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Abstract 

Predictive methods appear to be the most effective way to solve springback in sheet 

metal forming. The accuracy of the predictions depends upon the application of 

accurate material modelling. Experimental devices and methods are being 

continuously improved to incorporate increasingly accurate plastic bending 

characteristics. As part of these efforts, a new tool has been developed to test and 

record the characteristics of sheet metal deformation by investigating the 

Bauschinger effect factors (BEF) and the identified hardening parameters. The 

developed tool is believed to simulate the actual forming conditions of bending and 

provide more reliable information. The initial experimental investigation shows that 

the Bauschinger effect does occur during bending and unbending loadings in sheet 

metal forming. The BEF value was found to increase as the thickness increases. 

Therefore this justifies the need to consider the Bauschinger effect in sheet metal 

forming simulation through the use of relevant constitutive equations. 

A direct optimization method has been successfully applied to identify material 

hardening parameters from the acquired experimental data of the newly developed 

tool. The optimisation result shows that nonlinear kinematic hardening and 

nonlinear mixed hardening models are capable of fitting the smooth transition curve 

of the experimental hardening data. Mixed hardening model performance however 

is considered to be much better as proven by lower residual or fitting error values. 

This justifies the idea that the application of a mixed hardening model is more 

suitable for springback simulation in sheet metal forming. Validation work was 

conducted in order to test the effectiveness of applying the two hardening models by 

ix



incorporating the identified parameters in predicting springback using finite element 

simulation. Of the two, the mixed hardening modelling has been proven to provide 

better simulation results in predicting springback.
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Nomenclature 

The following symbols have been used throughout this thesis. The units quoted are 

for the purpose of calculations. The SI unit system is used in the formulae or in 

calculations where appropriate.

f
Function 

Yield stress 

U
Current stress 

cr1 Flow stress 

U O Stress at zero plastic strain 

Y(af)J'(cT)
Yield stress in forward and reverse cyclic stress-strain 

curve 

AUP Permanent softening 

Deviatoric stress 

Kronecker delta, 8., =1 ifi=j and 8 =Ozf i	 j 

0,2 a3 Principal stresses 

S Plastic strain 

a Back stress 

de Plastic strain increment 

Strain 

Tensile strength UTS 

E Young's modulus 

n Strain exponential hardening 

v Poisson ratio 

AM Change in moment
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M Moment 

Y Distance of sheet metal layer from neutral axis 

R
Normal plastic anisotropy ratio, R	

R0 +2R45 +R90 

= 

R Radius of curvature 

P Curvature 

AR Planar anisotropy, AR = 
R0 —2R45 +R90

 2 

AO Springback angle 

0 Bending angle 

BEF Bauschinger effect factor 

Q Isotropic hardening parameter 

C Kinematic hardening parameters 

Y Recall term in kinematic hardening
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

Sheet metal forming is a very important engineering discipline in 

manufacturing engineering. The applications cover major manufacturing industries 

such as aircraft, automotive, electronics and home appliances. Several methods such 

as blanking, piercing, shearing, stamping, deep drawing, folding and flanging are 

used to produce sheet metal components using different machines and tools or dies. 

To a large extent, the design of sheet metal forming processes and tooling have been 

based on experience, rules of thumb and trial-and-error experiments. These 

methods are very costly and time-consuming (Keeler 1977). 

For many years, efforts have been made to use scientific knowledge and 

engineering methods to understand sheet metal forming by investigating various 

aspects of this technology such as identifying critical process parameters and 

understanding materials response under forming conditions. In the first case, the 

influence of process parameters on the finished products was investigated, recorded 

and analysed. The information was compiled as useful design guidelines for 

reference by product designers and tool engineers. In the second case, one tries to 

achieve a better understanding of material behaviour using laboratory test



experiments to simulate actual forming processes. The outcomes are translated into 

mathematical models, in the form of constitutive laws, for theoretical analysis and 

development of the forming processes. Historically, this analysis was analytical but 

today it is predominantly numerical, based on the use of finite element simulation. 

Apart from the mentioned approaches, in-process monitoring to rectify 

defects in the forming process has also been used (Kerry and Robert 2001; Sun et al. 

2006). This is a method of automatically identifying defective parts during the 

process and immediately responding to the problem by refine-tuning the machine's 

parameters and/or replacing the tools. 

Despite achieving basic understanding of the nature and technology of sheet 

metal forming, there are still issues to be addressed. These are due to the demands 

placed on sheet metal forming processes with regard to both the increasing tolerance 

requirements of the finished parts and the need for elimination or reduction of 

important secondary processes by using near net shape forming. 

