

THE MECHANICAL PROPERTIES OF NOVEL LIGHTWEIGHT STRUCTURES BASED ON CORRUGATED-CORES

Thesis submitted in accordance with the requirement of the University of Liverpool for the degree of Doctor of Philosophy

> By Mohd Ruzaimi Mat Rejab October 2013

LIST OF PUBLICATIONS

- M.R.M.Rejab, W.J.Cantwell. Compression behaviour of Aluminium corrugatedcore panels, 1st Annual UK-Malaysia-Ireland Engineering Science Conference 2010 (UMIES 2010), Northern Ireland, UK. June 2010.
- M.R.M.Rejab, W.J.Cantwell. Mechanical behaviour of corrugated-core sandwich panels under compression, 32nd SAMPE EUROPE International Conference 2011 (SEICO 11), Paris, France, March 2011.
- M.R.M.Rejab, W.J.Cantwell. Fracture modes in compression-loaded corrugatedcore sandwich panels, 11th Annual Composites UK Conference, Manchester, UK, May 2011.
- M.R.M.Rejab, M.M.Issa, W.J.Cantwell. Novel lightweight composites cores for aerospace applications, 33rd SAMPE EUROPE International Conference 2012 (SEICO 12), Paris, France, March 2012.
- 5. M.R.M.Rejab, W.J.Cantwell. The mechanical behaviour of corrugated-core sandwich panels. Composites Part B: Engineering. 2013;47:267-277.
- 6. M.R.M.Rejab, K.Ushijima, W.J.Cantwell. The shear response of lightweight corrugated core structures. Journal of Composite Materials. 2013; 0(0): 1-14.

ABSTRACT

The aim of this research work is to investigate the mechanical properties of corrugated-core sandwich structures under quasi-static and dynamic loading conditions and to determine the failure mechanisms and energy-absorbing characteristics of the corrugated-cores with different cell wall thickness and filled with a foam core.

Triangular corrugation structures were made from an aluminium alloy (AL), a glass fibre reinforced plastic (GFRP) and a carbon fibre reinforced plastic (CFRP). The composite corrugations were fabricated using a hot press moulding technique and then adhesively bonded to skins based on the same material, to produce a range of lightweight sandwich structures. The role of the number of unit cells, the thickness of the cell walls and the width in determining the mechanical behaviour of the structures was investigated. Buckling of the struts was identified as the initial failure mode in these corrugated systems. Continued loading resulted in plastic deformation in the aluminium system, in contrast, fibre fracture, matrix cracking and localised delamination in the composite systems, as well as debonding between the skins and the core were observed in the composites. The compression strength and modulus were shown to be dependent on the number of unit cells and the cell wall thickness, but independent of specimen width. Subsequent mechanical testing was undertaken using an Arcan rig capable of generating a range of loading conditions between pure shear and pure compression. The failure strength in the aluminium system was accurately represented using a two dimensional quadratic failure criterion. In contrast, due to the initation of delamination within the composite struts, the composite corrugated-cores were accurately predicted using a modified failure criterion.

Low velocity compression loading was subsequently performed on the sandwich structures, where the dynamic strength enhancement factor was shown to increase for all the corrugation systems. This was attributed to both a material strain-rate sensitivity and inertial stabilisation effects. The failure mechanisms in the sandwich structures were found to be similar under both quasi-static and dynamic loading conditions, where damage initiated due to buckling of the struts. To simulate the mechanical response of the corrugation systems, FE models have been developed using the Abaqus finite element package. The FE results were compared to measured responses, and good agreement was achieved. The failure modes predicted by the FE models show reasonably good agreement with the experimental observations.

Finally, foam filling the composite corrugation systems significantly improved the specific strength as well as specific energy-absorbing characteristics of the structures. The compression properties of the corrugated structures have been compared to those of other core materials, where the evidence suggests that these systems compare favourably with other cellular core materials.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
LIST OF PUBLICATIONS	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	xi
LIST OF TABLES	xxvi

CHAPTER I: INTRODUCTION

1.1 Overview	2
1.2 Application of Corrugated-core Sandwich Structures	5
1.2.1 Packaging Applications	5
1.2.2 Marine Applications	5
1.2.3 Transport Applications	6
1.2.4 Aerospace Applications	7
1.3 Motivation of the Research Work	7
1.4 Project Aim and Objectives	8
1.5 Thesis Outline	9
1.6 References	10

CHAPTER II: LITERATURE REVIEW

2.1 Introduction	12
2.2 Design and Manufacture of Sandwich Cores	12
2.2.1 Cellular Foams	13
2.2.2 Two-dimensional Periodic Cores	14
2.2.3 Three-dimensional Periodic Cores	15
2.2.4 Multifunctional Cellular Materials	18
2.3 Corrugated-core Sandwich Structures	19
2.3.1 Curvilinear Corrugated-core	19
2.3.2 Straight Corrugated-core	20
2.3.3 Hat-type Corrugated-core	21
2.3.4 Triangular Corrugated-core	22

