Exfoliated in a solvent unmodified clay 

laponite as a hydrophilic compound interacts with polar soft segments (polyol) in PU like 

poly(ethylene oxide) or poly(propylene oxide) whereas in PU with hydrophobic soft 

segments like poly(tetramethylene oxide) clay interacts with the hard domain (urethane links) 

(Finnigan, et al., 2006). Thus, in the first case a decrease toughness and elongation-to-break is 

observed, whereas in the second case an increase of the same properties is observed 

(Finnigan, et al., 2006). Such a study gives a better understanding of the nanoclay effect of 

PU nanocomposites properties. 

It is reasonable to expect that the formation of PU nanocomposites leads not only to 

improvement of all valuable for the user properties of the pristine PU. The PU 

nanocomposites studied in Jin, et al. (2006), journal demonstrated an increase in the elasticity, 

decrease in damping property, significant increase in thermal stability but demonstrated also a 

decrease of tensile modulus. Hysteresis results indicate that energy dissipation increases with 

an organoclay concentration increase (Jin, Song, Yao, & Chen, 2006). Films of radiation-

curable urethane acrylates demonstrate minor variation of Young’s modulus and tensile 

strength upon dispersion of organoclay in formulations in the concentration up to 5 wt% (Uhl, 

Davuluri, Wong, & Webster, 2004). Some onium salts of organoclay have ω-hydroxyalkyl 
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substituents. The HO– CH2– group can be used to react with isocyanate and, that way, to 

drag OCN–R between galleries or at least strengthen the interaction between urethane pre-

polymer and clay (Pattanayak & Jana, 2005). A twofold increase of tensile strength and 

tensile modulus in exfoliated nanocomposites was obtained (Pattanayak & Jana, 2005). In a 

quite similar way PU nanocomposites are formed by a reaction of IPDI not only with polyol 

but with HO–CH2– groups within galleries. Probably nanocomposites have an intercalated 

structure (Solarski, et al., 2005). 

PU nanocomposites with the photoinitiator (PI) 2-hydroxy-2-methyl-1-

phenylpropane-1-one were prepared (Tan & Nie, 2007). This PI-PU nanocomposite was 

dispersed in polymerizable resins. Such initiator manifested high efficiency. XRD and TEM 

demonstrated formation of intercalated and exfoliated UV-cured nanocomposites with many 

good characteristics. Photopolymerization occurs inside the organoclay galleries (Tan & Nie, 

2007). 

PU, as well as a number of other polymers, can demonstrate shape recovery after 

temporary applied stress (shape memory). PU nanocomposites demonstrated the lowest 

relaxation rate after removal of a stress 1 wt% of organoclay. The studied PU 

nanocomposites manifested the highest degree of clay exfoliation namely at 1 wt%. PU 

nanocomposites with 3 and 5 wt% of organoclay relaxed faster than the pristine PU (Cao & 

Jana, 2007). 

A profound improvement of properties PU foam upon addition of 5 wt% of 

organoclay was observed (Cao X. , Lee, Widya, & Macosko, 2005). 

The use of organoclay Cloisite® 15A of Southern Clay Products as received. A 

distance between the galleries in the Closite is 3.15 nm (Zhu & Wool, 2006). Urethane 

acrylate oligomers were prepared the usual way: a reaction of polyol with diisocyanate with a 

subsequent capping of non-reacted isocyanate groups by ω-hydroxyalkyl acrylates. Prior to 

that Cloisite was dispersed in polyol by prolong high shear mixing. Unfortunately, this 

Cloisite and several other studied nanoclays of a similar structure efficiently catalyze di- and, 

especially trimerization of common isocyanates at elevated temperatures (Dodge, 2003) 

 


