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ABSTRACT 

The research focuses on the application of an active force control (AFC) 

strategy with iterative learning control (ILC) algorithms to compensate for the 

various introduced road profiles or 'disturbances' in a quarter car suspension system 

as an improvement to ride comfort performance. ILC algorithm is implemented into 

AFC-based control scheme to reduce its complexity and hence faster response, by 

replacing the use of artificial intelligence (Al) method as proposed by previous 

researcher. The new control scheme named active force control with iterative 

learning control algorithm (AFCIL) is complemented by the classic proportional-

integral-derivative (PID) control incorporated and designed as the outermost control 

loop. The PID controller was first designed and tested prior to developing the AFC 

which was directly cascaded with the YIDdoop. A number of ILC algorithms were 

explicitly employed to compute the estimated mass in the AFC loop that is necessary 

to trigger the control action. The AFC with ILC (AFCIL) suspension system was 

experimented both through simulation and practical experimentation considering 

various ILC learning parameters, differenti operating conditions and a number of 

external disturbances to test and verify the system robustness., The simulation was 

conducted using MATLAB/Simulink software package whilstthe experimental study 

utilized the existing experimental rig with a hardware-in-the-loop simulation (HILS) 

configuration with the proposed ILC algorithms incorporated as the new research 

contribution.. The results obtained, via various control schemes in, the form of PID, 

AFCIL and passive systems were rigorously, compared and analyzed.to ascertain the 

system performance in terms of its, ability, to improve riding. comfort. characteristics. 

The results imply that the proposed AFC-based scheme produces the best response 

with an approximately 50% improvement I in comparison to the 'PID and passive 

V 

counterparts.



ABSTRAK 

Kajian yang dilakukan dengan memfokus kepada aplikasi strategi kawalan 

daya aktif (AFC) yang disepadukan dengan algoritma kawalan pembelajaran 

berlelaran (ILC). Sistem mi bertujuan untuk menambahbaik keselesaan pemanduan 

dengan cara mengurangkan kesan gangguan ke atas sistem suspensi pada sebuah 

model kereta. Selain daripada menambahbaik keselesaaan pemanduan, kajian mi 

juga bertujuan untuk mengurangkan beban perkomputeran kaedah buatan pintar (Al) 

yang telah dijalankan oleh penyclidik sebelum mi terhadap sistem suspensi aktif. 

Sistem kawalan yang mampan dibantu oleh kawalan berkadaran-kamiran-terbjtan 

(PID) digubah dan direkabentuk sebagai sistem kawalan di peringkat paling luaran. 

Sistem kawalan mi mula-mula sekali direkabentuk dan diuji sebelum digabungkan 

secara bersiri dengan sistem kawalan'PIDL Beberapa algoritma ILC digunakan untuk 

menganggar nilai jisim yang diperlukan untuk membolehkan sistem AFC bertindak 

dengan berkesan. Sistem kawalan yang menyepadukan AFC bersama ILC (AFCIL) 

mi akan diuji melalui simulasi dan juga secara praktik melalui eksperimen dengan 

mengambil kira pelbagai nilai parameter berlainan berkaitan dengan pembelajaran 

lelaran ILC, keadaan operasi dan gangguan untuk, melihat kemampanan dan 

kebericesanan nsistem. Simulasi dilakukan menggunakan MATLAB/Simulink 

manakala eksperimen dilakukan menggunakan rig suspensiise4ia ada secara simulasi 

perkakasan-di dalam-gelung (HILS) dengan mengambil kira algoritma ILC yang 

digabungkan ke dalam, sistem mi .sebagai. sumbangan .penyelidikan yang baharu. 

Basil keputusan yang diperolehi dari sistem kawalan suspensiPID, AFCIL dan pasif 

dibandingkan dan dianalisis untuk melihat Lkeberkesanan sistem cadangan dalam 

menambahbajk mutu keselesaan pemanduan kenderaan. Hasil: kajian juga 

menunjJcan bahawa sistem berasaskan AFC yangir dicadangkan berjaya 

menambahbaik mutu keselesaan pemanduan dalam sekitar 50% berbanding dengan 

sistem kawalan suspensi PID dan pasif.

A 
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CHAPTER 1 

INTRODUCTION 

1.1	 General Introduction 

Ride comfort has become one of the essential criteria in determining the 

quality of a passenger car. The more comfortable a vehicle could be designed, 

manufactured and tested, the better quality it will be classified as a passenger vehicle. 

It is highly desirable for passengers that the vehicle will give them a very 

comfortable riding while travelling on various types of road surfaces and conditions. 

