TYPES OF DAMAGE IN PIN-LOADED ALUMINUM PLATE AND OTHER MATERIAL

MOHAMMAD AFIFI B. MOHAMMAD

A report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering UNIVERSITI MALAYSIA PAHANG

NOVEMBER 2009

UNIVERSITI MALAYSIA PAHANG FACULTY OF MECHANICAL ENGINEERING

We certify that the project entitled *Types of Damage in Pin-Loaded Aluminum Plate and Other Material* is written by *Mohammad Afifi B. Mohammad.* We have examined the final copy of this project and in our opinion; it is fully adequate in terms of scope and quality for the award of the degree of Bachelor of Engineering. We herewith recommend that it be accepted in partial fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering.

(name of panel member) Examiner

Signature

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:
Name of Supervisor	: MR. LEE GIOK CHUI SMN., KMN.
Position	:
Date	:

STUDENT'S DECLARATION

I hereby declare that the work in this project is my own except for quotations and summaries which have been duly acknowledged. The project has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature:Name:MOHAMMAD AFIFI B. MOHAMMADID Number:MA 06074Date:

TABLE OF CONTENTS

Page

SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 : INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Objectives	2
1.4	Scopes	3

CHAPTER 2 : LITERATURE REVIEW

2.1	Introd	uction	4
2.2	Failur	8	5
	2.2.1 2.2.2	Ultimate Failure Mechanical Joint Failure	5 7
2.3	Mecha	anical Joint	9
	2.3.1	Pins	10
2.4	Previous Studies		
	2.4.1	An experimental investigation into the progression of damage in pin-loaded fibre metal laminates	10
	2.4.2	Effects of geometric parameters on failure behavior in laminated composite plates with two parallel pin-loaded holes	11
	2.4.3	Failure analysis of woven laminated glass–vinylester composites with pin-loaded hole	14
	2.4.4	Other Studies	17
2.5	Mater	ials	18
	2.5.1	Aluminum	18
	2.5.2	Mild Steel	18

CHAPTER 3 : METHODOLOGY

3.1	Introduction	20
3.2	Project flow chart	21
3.3	Preparation of specimens	22
3.4	Universal testing machine	24

CHAPTER 4 : RESULT AND DISCUSSION

4.1	Introduction	26
4.2	Analyzing the Aluminum plates	26
	 4.2.1 Aluminum (165x10mm) 4.2.2 Aluminum (165x15mm) 4.2.3 Aluminum (165x20mm) 	27 28 30

	4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11	Aluminum (170x10mm) Aluminum (170x15mm) Aluminum (170x20mm) Aluminum (175x10mm) Aluminum (175x15mm) Aluminum (175x20mm) Aluminum (180x10mm)	31 33 34 36 37 39 40
	4.2.11 4.2.12	Aluminum (180x15mm) Aluminum (180x20mm)	42 43
4.3	Analyz	zing the Mild Steel plates	44
	4.2.1	Mild Steel (165x10mm)	45
	4.2.2	Mild Steel (165x15mm)	46
	4.2.3	Mild Steel (165x20mm)	48
	4.2.4	Mild Steel (170x10mm)	49
	4.2.5	Mild Steel $(170 \times 15 \text{mm})$	51
	4.2.6	Mild Steel (175-10mm)	52
	4.2.7	Mild Steel (1/5x10mm) Mild Steel (175x15mm)	54
	4.2.8	Mild Steel (175x10mm)	55 57
	4.2.9	Mild Steel (180v10mm)	58
	4.2.10	Mild Steel (180x15mm)	50 60
	4.2.12	Mild Steel (180x20mm)	61
4.4	Result		63
	111	Aluminum	63
	4.4.2	Mild Steel	64
4.5	Discus	ssion	65
СНА	PTER 5	: CONCLUSIONS AND RECOMMENDATIONS	
~			
5.1	Conclu	usions	70

REFERENCES 72

71

5.2

Recommendations

LIST OF TABLES

Table No.	. Title	Page
2.1	Title and finding of previous study	17
2.2	Typical values of some physical properties of metals	19
3.1	Table of vary E/D and W/D for both type of specimen	23
4.1	Result for Aluminum Plate	63
4.2	Result for Mild Steel Plate	64

LIST OF FIGURES

Figure N	o. Title	Page
2.1	Net-Tension Failure	7
2.2	Shear-Out Failure	7
2.3	Bearing Failure	8
2.4	Failure modes under investigation	8
2.5	Pin-bearing test configuration and typical joint geometry	11
2.6	Geometry of the experiment	12
2.7	Failure modes in experimental study (a) shear-out, (b) bearing, (c) bearing and shear-out and (d) bearing and net-tension	13
2.8	Experiment setup for pin joint testing	15
2.9	Load–displacement curves for pin-loaded glass–vinylester composite plates	16
3.1	Flow chart of the project	21
3.2	Geometry of the aluminum / mild steel plate with a circular hole, subjected to pin	22
3.3	Experimental setup for the pinned-joint fixture	24
4.1	Graph 1 : Load(kN) versus Displacement(mm) (Al 165x10mm)	27
4.2	Specimen and Failure Occur (Al 165x10mm)	27
4.3	Graph 2 : Load(kN) versus Displacement(mm) (Al 165x15mm)	28
4.4	Specimen and Failure Occur (Al 165x15mm)	29
4.5	Graph 3 : Load(kN) versus Displacement(mm) (Al 165x20mm)	30