2.4 Mechanical Performance of Corrugated-core Sandwich Structures	24
2.4.1 Mechanical Response under Static Compression Test	24
2.4.2 Mechanical Response under Static Shear Test	30
2.4.3 Mechanical Response under Combined Loading	32
2.4.3.1 Cylindrical Combined Loading	33
2.4.3.2 Combined Shear-Compression Loading	34
2.4.3.3 Bi-axial Arcan Test	36
2.4.3.4 Bi-axial Failure Envelopes	39
2.4.4 Mechanical Response under Dynamic Loading	40
2.4.4.1 Classification of Impact Response	40
2.4.4.2 Dynamic Effects	42
2.4.4.3 Dynamic Compression of Corrugated-core Sandwich Structure	43
2.4.4.4 Instrumented Dynamic Compression Test	46
2.5 Modelling of Sandwich Structures	47
2.5.1 Background of Finite Element Method	47
2.5.2 Modelling of Corrugated-core Sandwich Structures	48
2.5.3 Imperfections	52
2.6 Summary of Chapter II	54
2.7 References	57

CHAPTER III: EXPERIMENTAL PROCEDURE

3.1 Introduction	67
3.2 Design and Fabrication of Corrugated-core	67
3.2.1 Aluminium Alloy	71
3.2.2 Glass Fibre Reinforced Plastic	71
3.2.3 Carbon Fibre Reinforced Plastic	72
3.3 Specimen Preparation	72
3.4 Mechanical Properties of Materials	77
3.4.1 Tensile Test on the Aluminium Alloy	76
3.4.2 Tensile Tests on the Composites	77
3.4.3 In-plane Shear Test on Composites	79
3.4.4 Compression Tests on the Rigid PU Foam	80
3.5 Static Compression Testing	81
3.6 Arcan Test	85

vi

3.7 Low Velocity Impact Test	90
3.8 Failure Mechanisms and Damage Characterisation	93
3.9 Summary of Chapter III	94
3.10 References	95

CHAPTER IV: EXPERIMENTAL RESULTS

4.1 Introduction	97
4.2 Mechanical Properties of Materials	97
4.2.1 Tensile Tests on the Aluminium Alloy	97
4.2.2 Tensile Tests on the Composites	100
4.2.3 In-plane Shear Tests on the Composites	103
4.2.4 Relative Density	104
4.2.5 Compression Tests on the Rigid Polyurethane Foam	105
4.3 Static Compression Test	106
4.3.1 Model of the Compressive Response of the Corrugated-core	
Sandwich Structures	106
4.3.2 The Compression Behaviour of the Aluminium Corrugated-Core	
Sandwich Structures	110
4.3.3 The Compression Behaviour of the GFRP Corrugated-Core	
Sandwich Structures	112
4.3.4 The Compression Behaviour of the CFRP Corrugated-Core	
Sandwich Structures	116
4.3.5 The Influence of Crosshead Displacement Rates	119
4.4 Arcan Tests	123
4.4.1 Model of Compressive-Shear Response of the Corrugated-core	
Structure	124
4.4.2 Pre-calibration of the Arcan Test Rig	126
4.4.3 Arcan Tests on the Aluminium Corrugated-core Structure	128
4.4.4 Arcan Tests on the GFRP Corrugated-core Structure	130
4.4.5 Arcan Tests on the CFRP Corrugated-core Structure	131
4.5 Low Velocity Impact Tests	135
4.5.1 Impact Test	135
4.5.2 Impact Response at Low Energies	136
4.5.3 Impact Responses beyond Threshold Energy to Break the Specimens	139
	vii

4.6 Summary of Chapter IV	145
4.7 References	146
CHAPTER V: FINITE ELEMENT MODELLING	
5.1 Introduction	148
5.2 Constitutive Models for the Aluminium Alloy	148
5.2.1 Elasticity	149
5.2.2 Yielding	150
5.2.3 Plasticity	150
5.2.4 Failure Criteria	151
5.2.4.1 Damage for Ductile Metals	151
5.2.4.2 Failure in Ductile Metals	152
5.3 Constitutive Models for the Composites	153
5.3.1 Elasticity	153
5.3.2 Damage Development Model for the Fibre-Reinforced Composites	155
5.4 Static Finite Element Modelling	158
5.4.1 Modelling of Compression Corrugated-core Sandwich Structure	158
5.4.1.1 Selection of Parts and Elements	158
5.4.1.2 Loading and Boundary Conditions	159
5.4.1.3 Interaction Properties	160
5.4.1.4 Mesh Generation and Control	161
5.4.1.5 Modelling Data Output	161
5.4.1.6 Model Sensitivity	162
5.4.1.7 Results from the Numerical Analysis	168
5.4.2 Modelling of Compression Rigid Foam Core	1 77
5.4.2.1 Geometry and Element	177
5.4.2.2 Interaction Property, Boundary and Loading Conditions	178
5.4.2.3 Material Model and Input Data	1 78
5.4.2.4 Modelling Data Output	181
5.4.2.5 Results from the Numerical Analysis	181
5.4.3 Modelling of Bi-axial Loading of Corrugated-core Structure	184
5.4.3.1 Geometry and Element	184
5.4.3.2 Interaction Property, Boundary and Loading Conditions	185
5.4.3.3 Material Model and Input Data	185
	viii

5.4.3.4 Modelling Data Output	186
5.4.3.5 Results from the Numerical Analysis	186
5.4.4 Modelling the Compression Response of the Corrugated Foam-filled	
Core Structure	189
5.4.4.1 Geometry and Element	189
5.4.4.2 Step, Interaction Property, Boundary and Loading Conditions	191
5.4.4.3 Material Model and Input Data	192
5.4.4.4 Modelling Data Output	193
5.4.4.5 Results from the Numerical Analysis	193
5.5 Dynamic Finite Element Modelling	199
5.5.1 Model Geometry and Element	199
5.5.2 Interaction Property, Boundary and Loading Conditions	199
5.5.3 Material Model and Input Data	200
5.5.4 Modelling Data Output	201
5.5.5 Results from the Numerical Analysis	201
5.6 Summary of Chapter V	205
5.7 References	208