Suspension system has contributed greatly to the .ride comfort in passenger vehicle as 

it serves to ensure the main body of the vehicle (sprung mass) is relatively 'free' 

from the external and internal source of vibrations and other related disturbances. In 

other words, the vehicle suspension system is the system constructed in a vehicle to 

primarily isolate or reduce the effect of oscillation from a vibration source to the 

body compartment. In addition, the vehicle suspension system is also expected to 

improve the stability of the vehicle during cornering as it helps to keep the tyre in 

constant contact with the road surface. This primary function of a suspension system 

is the main concern of this research in which the proposed research shall focus on 

improving the ride comfort aspect of a vehicle .model,htaking \into account the 

implementation of a specific intelligent control algorithm on a selected suspension 

system investigated both through simulation and experimental study. 

Vehicle suspension system appears in market nowadays in many types and 
classification according to their properties, .functions,and adaptability typically 

known as the passive suspension. In the current market, it may be in the form of leaf 

Spring type, double wishbone and McPherson strut. McPherson ,strut which consists 

of a coil spring and a shock absorber is the most populartypeof suspension system
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for a passenger vehicle due to its simplicity. in. construction,, suitably ,located in small 

and confined space and most important of all, low cost. Passive suspension is usually 

constructed with a fixed dynamic properties and non-controlled disturbance isolation 

ability. The setting or tuning of the suspension can be either soft for ride comfort or 

stiff for stability; More often than notitcou1d-not compromise both circumstances 

for ideal situation if the riding conditions are varied. This leads to the innovation of 

semi-active suspension system with some control mechanisms applied to control the 

damping force of the suspension such as using the magneto rheological (MR) fluid in 

the damper like the one carried out by Chooi and Oyadiji, (2009). 

The development of electronic sensors contributes to the implementation of a 

practical robust control strategy using active suspension. The sensor attached in the 

system could vary the output of the suspension system and create a feedback control 

strategy, thereby giving more adaptability to the suspension system considering 

various road surfaces (Appleyard and Wellstead, 1995). 'Active force control (AFC) 

is one of the approaches in controlling dynamical system subject to various forms of 

excitations (Hewit and Burdess, 1981). .Intheir.work, They .managethto .show that 

AFC is a simple but yet a robust control scheme that could compensate for 

disturbances in a system with a very acceptable. delay. .due . to. the. simplicity of its 

control algorithm. Priyandoko et al., (2009), first implemented AFC on the vehicle 

suspension and came out with a significant improvement 'iii the ride comfort of the 

vehicle model considering the AFC with artificial intelligence (Al) technique and a 

number of road input profiles as the disturbances (Priyandoko et al., 2009). The main 

burden of the AFC scheme is the estimated mass parameter which needs to be 
appropriately determined before the scheme could be effectively executed. 

Iterative learning control (ILC), algorithm may ..yet be another intelligent 

method to control dynamical systems (Arimoto et al. 1984).'ILC . is , developed to 

Produce the output of a system that is largely based on a repetitive process that 
Considers trajectory errors as the typical inputs to the system. It was successfully 
imp

lemented by a number of researchers in both simulation and experimental works. 

In AFC scheme, ILC can be used to determine the best, value for estimated mass 
Parameter. By.. tuning the learning parameters to. get the appropriateJearing 
Parameters, ILC can predict the value for estimated mass after a few iterations. It is
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very important though to make sure the convergence of the ivalue and it is desired to 

speed up the convergence to as minimum iteration as possible. 

1.2 Background Study 

Ride comfort has thus become the main business in automotive sector in the 

present day situation. Manufacturers are seen chasing each other to produce very 

comfortable suspension system but at the same time very stable during cornering and 

braking. Passive suspension however could only offer one of those characteristic or 

compromise between ride comfort and handling or stability. Manufacturer then offers 

the adjustable suspension system which can be adjusted to be very comfort or very 

stable according to the drivers needs but it cannot be changed instantly during 

driving. Researchers then proposed and implemented varioustsemi-active and active 

vehicle suspension systems both theoretically as well experimentally (Appleyard and 

Welistead, 1995). A semi-active suspension has the ability to change the damping 

characteristics of the shock absorbers as in an electro-rheological or MR damper and 

also some of them have the ability of changing the spring rate by using an air spring 

system. In active suspension system however, an actuator is typically attached in 

parallel with both a spring and a shock absorber in between the sprung and unsprung 

masses or sometime replacing them. The actuator then, will inject energy into the 

suspension system according to the disturbance created by the road profile in real-

time during driving without having the driver to set them manually (Cherry and 

Jones, 1995). 

