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ABSTRACT 

The aim of this research work is to investigate the mechanical properties of corrugated-core 

sandwich structures under quasi-static and dynamic loading conditions and to determine the 

failure mechanisms and energy-absorbing characteristics of the corrugated-cores with 

different cell wall thickness and filled with a foam core. 

Triangular corrugation structures were made from an aluminium alloy (AL), a glass fibre 

reinforced plastic (GFRP) and a carbon fibre reinforced plastic (CFRP). The composite 

corrugations were fabricated using a hot press moulding technique and then adhesively 

bonded to skins based on the same material, to produce a range of lightweight sandwich 

structures. The role of the number of unit cells, the thickness of the cell walls and the width 

in determining the mechanical behaviour of the structures was investigated. Buckling of the 

struts was identified as the initial failure mode in these corrugated systems. Continued 

loading resulted in plastic deformation in the aluminium system, in contrast, fibre .fracture, 

matrix cracking and localised delamination in the composite systems, as well as debonding 

between the skins and the core were observed in the composites. The compression strength 

and modulus were shown to be dependent on the number of unit cells and the cell wall 

thickness, but independent of specimen width. Subsequent mechanical testing was 

undertaken using an Arcan rig capable of generating a range of loading conditions between 

pure shear and pure compression. The failure strength in the aluminium system was 

accurately represented using a two dimensional quadratic failure criterion. In contrast, due to 

the initation of delamination within the composite struts, the composite corrugated-cores 

were accurately predicted using a modified failure criterion. 

Low velocity compression loading was subsequently performed on the sandwich structures, 

where the dynamic strength enhancement factor was shown to increase for all the 

corrugation systems. This was attributed to both a material strain-rate sensitivity and inertial 

stabilisation effects. The failure mechanisms in the sandwich structures were found to be 

similar under both quasi-static and dynamic loading conditions, where damage initiated due 

to buckling of the struts. To simulate the mechanical response of the corrugation systems, 

FE models have been developed using the Abaqus finite element package. The FE results 

were compared to measured responses, and good agreement was achieved. The failure 

modes predicted by the FE models show reasonably good agreement with the experimental 

observations. 

Finally, foam filling the composite corrugation systems significantly improved the specific 

strength as well as specific energy-absorbing characteristics of the structures. The 

compression properties of the corrugated structures have been compared to those of other 

core materials, where the evidence suggests that these systems compare favourably with 

other cellular core materials.
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