CHAPTER VI: DISCUSSION

6.1 Introduction	211
6.2 The Effect of Varying the Number of Unit Cells	211
6.3 The Effect of Varying the Cell Wall Thickness	213
6.4 The Effect of Varying Specimen Width	216
6.5 The Effect of Foam-filled Core	219
6.6 The Effect of Strain-Rate	223
6.7 The Effect of Mixed-mode Loading on the Failure Strength	227
6.8 Investigation of the Damage Mechanisms in the Corrugated-core	
Sandwich Structures	233
6.9 Triangular Corrugated-cores and the Competing Core Structures	241
6.10 Summary of Chapter VI	246
6.11 References	247

ix

CHAPTER VII: CONCLUSIONS

,

7.1 Introduction	250
7.2 Conclusions of the Research Work	250
7.3 Recommendations for Future Work	253

APPENDICES

Appendix A	Technical Drawing: Corrugation Moulds	256
Appendix B	A FORTRAN program for Compliance Correction Procedure	259

.

LIST OF FIGURES

Figure 1.1	(a) An Airbus A380 airliner [1], and (b) distribution of	
	composite materials and locations on the A380 [2].	3
Figure 1.2	VeSCo concept [3].	5
Figure 1.3	LASCO metallic sandwich panel [5].	6
Figure 1.4	Car body structure of the Shinkansen 700 series. Double-skin	
	corrugated-core has been adopted for the roof and the side	
	structure of the train [6].	7
Figure 1.5	A material property chart comparing the compression strength	
	as a function of density, with various engineering materials	
	and core designs [8].	8
Figure 2.1	Classification of cellular materials. Cellular materials are divided	
	into stochastic and periodic microstructures [5].	13
Figure 2.2	Examples of (a) Polyurethane foam with a closed-cell core [13]	
	and (b) Aluminium metal foam with an open-cell core [14].	14
Figure 2.3	(a) Sketch of method of square-honeycomb core assembly [16]	
	and (b) photograph of composite square-honeycomb core [17].	15
Figure 2.4	(a) Manufacturing route for composite trapezium-core and	
	(b) 70° inclined angle of carbon fibre corrugation [19].	15
Figure 2.5	Manufacturing route for truss core [22].	16
Figure 2.6	(a) A set of micro-lattice blocks and (b) the definition of lattice	
	block for body centred cubic (BCC) [25].	16
Figure 2.7	Egg-box core structures: (a) metal [26] and (b) composite [28].	17
Figure 2.8	A carbon fibre folded core with a zigzag geometry [32].	18
Figure 2.9	Typical applications of cellular materials in automotive	
	industry [34].	18
Figure 2.10	Traditional corrugated-core sandwich panels [35].	19
Figure 2.11	(a) Carbon fibre corrugated-core structure and (b) geometry of	
	flexible core for candidate material of morphing wing [47].	20
Figure 2.12	(a) Free-body diagram of the corrugated-core and (b) shear	
	modulus as function of corrugation angle [20].	21
Figure 2.13	(a) Monolithic corrugated-core (1 st order) and	

xi

	(b) hierarchical corrugated-core (2^{nd} order) [58].	22
Figure 2.14	Sketch of the procedure used to assemble a dry	
	corrugated-core [66].	23
Figure 2.15	Deformation images of the $\rho^* = 0.05$ corrugated-core in	
	out-of-plane compression [61].	25
Figure 2.16	A comparison of the experimental and predicted values of	
	out-of-plane compressive strength of stainless steel	
	corrugated-core panels [61].	25
Figure 2.17	Compression response of a single unit cell of (a) 70° and	
	(b) 45° monolithic corrugations. The peak load at angle of 70°	
	$(P^{70^{\circ}} \approx 1.05 \text{ kN})$ is greater than the peak load at angle of 45°	
	$(P^{45^{\circ}} \approx 0.90 \text{ kN})$. Note dashed line show analytical predictions [19].	27
Figure 2.18	Photographs showing the failure modes of a (a) monolithic	
	corrugated-core (1 st order) and (b) hierarchical	
	corrugated-core (2 nd order) [58].	27
Figure 2.19	Compression response of a single unit cell of (a) 70° and	
	(b) 45° hierarchical corrugations. Note that dashed line show	
	analytical predictions [19].	28
Figure 2.20	Compressive strength measurements and predictions for	
	corrugated composite core as a function of relative density;	
	(a) unfilled core and (b) foam-filled core [67].	29
Figure 2.21	Shear load-displacement curve in MD direction [46].	30
Figure 2.22	Deformation images of the $\rho^* = 0.05$ corrugated-core in	
	transverse shear [61].	31
Figure 2.23	A comparison of the experimental and predicted values of	
	transverse shear strength of stainless steel corrugated-core	
	panels [61].	31
Figure 2.24	Shear response of a single unit cell of (a) 70° and (b) 45° monolithic	
	corrugations. The peak shear load at angle of 45° (P ^{45°} ≈ 5.1 kN) is	
	greater than the peak shear load at angle of 70° (P ^{70°} ≈ 2.2 kN).	
	Note that dashed line show analytical predictions [19].	32
Figure 2.25	(a) Coordinate systems and loading of a corrugated cylinder. \checkmark	
	Failure envelopes for the corrugated cylinder; (b) the axial	
	compression and torsion quadrant and (c) the torsion and	,