Suspension system in a vehicle has the main purpose of isolating the 
Passenger from the external disturbances from the road roughness and also from the 

internal disturbances caused by the engine i bay, and act ofdi ye during decelerations 

and squat during accelerations. To achieve .an acceptable, ride comfort, suspension 

system works by minimizing the vertical sprung acceleration. N, A' number of 
Parameters need to be control in order to observe the suspension system could 

achieve this goal as described by Miller (1988) and ..Gaoa et al. (2006). These 
Parameters are explained as follows:



4 

a. Body acceleration 

Body acceleration is the parameter that directly connected to passenger since 

it is the passenger who is in the compartment of a vehicle. This parameter will be 

sensed by the passenger most and will contribute to how comfort the' vehicle is. In 

fact the level of comfort for a car is typically evaluated by the body acceleration in 

the vertical direction. This would be the most important parameter to be controlled so 

that the ride comfort could be improved. 

b. Tyre deflection 

Tyre deflection contributes most in terms of vehicle stability and usually did 

not give significant effect to the ride comfort. The main, idea to control this parameter 

is only to ensure that it's always in contact with road surface. Since the main concern 

of this project is ride comfort, this parameter, will not be focused in discussion.. 

C. Suspension deflection 

Suspension deflection is crucial since it determines the safety of the car and 

also the ride comfort. This parameter must be controlled so that its value is always 

within the range of the absorber and spring rate. Hazardous consequences can arise if 
the suspension deflection exceeds any of its maximum or minimum rates. It is also 

needed to be settled down to its origin level as soon as possible or else the 

suspension will be considered to be too bumpy. 

d. Actuator saturation 

The ability of the actuator to inject energy into the suspension system is also 

an impopit thing to be observed since it relates the controller to the real world 

Suspension system. No matter how good a controller scheme is, without a sufficient 

actuator Power, the controller means nothing to the real worldapplication.
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Based on the above, the focus Qfthe study will be, on the first and second 

influential parameters, i.e., the vertical body acceleration and suspension deflection 

(body displacement) that are deemed to contribute most of the riding comfort aspect. 

Thus it is the main aim of the study to show good improvement in the riding comfort 

by reducing the parameter to a certain level; This project will try to contribute a new 

robust control strategy of a suspension system based on the active force control, 

AFC. AFC had been known as a very robust yet very simple and effective controller 

both in theory and practice (Mailah and Rahim, 2000; Hussein et al., 2000; Kwek et 
al., 2003; Mailah et al., 2005). This research will apply AFC to improve suspension 

dynamic performance and tested using artificial intelligent method, and a number of 

disturbance profile to show its robustness. Simulation will be carried out to see the 

controller ability and then a hardware-in-the-loop simulation (HILS) will be done to 

investigate the effectiveness of the controller in real world taking into account 

various weakness of real-time hardware. A simple quarter car model is used in this 

research as it is simple but yet can give most of the important characteristic of the 

suspension system (Fischer and Isermann, 2004). 

1.3 Problem Statements 

AFC has been first introduced by Hewit and Burdess (1981). The basic idea 

of AFC is to estimate and measure some identified parameters to predict its 

compensation action. The main problem arised is the computation of.the, estimated 

mass or inertial parameter that will be in turn multiplied with the body acceleration 

(from accelerometer) to produce the estimated., disturbance, force. or torque. on the 

dynamical system; in the study, it is the sprung mass and, hence the estimated 
disturbance force is used . The other burden is to compute: the, inverse dynamics of 

the actuator which is needed to convert the estimated disturbance force calculated by 

the controller into an appropriate electrical signal required by the physical actuator. 
Priyandoo et al. (2009) have come up with some intelligent methods to obtain the 
appropriate estimated mass of the unsprung mass and the inverse dynamics of the 

actuator using fuzzy, and neural network strategies. However, the problem with the 
implementation of the proposed intelligent methods is the computational burden, 

Since it usually involves complicated algorithm, .thus require longer time to resolve



and execute the algorithms. The nonlinearity of the pneumatic actuator also gives a 

problem in order to give significant and accurate signal into the actuator so that it 

will generate sufficient energy into the suspension system to match the disturbance 

forces. Using the approach used by Priyandoko et al. (2009) ensured that the actuator 

will act as accurate as possible to match the desired force trajectory and hence it is 

also used in the proposed study. 

1.4	 Research Contribution 

The research produces a new practical intelligent AFC based scheme applied 

to a suspension system already developed by a previous researcher in the Systems 

and Control Laboratory, Faculty of Mechanical Engineering, Universiti Teknologi 

Malaysia (LJTM) to improve the ride comfort aspect. Thescheme is embedded with 

iterative learning control (ILC) algorithms in conjunction with the AFC method to 

compute the estimated mass parameter for the overall control implementation. This 

new proposed scheme named as AFCIL applied to a quarter car model suspension 

test rig is tested both in simulation and experimental environments. It contributes yet 

an effective and robust disturbance compensation scheme in improving the ride 

comfort for a passenger vehicle. It will also show some study on learning parameters 

that affect the performance of the proposed system. 