4.6	Specimen and Failure Occur (Al 165x20mm)	30
4.7	Graph 4 : Load(kN) versus Displacement(mm) (Al 170x10mm)	31
4.8	Specimen and Failure Occur (Al 170x10mm)	32
4.9	Graph 5 : Load(kN) versus Displacement(mm) (Al 170x15mm)	33
4.10	Specimen and Failure Occur (Al 170x15mm)	33
4.11	Graph 6 : Load(kN) versus Displacement(mm) (Al 170x20mm)	34
4.12	Specimen and Failure Occur (Al 170x20mm)	35
4.13	Graph 7 : Load(kN) versus Displacement(mm) (Al 175x10mm)	36
4.14	Specimen and Failure Occur (Al 175x10mm)	36
4.15	Graph 8 : Load(kN) versus Displacement(mm) (Al 175x15mm)	37
4.16	Specimen and Failure Occur (Al 175x15mm)	38
4.17	Graph 9 : Load(kN) versus Displacement(mm) (Al 175x20mm)	39
4.18	Specimen and Failure Occur (Al 175x20mm)	39
4.19	Graph 10 : Load(kN) versus Displacement(mm) (Al 180x10mm)	40
4.20	Specimen and Failure Occur (Al 180x10mm)	41
4.21	Graph 11: Load(kN) versus Displacement(mm) (Al 180x15mm)	42
4.22	Specimen and Failure Occur (Al 180x15mm)	42
4.23	Graph 12 : Load(kN) versus Displacement(mm) (Al 180x20mm)	43
4.24	Specimen and Failure Occur (Al 180x20mm)	44
4.25	Graph 13 : Load(kN) versus Displacement(mm) (Ms 165x10mm)	45
4.26	Specimen and Failure Occur (Ms 165x10mm)	45
4.27	Graph 14 : Load(kN) versus Displacement(mm) (Ms 165x15mm)	46
4.28	Specimen and Failure Occur (Ms 165x15mm)	47

4.29	Graph 15 : Load(kN) versus Displacement(mm) (Ms 165x20mm)	48
4.30	Specimen and Failure Occur (Ms 165x20mm)	48
4.31	Graph 16 : Load(kN) versus Displacement(mm) (Ms 170x10mm)	49
4.32	Specimen and Failure Occur (Ms 170x10mm)	50
4.33	Graph 17 : Load(kN) versus Displacement(mm) (Ms 170x15mm)	51
4.34	Specimen and Failure Occur (Ms 170x15mm)	51
4.35	Graph 18 : Load(kN) versus Displacement(mm) (Ms 170x20mm)	52
4.36	Specimen and Failure Occur (Ms 170x20mm)	53
4.37	Graph 19 : Load(kN) versus Displacement(mm) (Ms 175x10mm)	54
4.38	Specimen and Failure Occur (Ms 175x10mm)	54
4.39	Graph 20 : Load(kN) versus Displacement(mm) (Ms 175x15mm)	55
4.40	Specimen and Failure Occur (Ms 175x15mm)	56
4.41	Graph 21 : Load(kN) versus Displacement(mm) (Ms 175x20mm)	57
4.42	Specimen and Failure Occur (Ms 175x20mm)	57
4.43	Graph 22 : Load(kN) versus Displacement(mm) (Ms 180x10mm)	58
4.44	Specimen and Failure Occur (Ms 180x10mm)	59
4.45	Graph 23 : Load(kN) versus Displacement(mm) (Ms 180x15mm)	60
4.46	Specimen and Failure Occur (Ms 180x15mm)	60
4.47	Graph 24 : Load(kN) versus Displacement(mm) (Ms 180x20mm)	61
4.48	Specimen and Failure Occur (Ms 180x20mm)	62
4.49	Graph 25 : Failure Load vs E/D [Al-W/D=2]	65
4.50	Graph 26 : Failure Load vs E/D [Al-W/D=3]	66
4.51	Graph 27 : Failure Load vs E/D [Al-W/D=4]	66

4.52	Graph 28 : Failure Load vs E/D [Ms-W/D=2]	67
4.53	Graph 29 : Failure Load vs E/D [Ms-W/D=3]	67
4.54	Graph 30 : Failure Load vs E/D [Ms-W/D=4]	68

LIST OF SYMBOLS

L	: Length of the plate
---	-----------------------

- P : Load by Universal Testing Machine
- E _____ Distance between centre of hole and edge of the plate
- W : Width of the plate
- D Diameter of the plate
- *t* Thickness of the plate

LIST OF ABBREVIATIONS

- FML : Fiber Metal Laminates
- FEA : Finite Element Analysis
- Al : Aluminum
- Ms : Mild Steel