۵

xii

	external pressure quadrant [74].	33
Figure 2.26	Schematic data acquisition [76].	34
Figure 2.27	Stresses at failure of folded core material under shear and	
	compression loading [76].	35
Figure 2.28	Failure curves of the aluminium honeycomb core [77].	36
Figure 2.29	Strength-to-failure criterion for honeycomb cores; (a) $\rho = 64 \text{ kg/m}^3$	
	and (b) $\rho = 128 \text{ kg/m}^3$. Note that the dashed lines correspond	
	to the linear failure criterion [78].	37
Figure 2.30	Localisation of deformation in an aluminium honeycomb	
	specimen under combined normal and shear loading in the	
	<i>T-W</i> plane [82].	37
Figure 2.31	Mounting conditions between the uniaxial testing machine and	
	the Arcan grips for the (a) standard and (b) clamped	
	configuration [80].	38
Figure 2.32	Solution methods for different categories of impact. Note that M	
	is mass of impactor, m_p is mass of specimen and (M/m_p) is	
	impactor mass ratio [90].	41
Figure 2.33	High speed video images of the deformation at a striker velocity	
	of 10 m/s [62].	43
Figure 2.34	Bi-linear relationship of the measured peak stresses in the filled	
	and unfilled corrugated-core specimens as a function of impact	
	velocity and applied nominal strain-rate [66].	44
Figure 2.35	Range of failure mechanisms at different velocities and for	
	different core member aspect ratios. Note that the number displayed	
	in the small box is a buckle mode shape [57].	45
Figure 2.36	(a) A free-fall instrumented drop-weight tower [98] and	
	(b) an instrumented direct impact Kolsky bar set up [99].	47
Figure 2.37	(a) A comparison between the observed and FE predictions of	
	the quasi-static deformation mode of the corrugated-core	
	specimens and (b) FE predictions of the dynamic strength	
	enhancement with and without material strain-rate sensitivity [62].	49
Figure 2.38	Deformed configuration of the empty and fully-filled sandwich	
	plates at $\delta_{punch} / L = 0.25$. Note that the polymeric foam components	
	are not shown and v_s is volume fraction of steel [101].	51

xiii

Figure 2.39	(a) A load-displacement curves of measured and numerical	
	prediction of V-type core sandwich panel (b) a V-type core panel	
	made from mild steel [103].	53
Figure 3.1	Drawing of corrugated mould design.	67
Figure 3.2	Assembly drawing and photograph of the corrugated mould.	68
Figure 3.3	The apex of the triangular unit in the mould.	69
Figure 3.4	A roll of composite prepreg in the as-received condition before	
	cutting to size of 200 mm by 150 mm.	69
Figure 3.5	Curing profile for (a) GFRP and (b) CFRP prepregs.	70
Figure 3.6	Photograph of the Meyer hot press machine.	71
Figure 3.7	Photograph of specimens following removal from the mould.	72
Figure 3.8	(a) Schematic of the stacking orientations of the woven composite	
	and (b) cutting the cured specimen into (i) $\pm 45^{\circ}$ and (ii) $0^{\circ}/90^{\circ}$ layers	s.73
Figure 3.9	Five identical unit cells of an AL corrugated-core sandwich	
	structure.	74
Figure 3.10	The geometry of unit cell of the corrugated-core sandwich structure	. 75
Figure 3.11	Photographs of the five different number of unit cells in the	
	AL sandwich specimens.	75
Figure 3.12	Carbon fibre corrugated-core sandwich panels (a) without foam,	
	(b) semi-filled foam and (c) fully filled with foam.	76
Figure 3.13	(a) Free-rise in the rigid PU foam and (b) a cube-shaped foam	
	block on the weight scale.	76
Figure 3.14	Tensile test geometry of the metal specimen.	77
Figure 3.15	Tensile test geometry for a composite specimen.	78
Figure 3.16	Composite specimens for tensile and in-plane shear tests.	78
Figure 3.17	(a) Tensile test set-up and (b) the configuration of the five target	
	and tracking points in the longitudinal and transverse directions.	
	The middle target point is the reference point.	79
Figure 3.18	Photo of an in-plane shear test on a composite specimen.	8 0
Figure 3.19	The rigid PU foam under compression loading.	80
Figure 3.20	(a) Photograph of the compression test set-up and the	
	displacement measurement system, (b) front view of the specimen	
	test set-up, (c) schematic of target points for measuring	

	the displacement during the quasi-static compression test.	83
Figure 3.21	(a) Photo of the modified Arcan test rig, (b) a schematic diagram	
-	Of the arrangement for a pure shear ($\alpha = 0^{\circ}$) Arcan test, and (c) at	
	a 67.5° rotation to give a combined compression-shear loading	
	condition.	86
Figure 3.22	(a) Cross-section showing the bonding areas of the specimen to	
	the loading platens, (b) a photo of a CFRP specimen bonded	
	between two loading platens.	87
Figure 3.23	(a) Experimental test arrangement for the calibration test	
	involving contact between two frictionless surfaces. The	
	horizontal displacements are measured using two digital dial	
	gauges, (b) close-up of the contact zone between the two	
	frictionless platens and (c) the platen surfaces are covered with	
	a Teflon film.	89
Figure 3.24	The instrumented drop-weight impact test set-up adopted for testing	5
	the corrugated-core sandwich structures.	90
Figure 3.25	(a) A closer view of the test set-up for a drop-weight impact test,	
	(b) a schematic diagram illustrating the test assembly, showing how	7
	the load cell is connected between the impactor and the mass.	91
Figure 3.26	Optical microscope equipment that was used in the study.	93
Figure 4.1	Engineering stress-strain curves for the aluminium alloy	
	(AL 2024-O), following three tensile tests.	98
Figure 4.2	True tensile stress-strain curve for an aluminium alloy	
	specimen (TTAL3).	99
Figure 4.3	Tensile failure at approximately 40° to the loading axis	
	(specimen TTAL3).	99
Figure 4.4	Typical tensile stress-strain curve for a GFRP specimen.	101
Figure 4.5	Typical tensile stress-strain curve for a CFRP specimen.	101
Figure 4.6	Typical tensile failure modes in the woven composite	
	(CFRP specimen) following tensile testing.	101
Figure 4.7	Plot of the strain in transverse x-direction versus strain in the	
	longitudinal y-direction. The slope of the line gives the value of	
	the Poisson's ratio for this woven CFRP specimen, i.e. $v = 0.10$.	102