1.2. Statement of the Problem 

To meet tolerance and near net shape forming requirements, the use of 

scientific knowledge and engineering methods is paramount. Better knowledge of 

sheet metals' responsive behaviour during plastic deformation, in the form of 

theoretical models, is desired for accurate product and tool design using finite 

element simulation. Knowledge improvement requires focusing on the following 

areas (Yoon 2007): 

a. Constitutive models suitable for the description of sheet metals 

2



b. Testing procedures and analysis methods used to measure the relevant 

data needed to identify the material coefficients 

c. Tensile and compressive instabilities in sheet forming 

d. Modelling and analysis of springback 

e. Finite Element (FE) formulation 

f. Tool/material contact description 

g. Multi-scale approaches for both continuum and crystal plasticity 

mechanics 

The first four areas have seen the employment of various methods and 

techniques ranging from the well-known tensile test to the torsion test and bending 

test to better understand sheet metal plastic deformation. Nevertheless, the 

development of material characteristics is still lacking. 

1.3. Aim of the Research 

The aim of the research is to improve the quality of constitutive material 

models by experimental identification of their parameters using a testing equipment, 

which resembles the actual plastic deformation process of bending. The aim is also 

to use these parameters in the finite element simulation in order to improve 

springback prediction in sheet metal bending process. 

1.4. Objectives of the Research 

a. To develop an experimental method for understanding the plasticity 

phenomenon of sheet metal deformation using techniques resembling 

the actual sheet forming process of cyclic loading. 

3



b. To evaluate the responsive behaviour of sheet metal materials 

undergoing cyclic loading through the newly developed experimental 

tool. 

c. To identify constitutive equation parameters from the acquired data. 

d. To measure the effectiveness of the identified material parameters in 

predicting springback by comparing finite element simulations and 

experimental results. 

1.5. Thesis Organization 

The thesis is organized as follows: 

Chapter 1: Introduction 

This chapter will briefly establish the need for the research work. It covers 

the introduction as a summary of the area of research, a statement of 

problem to justify the motivation for the research, aim of the research, a list 

of research objectives and the organization of the thesis as an overview of 

the whole content of the thesis. 

Chapter 2: Literature Review 

This chapter reviews the available relevant documentation of the previous 

works. The aim is to identify the existing knowledge and any gaps in the 

area in order to justify the rationale and importance of the current work. The 

chapter will be divided into several subsections, namely the introduction, 

overview of sheet metal bending, basics of sheet metal bending, plasticity 

theory for sheet metal forming, previous works and the chapter's 

conclusions.

4



Chapter 3: Material Characteristics 

This chapter will describe the method used to acquire the properties of the 

research materials. It presents the most fair and objective way to perform 

and analyse the material properties according to the 'established accepted 

standards. 

Chapter 4: Cyclic Loading Experiment 

This chapter presents the outcome of the cyclic experiment in terms of 

bending stress versus strain. Bauschinger effect factors (BEF5) are also 

derived based on the selected formula. 

Chapter 5: Identification of Material Parameters by Optimisation 

This chapter will highlight the optimisation method used to acquire 

constitutive equation parameters using cyclic loading data described in 

Chapter 4. It will also analyse the capability of the hardening models to fit 

the cyclic data. 

Chapter 6: FE Simulations and Experimental Validation of Springback 

The objective of this chapter is to present validation work in testing the 

effectiveness of applying kinematic hardening parameters and mixed 

hardening parameters derived from the optimisation of bending and 

unbending experimental data in predicting springback using finite element 

simulation. To serve the objective, springback of U-bend profiles from finite 

element simulation and experiment are compared for degree of differences.



Chapter 7: Conclusions and Recommendations 

This chapter discusses the extent to which the results close the gap identified 

in Chapter 2 as well as meeting the research objectives stated in Chapter 1. 

The chapter ends with recommendations for future works.



CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

The demands on sheet metal processes are increasing with regard to both the 

tolerance requirements of the finished parts and the complexity of parts. The 

development in this area, even though it has been established for decades, is still 

required. The following topics have been identified for further improvements (Yoon 

2007):

a. Constitutive models suitable for the description of sheet metals. 

b. Testing procedures and analysis methods used to measure the 

relevant data needed to identify the material coefficients. 

c. Tensile and compressive instabilities in sheet forming. 

d. Modelling and analysis of springback. 

e. Finite Element (FE) formulation. 

f. Tool/material contact description. 

g. Multi-scale approaches for both continuum and crystal plasticity 

mechanics. 

For points (a) to (d), reliable theoretical and experimental methods are 

necessary to observe and capture material behaviour, especially when it comes to 
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