1.5	 Research Objectives 

The main objectives of this research are: 

2. To model and simulate AFC model with ILC algorithm (AFCIL) controller 

scheme as a disturbance compensator in a quarter car, suspension model. 

3. To perform experiments on the test rig based on the proposed control model 

for validation.
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1.6	 Research Scope 

The scope covered the frame work in this research is as follows: 

1. Mathematical modelling of the proposed system considering a quarter car 

suspension system, ILC algorithth, PID controller, AFC compensation system 

including selected road profiles as disturbance. The main proposed control 

scheme is known as AFCIL. 

2. Simulation of the proposed system is performed using MATLAB/Simulink to 

take into account various operating and loading conditions. 

3. Consider a two degree of freedom (DOF) quarter car model. The spring 

constant and damping coefficient are assumed to be from a Kelisa car model. 
4. The analysis is performed on the ride comfort characteristics only related to 

the body acceleration and suspension deflection parameters. 

5. A hardware-in-the-loop simulation (HILS) will be done to observe the system 

(AFCIL scheme) performance and validate the theoretical results via 

experiments. The experiment is performed on an existing quarter car vehicle 

suspension in the laboratory. The experiments were run under free friction 

assumption and the tyre is always in contact with the test rig platform surface. 

The road surface signal is a sinusoidal wave as disturbance. 

6. The actuator used in the test rig to control the damping force is a nonlinear 

pneumatic type. 

1.7 Research Methodology 

The research project involves the modelling and-simulation of an active 

suspension control of quarter car model, toi observe and predicv isome Lpreliminary 

results of the proposed AFCIL scheme. The controller parameters related to PID 

controller and ILC are appropriately tuned using the typical standard heuristic 

methods while those for the AFC, the necessary estimated mass parameter is 
acquired using the ILC algorithm. MTLAB/Sjmulinksojare package is the 
simulation platform used to perform this procedure considering various operating 

and loading conditions. Some passive system responses of the suspension when 
subjected to disturbances were obtained as a reference data. The simulation
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parameters of the suspension system and the pneumatic actuator were gathered from 

previous researcher as a reference (Priyandoko et al., 2009). 

It was followed by a validation of the proposed control method (i.e., AFCIL) 

in the form of a HILS that was carried out in real -time considering physical 

limitations of the test rig. The experimental works were performed on the existing 

quarter car suspension test rig with slight modification (embedding the ILC 

algorithm). The main stages of the project are shown in Figure 1.1. 

A proportional-integral-derivative, PID controller was first implemented as 

the outermost positioning controller. The best tuning were obtained by using 

heuristics tuning method before some fine tuning is done to produce the best results. 

Note that this controller gains were fixed and directly used without further tuning in 

the AFC implementation at a later stage. The results from this conventional PID 

controller were used as a basis for comparison, of the effectiveness of the new 

proposed scheme in improving the ride comfort. 

The AFC loop was later added in series with the PID controller to compensate 

disturbance that cannot be fully rejected by the conventional -PID controller. As the 

objective of this study to only concentrate on the estimated mass that is needed by 

the AFC control loop, the inverse dynamic of the actuator was obtained from the 

previous research by Priyandoko et al. (2009) was taken. The body acceleration from 

the suspension model is used as the input which is then multiplied with the estimated 

mass obtained from the ILC algorithm. This multiplication will give estimated 
resultant (disturbance) force for the AFC loop. The actuated force generated from the 

Pneumatic actuator block diagram will be subtracted from, the resultant force 

mentioned above leaving only the remainingdjsttwbance forces The signal then goes 

through the inverse dynamic of the actuatorgenerating an appropriate signal which 

then will be recognized by the actuator. as an additional signal to overcome the 

disturbance generated from the road profile. Road profile which becomes the main 
disturbance sources in this study was represented by some input signals generated in 
SimuIjpJ( environment.



Iterative learning algorithm is used to estimate the mass that is required by the 

AFC loop. The algorithm proposed by Saguru Arimoto was used in this project for 

both simulation and experiment works. The learning parameters in the Arimoro-type 
algorithm were studied to see how they affect the estimated mass values. The tuning 

process has been done via the ILC algorithms to produceih best estimated mass 

values which contribute to the effectiveness of AFC in compensating disturbances.
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