xv

Figure 4.8	Plot of the strain in transverse x-direction versus strain in	
	the longitudinal y-direction taken from the relative	
	displacement images analysis. The slope of the line gives the value	
	of the Poisson's ratio for this woven GFRP specimen, i.e. $v = 0.15$.	103
Figure 4.9	Typical in-plane shear stress-strain curve for a GFRP specimen.	104
Figure 4.10	Typical in-plane shear stress-strain curve for a CFRP specimen.	104
Figure 4.11	Typical compression stress-strain behaviour of a rigid PU foam;	
	(a) at the yield point and (b) at 60% strain where the densification	
	begins.	106
Figure 4.12	(a) A five unit cell sample under compression loading, (b) a single	
	unit cell showing the deformed behaviour (dashed-line),	
	(c) a free-body diagram of a compression loaded core member.	107
Figure 4.13	(a) Typical load-displacement curves for the AL sandwich	
	corrugated-core structures. (b) Photographs of progressive damage	
	development in structures based on five unit cells in (a).	
	(c) Debonding at an end of the core after loading $(b - III)$.	
	(d) Crumpling after the corrugated-core has been almost	
	completely flattened.	110
Figure 4.14	Comparison of the load-displacement traces for AL sandwich	
	specimens based on 1, 2, 3, 4 and 5 unit cells.	112
Figure 4.15	(a) Typical load-displacement curve for a GFRP sandwich	
	corrugated-core structure. (b) Photographs of progressive damage	
	development in a five unit cell specimen in (a). (c) Failure mode	
	images after crushing process.	113
Figure 4.16	Comparison of load-displacement traces for GFRP sandwich	
	specimens based on 1, 2, 3, 4 and 5 unit cells. (Note that these are	
	GFRP specimens of 2-ply thickness. The term of η_x is an aspect	
	ratio based on the number of unit cells in x-direction relative to	
	a specimen having 5 unit cells, GF2U5).	114
Figure 4.17	Comparison of load-displacement traces following tests on five	
	unit cell sandwich structures based on between 2 and 10 plies of	
	GFRP. (Note that the term of η_H is a normalised average thickness	
	of the corrugated-cores relative to the 2-ply specimen, GF2U5).	115
Figure 4.18	Comparison of the load-displacement traces for the GFRP	

xvi

corrugated-core sandwich specimens based on spans of 25, 50, 75 and 100 mm, respectively. (Note that these GFRP specimens are based on 2-ply cores with 5 unit cells. The width aspect ratio η_w is relative to a 25 mm wide specimen, GF2W25). 116 (a) Typical load-displacement curve for a CFRP sandwich Figure 4.19 corrugated-core structure. (b) Photographs of progressive damage development in five unit cell corrugations in (a). (c) Failure modes after crushing process. 117 Figure 4.20 Comparison of load-displacement traces for CFRP sandwich specimens based on 1, 2, 3, 4 and 5 unit cells. (Note that these are CFRP specimens based on 2 plies and the term of η_x is an aspect ratio based on the number of unit cells in x-direction relative to 5 unit cells, CF2U5). 118 Figure 4.21 Comparison of load-displacement traces for CFRP specimens based on between 2 plies and 6 plies. (Note that these CFRP specimens contained 5 unit cells and η_H is a normalised average thickness of the corrugated-cores relative to the 2-ply specimen, 118 CF2U5). Figure 4.22 Comparison of the load-displacement traces of CFRP corrugated-core sandwich specimens based on spans of 25, 50, 75 and 100 mm, respectively. (Note these specimens are based on 2 plies with 5 unit cells. The aspect ratio of the width, η_w is relative 119 to a width of 25 mm, CF2W25). Figure 4.23 Comparison of load-displacement traces of corrugated-core specimens following testing at different compression displacement rates of 1, 10 and 100 mm per minute; (a) AL, (b) GFRP and 120 (c) CFRP. Figure 4.24 Comparison of load-displacement traces for the GFRP corrugatedcore specimens for three different foam-filled core configurations. 121 Figure 4.25 Comparison of load-displacement traces for the CFRP corrugatedcore specimens for three different foam-filled core configurations. 121 Figure 4.26 Photographs of progressive damage development in the CFPUF sandwich structure during (a) initial compression, (b) buckling in the cell wall structure and (c) core crushing. 122

xvii

Figure 4.27	Photographs of progressive damage development in the GFPUS	
-	sandwich structure during (a) initial compression, (b) the	
	buckling process and (c) the final stages of testing.	123
Figure 4.28	(a) A schematic of a mixed-mode loading condition on a	
-	corrugated-core structure, (b) a free body diagram of a single unit	
	cell of the corrugated-core.	124
Figure 4.29	Typical load versus displacement trace for a corrugated-core	
	structure (CF45 at 45° loading angle). The unwanted displacement	
	is removed from the Arcan mixed-mode test data.	126
Figure 4.30	Calibration data of the horizontal load-displacement relationship	
	for the Arcan test rig.	127
Figure 4.31	Typical load-displacement traces for the aluminium corrugation	
	subjected to pure compression (AL90), pure shear (AL0) and	
	mixed compression-shear (AL67.5). The inset shows the initial	
	stiffness in the elastic deformation region for three different	
	loading angles.	128
Figure 4.32	Photos of an aluminium corrugation at three different stages of	
	compression-shear loading at 67.5° loading angle; (a) unloaded,	
	(b) initial buckling, and (c) crumpling at high displacements.	129
Figure 4.33	Typical load-displacement traces for the GFRP corrugation	
	subjected to pure compression (GF90), pure shear (GF0) and	
	mixed compression-shear (GF45). The inset shows the initial	
	stiffness in the elastic deformation region for three different	
	loading angles.	130
Figure 4.34	Photograph of one of the failure modes for the case where the	
	corrugated-core was debonded from the loading platens.	131
Figure 4.35	Typical load-displacement traces for the CFRP corrugation	
	subjected to pure shear (CF0), pure compression (CF90) and	
	mixed compression-shear (CF45). The inset shows the initial	
	response in the elastic region for three different loading angles.	131
Figure 4.36	Photos of the CFRP composite corrugation at three stages of	
	deformation under mixed-mode loading at 45°; (a) unloaded,	
·	(b) initial cell wall buckling, and (c) fibre fracture in the unit cells.	132
Figure 4.37	Failure mode in a CFRP corrugated-core structure showing 3D	

xviii

	complex cell wall crushing.	133
Figure 4.38	The schematic diagram showing the impact test setup.	135
Figure 4.39	Typical F - t and d - t histories for an impact energy below that to	
	break the specimen, (a) experimental data and (b) best fit curves	
	showing that the maximum contact force and the maximum	
	displacement happen at the same time, t_{peak} when F_{max} occurs.	
	Data taken from an AL corrugated-core specimen at a drop	
	height, $h = 50$ mm.	137
Figure 4.40	Typical F - d traces for an impact energy less below that to break	
	the specimen, (a) loading and unloading response and (b) best fit	
	line to illustrate the contact force is proportional to displacement	
	in the elastic regime.	138
Figure 4.41	Impact images for an initial velocity, v of 0.99 m/s, (a) just before	
	contact with the top surface of the specimen, (b) elastic bending	
	of the struts at the maximum impactor displacement, d_{\max} and	
	(c) the specimen returns to its original position and the impactor	
	rebounds. Impact on a CFRP corrugated-core specimen from a	
	drop height, $h = 50$ mm. The impactor mass ratio, $\mathbf{m}^* = 173$.	139
Figure 4.42	(a) Typical <i>F</i> - <i>t</i> and <i>d</i> - <i>t</i> histories for the AL corrugated-core	
	sandwich specimen above its threshold absorb energy and (b) the	
	<i>F-d</i> traces during the impact tests at a drop height, $h = 1000$ mm.	140
Figure 4.43	Two different buckling phenomena observed during testing: (a)	
	asymmetrical buckling commonly found in out-of-plane	
	compression loading (at $v = 3.13$ m/s) and (b) combination of two	
	different buckling patterns, symmetrical and asymmetrical	
	behaviour at an impact velocity of 4.43 m/s.	141
Figure 4.44	(a) Typical <i>F-t</i> and <i>d-t</i> histories for the CFRP corrugated-core	
	sandwich specimen above its threshold impact energy and	
	(b) the F - d curve following the impact test from a drop height,	
	h = 1000mm.	142
Figure 4.45	5 Impact images of the composite (CFRP) corrugated-core sandwich	
	specimen at an impact velocity of 4.43 m/s, (a) initial failure is	
	dominating by buckling (combined mode shapes of 1 and 2), (b)	
	failures (fibre fracture, matrix cracking) and (c) rebound of the	

xix

	impactor as the top skin debonds from the core.	143
Figure 5.1	Loading direction, boundary conditions and assembly of the	
	corrugated-core model between two platens.	159
Figure 5.2	Contact pressure-overclosure relationship for hard contact [1].	161
Figure 5.3	Typical meshes used in numerical modelling.	161
Figure 5.4	Typical mesh-sensitivity analysis showing maximum load and	
	CPU time versus element size for the AL corrugated-core	
	specimen with shell thickness of $H = 0.5$ mm.	163
Figure 5.5	Softened contact pressure-overclosure relationship defined in linear	
	form [1].	164
Figure 5.6	Typical contact stiffness sensitivity analyses, if the case when	
	$k_c > 10000 \text{ N/mm}^3$, is equivalent to a hard contact condition.	164
Figure 5.7	The effect of the contact stiffness k_c on the slope (P/ δ) of the AL	
	corrugated-core model.	165
Figure 5.8	An imperfection sensitivity analysis study for the GFRP	
	corrugation model, with a thickness of $H = 0.2$ mm. Note that the	
	maximum load from the experimental test was 413 N.	167
Figure 5.9	Comparison of the effect of different shell elements, S4R and S8R.	
	The analysis was conducted on the CFRP corrugation, with a	
	thickness of $H = 1.10$ mm. Note that the maximum load in the	
	experiment was 23 kN.	168
Figure 5.10	The measured response and the predictions of the load-	
	displacement response for AL corrugated-core sandwich structure.	
	The load-displacement responses of the panels with FE predictions	
	with $\xi = 0.01$ show good agreement with the measured response.	169
Figure 5.11	Predicted deformation modes for a perfect AL corrugation;	
	(a) initial loading, (b) peak loading, (c) symmetrical plastic hinges	
	due to bending and (d) progressive collapse. Note that the inset	
	gives the Mises stress.	170
Figure 5.12	Predicted deformation modes for an imperfect AL corrugation;	
	(a) initial loading, (b) peak loading, (c) buckling behaviour and (d)	
	initial contact between upper platen and middle of struts. Note that	
	the inset gives the Mises stress.	171

XX

- Figure 5.13 The measured response and the predictions of the peak load for composite corrugated-core structures; (a) GFRP and (b) CFRP.
 FE simulations for both GFRP and CFRP with ξ = 0.05 show reasonable agreement with the measured responses.
- Figure 5.14 The initial modelling behaviour of the composite corrugation (perfect condition); (a) initial loading, (b) peak loading, (c) plastic hinges and (d) model progressively compressed to the lower platen. Note that this is an example for a GFRP corrugation with H =0.19 mm. The colour spectrum represents Hashin's fibre compression damage initiation criterion. 173
- Figure 5.15 The modelling behaviour of a composite corrugation with a geometrical imperfection; (a) at initial contact, the right-end of the strut is initially bent, (b) peak loading, (c) buckling-dominated behaviour as three of the unit cells buckled and (d) initial contact between upper platen and centre of the struts. Note that this is an example for a GFRP corrugation with H = 0.19 mm. The colour spectrum represents Hashin's fibre compression damage initiation criterion. 175
- Figure 5.16 The 3D brick element mesh used in the foam modelling.177
- Figure 5.17Loading direction, boundary conditions and assembly for the foam
core model between the two rigid platens.178
- Figure 5.18The yield surface and flow potential in the p-q stress plane for the
isotropic crushable foam model [2].179
- Figure 5.19The measured mechanical response of the PUR foam. The FEsimulation shows good agreement with the experimental data.182
- Figure 5.20 The modelling behaviour of a foam core; (a) at initial contact,
 (b) peak loading, (c) plateau region and (d) the initial densification
 region. Note that the colours represent the deformations.
- Figure 5.21 (a) Meshing of the loading platens and corrugated-core, (b) meshed corrugated-core, and (c) meshed loading platen. 184
- Figure 5.22Loading direction, boundary conditions and assembly of the foamcore model between two rigid platens.185
- Figure 5.23 Comparison between the analytical solutions and the numerical analysis in the form of load-displacement traces for loading angles

xxi

172

from 0° to 90°.

	from 0° to 90° .	186
Figure 5.24	Prediction of initial stiffness (P/ δ) from analytical methods	
	compared to numerical analysis, from $0^{\circ} \le \alpha \le 180^{\circ}$: (a) AL,	
	(b) CFRP, and (c) GFRP.	187
Figure 5.25	The modelling behaviour of the Arcan test for the AL corrugation	
	at a loading angle of 67.5° (a) at initial contact, (b) peak loading,	
	(c-d) progression of buckling and collapse of the unit cells. Note	
	that the colours represent the Mises stress.	188
Figure 5.26	The sharp edge contact between the corrugated-core and the upper	
	skin; (a) contact set-up, (b) initial deformation and (c) progression	
	and penetration of the sharp corner.	189
Figure 5.27	The corrugated-core sandwich structures filled with foam;	
	(a) dashed-line is the cut area, and (b) types of elements used in	
	the modelling.	190
Figure 5.28	The meshes for modelling; (a) conventional corrugated-core,	
	(b) semi-filled core and (c) fully-filled with foam core.	191
Figure 5.29	Loading direction, boundary conditions and assembly of the	
	corrugated-core with foam model.	192
Figure 5.30	The measured response and the predictions of the load-	
	displacement response for conventional GFRP corrugated-core	
	structure. Note that in this FE analysis, the platen was displaced	
	by 3.5 mm.	193
Figure 5.31	Predicted deformation modes for the composite corrugated-core	
	structure; (a) initial buckling and (b) contact between the upper skin	n
	and middle of the struts. Note that the inset gives the Mises stress.	194
Figure 5.32	The measured response for a GFRP corrugated-core with a foam-	
	filled structure and compared with two numerical simulations, the	
	corrugated-core tied or untied with the PU foam.	195
Figure 5.33	Predicted deformation modes for a corrugated-core structure with	
	untied foam; (a) initial buckling and (b) both sides of foam went	
	out from the core. Note that the inset gives the Mises stress.	195
Figure 5.34	Comparison of a unit cell in the corrugated-core structure with	
	fully-filled at different magnitudes; (a) deformation and (b) stress.	196
Figure 5.35	Predicted deformation modes for a corrugated-core structure with	

xxii

fully-filled foam; (a) initial loading, (b) peak loading, (c-d) deformation in progress as the corrugated-core buckled and the foam been compressed. Note that the inset gives the deformation values. 197 Figure 5.36 The measured response and predictions of the load-displacement response for a corrugated-core with semi-filled structure. Note that 198 this is GFRP sandwich structure with semi-filled core (GFPUS). Figure 5.37 Predicted deformation modes for a corrugated-core structure with semi-filled foam; (a) peak loading and (b) collapse of corrugatedcore sandwich structure. Note that the inset gives the deformation 198 magnitude. Figure 5.38 The meshes of the sandwich structure modelling. 199 Figure 5.39 Loading direction, boundary conditions and assembly for the 200 dynamic compression model. Figure 5.40 The measured response for an aluminium corrugated-core structure compared to the numerical simulation. The force-displacement responses for the model with $FE-\xi = 0.01$ show reasonable agreement with the measured response. Note that in this FE analysis, an initial velocity of (a) 0.99 m/s and (b) 3.13 m/s has 202 been applied. Figure 5.41 Predicted deformation modes for an aluminium corrugated-core structure at a velocity of 3.13 m/s;(a) initial contact and (b) buckling 203 of the struts. Note that the inset gives the Mises stress. Figure 5.42 The measured response for the GFRP corrugated-core structure compared to the numerical simulation. The force-displacement responses of the model with FE- $\xi = 0.05$ show reasonable agreement with the measured response. Note that in this FE analyses, an initial velocity of (a) 0.99 m/s and (b) 3.13 m/s has been applied. 204 Figure 5.43 Predicted deformation modes for a corrugated-core structure at a velocity of 3.13 m/s; (a) initial buckling and (b) fibre fracture in the struts. Note that the inset gives the magnitude of fibre damage in compression. 205

xxiii

Figure 6.1	(a) Comparison of the measured and numerical data for	
	compression strength of the AL5 and GF2U5 corrugated-core	
	sandwich structures, and (b) compression strength and modulus	
	properties as a function of the number of unit cells for the	
	CF2U5 corrugated-core sandwich structures.	212
Figure 6.2	Photos of damage in GFRP corrugated-core specimens based on	
	an increasing number of units cells.	213
Figure 6.3	Comparison of the experimental data and numerical predictions	
	of the compression strength and modulus as a function of cell wall	
	thicknesses for sandwich structures based on: (a) GFRP and	
	(b) CFRP.	214
Figure 6.4	Comparison of the specific strength as a function of cell wall	
	thickness for the GFRP, CFRP and aluminium corrugated-cores.	216
Figure 6.5	Comparison of the maximum compression load with stiffness as	
	a function of width (a) the GFRP and (b) the CFRP sandwich	
	specimens.	217
Figure 6.6	Comparison of the experimental data and numerical predictions of	
	the compression strength and modulus as a function of normalised	
	width of (a) the GFRP and (b) the CFRP sandwich specimens.	218
Figure 6.7	Comparison of the plain compression stress-strain behaviour	
	of the PU foam, conventional corrugated core (unfilled	
	foam) and foam-filled core of (a) GFRP and (b) CFRP sandwich	
	structures.	220
Figure 6.8	The variation of strain-rate of the compression strength of the	
	corrugated-core (a) AL (b) GFRP and (c) CFRP sandwich	
	structures.	224
Figure 6.9	The measured maximum contact force and energies as a function	
	of impact velocity, for (a) AL, (b) GFRP and (c) CFRP sandwich	
	panels. Note that the impactor mass ratio, m *, to AL, GFRP and	
	CFRP is 98, 170 and 173 respectively.	226
Figure 6.10	The dynamic strength enhancement factor obtained by normalising	
	the maximum dynamic stress by the quasi-static strength, plotted	
	as a function of the impact velocity.	227
Figure 6.11	(a) Variation of the maximum compression and shear stresses	

xxiv

	with loading angle, (b) strength-failure criterion for the AL	
	corrugated-core structure.	229
Figure 6.12	(a) Variation of the maximum compression and shear stresses	
	with loading angle, (b) strength-failure criterion for the GFRP	
	corrugated-core specimen.	230
Figure 6.13	(a) Variation of the maximum compression and shear stresses	
	with loading angle, (b) strength-failure criterion for the CFRP	
	corrugated-core structure.	231
Figure 6.14	Determination of n values to fit the yield surface criteria of	
	(a) GFRP and (b) CFRP corrugated-core structure.	232
Figure 6.15	Low magnification optical micrographs of polished sections of	
	the corrugated-core sandwich structures at $H/L = 0.035$; (a) GFRP	
	and (b) CFRP specimens. Fibre fracture, delamination and	
	debonding are typical failure modes in quasi-static and dynamic	
	loadings.	235
Figure 6.16	Post-damage photos of the AL corrugated-core sandwich	
	structures for an aspect ratio of $H/L = 0.035$.	236
Figure 6.17	Post-test photos of the composite sandwich structures for an	
	aspect ratio of $H/L = 0.035$; (a) Semi-filled and (b) Fully-filled.	236
Figure 6.18	Photographs of impacted specimens beyond the threshold energy	
	to initiate fracture, at velocity of 4.43 m/s; (a) AL, (b) CFRP	
	and (c) GFRP materials.	237
Figure 6.19	Values of compression strength and energy absorbed for all the	
	tested corrugated-core sandwich structures.	241
Figure 6.20	Comparison of the specific strength and specific energy absorption	
	values of the corrugated-core sandwich structures for an aspect	
	ratio of $H/L = 0.035$.	242
Figure 6.21	Comparison of the compression strength of the experimental	
	data with commercially available sandwich core types for	
-	lightweight applications, as a function of equivalent core density.	243
Figure 6.22	Collection of experimental data summarising the compression	
	strength of current core types design developed by researchers	
	in recent years, as a function of equivalent core density.	244

XXV

.