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ABSTRACT 

Micro Hydro Power (MHP) turbines were used to generate energy with a water 
flow. This energy is useful to the mankind. Computational Fluid Dynamics (CFD) 
software was used to simulate the water flow over MHP turbines as they are placed in a 
river domain. Multiple arrays arrangement of MHP turbines lead to generate large 
amount of energy. It is rare to find CFD simulation of MHP turbines. In this study, a 
river model was created and simulated in CFD software to obtain the water flow 
characteristic over MHP turbine bodies. The process then continued by simulating 
different types of arrays arrangement in the river model. A MHP turbine model consists 
of a turbine outer body and static propeller blade in it. Five types of different array 
arrangements were used which are parallel, series, triangular, square and rhombus with 
different spacing sizes. The velocity profiles on each MHP turbines were identified at 
the mouth of turbine body. In this study, the triangular, square and rhombus 
arrangements were significant to generate power because their average velocities 
increase as the spacing sizes increase but parallel and series arrangements were not 
significant.
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ABSTRAK 

Turbin Penjana Micro Hydro (MHP) telah digunakan untuk menjana tenaga dengan 
aliran air. Tenaga mi amat berguna kepada manusia. Perisian Computational Fluid 
Dynamics (CFD) telah digunakan untuk mensimulasikan aliran air keatas turbin MHP 
semasa diletakkan di dalam domain sungai. Barisan susunan pelbagai turbin MHP akan 
membawa kepada penjanaan tenaga dalam kuantiti yang maksimum. Dalam kajian mi, 
model sungai telah dibentuk dan disimulasi dalam perisian CFD untuk mendapatkan 
ciri-ciri aliran air keatas badan turbin MHP. Proses mi kemudian diteruskan dengan 
simulasi pelbagai jenis susunan turbin yang berbeza dalam model sungai tersebut. Satu 
model turbin MHP terdiri daripada badan luar turbin dan bilah kipas statik di dalamnya. 
Lima jenis susunan turbin yang berbeza telah digunakan iaitu susuan selari, bersiri, 
segitiga, empat persegi dan rombus dengan saiz jarak yang berbeza antara turbin-turbin 
tersebut. Profil halaju pada setiap turbin MHP telah dikenal pasti di hujung badan 
turbin. Dalam kajian mi, susunan segitiga, empat persegi dan rombus dipilih untuk 
menjana tenaga kerana purata halaju meningkat apabila saiz jarak meningkat tetapi 
susunan selari dan bersiri tidak ketara untuk menjana tenaga.
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CHAPTER 1 

INTRODUCTION 

1.1 PROJECT BACKGROUND 

Hydro turbines are generally used to generate electricity from the water flow of 

a river or an ocean. For example, the hydroelectric dams in Malaysia are used to 

generate electricity at upstream location of a rivers The same concept can be done at 

downstream location by placing hydro turbines in the river. It is another method of 

extracting energy from kinetic energy of the water flow. Micro hydro turbines are used 

in large quantity to generate maximum energy 

Computational Fluid Dynamics (CFD) is a subtopic of Fluid Mechanics subject, 

which involves simulations with numerical methods and algorithms by using the CFD 

software in computers. The liquids and gases are defined by boundary conditions. This 

boundary condition is created to form a numerical model. The numerical model can be 

used for calculation of the parameters, which are set up during defining the boundary 

condition. After calculation, the simulation can be performed together with data 

presentation in many different methods. Overall, CFD is used to analyze and simulate 

the flow in a domain. With CFD, the water flow of river at downstream through arrays 

of MHP turbines simulated,
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1.2 PROBLEM STATEMENT 

In terms of arrangement of the micro hydro power turbines, the best arrangement 

of micro hydro power turbines in a river is needed to generator maximum amount of 

power. These MHP turbines can be used to supply electricity to rural areas. 

"Hydropower on a small scale, or micro-hydro, is one of the most cost-efficient energy 

technologies to be considered for rural electrification in less developed 

countries. "(Paish, 2002) 

"Micro hydro power is almost always more cost-effective than any other form of 

renewable power. "(Paul and Barbara, 1994) 

Most researches are conducted on the flow over array arrangements of tidal 

turbines. 

"This work investigates the performance variation across a tidal energy converter 

(I'EC) located centrally in an array (measure as a pressure differential). "(Bai et al., 

2009) 

"This study presents preliminary results of on-going work using Gerris, an adaptive 

mesh flow slower, to investigate the flow through 4 different arrays of 15 turbines each, 

over a tidal cycle. "(Divett et al., 2010) 

This research on MHP turbines was conducted based on the flow condition 

Pahang River downstream.
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1.3 OBJECTIVES 

The main objective of this project is to obtain the flow characteristics of a flyer 

flow when subjected with multiple arrays of micro hydro power (MHP) turbines. Before 

the main objective is achieved, another two objectives must be achieved first, which are 

to setup a free surface numerical model of a river and to setup a numerical model of a 

river flow on a MHP turbine. 

1.4 PROJECT SCOPE 

The first scope of the project was to create a numerical model of a river to 

simulate the water flow. First, the geometry of turbine body is designed with Solidworks 

2012 software. The unit for the river model and the turbine body is in meter (m). The 

meshing, setting up boundary condition, calculation, simulation and data presentation 

can be done with ANSYS 14, which is limited to the ANSYS CFX program. ANSYS 

CFX is used to simulate a flow in a domain in which the river is a flow domain for 

water and the turbine bodies as the solid domain in the river. The parameters are 

velocity, upstream and downstream heights, water density, and reference density have 

been set in the setup to run the simulation to obtain the flow characteristics over the 

turbine bodies. 

The array arrangements of MHP are divided into five different arrangements, 

which are parallel, series, triangular, square and rhombus. Each array arrangement has 

different spacing sizes. These different array arrangements and spacing sizes are 

designed with the Solidworks software 

The independent variable parameter used in the boundary condition is the 

velocity of the river flow. Meanwhile, the dependent variable is the velocity of the water 

reacts on the turbine blade. The temperature remains constant.



1.5 EXPECTED RESULTS 

As the spacing sizes for each array arrangements increases, the average velocity 

of the water flow inside the turbine bodies will increase must decrease as it enters the 

turbine bodies and the pressure in the turbine bodies will be higher. The kinetic energy 

of the water flow will able to generate maximum energy. The array arrangements that 

obey this situation will be chosen as the most significant arrangements to generate 

energy and will be used for further researches.



CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Hydro turbines are used to change water pressure from river flow into 

mechanical or kinetic energy, which can generate electricity (Paish, 2002). According to 

Cunningham in 1994, Micro Hydro Power (MHP) technology is needed to generate 

electricity to residential areas. Besides, MHP was one of renewable energy resources in 

the world. According to Paish in 2002, small hydro or MHP was the most economical 

technology to generate power. This was because MHP turbines use the water flowing in 

a river to generate power, where it is a continuous process. Besides, the costs for 

manufacturing and installing the MHP turbines were cheaper compared to the tidal and 

wind turbines. 

Most of the computational researches on arrays arrangement were done for tidal 

turbines, which was almost similar to MHP turbines. Computational fluid dynamics 

(CFD) models are used to analyze the wake effects in arrays of tidal turbines (Harrison, 

2009). The simulations of the turbines were done to obtain the wake characteristics of 

actuator disc and compare with experimental data. According to Bai in 2009, Fluent 

software was used to simulate 3-1) models of Tidal Energy Conversion (TEC) turbines 

with three-row array. In this research, the TEC array arrangement and spacing simulated 

to identify the performance variation. 

Besides that, adaptive mesh method with Gerris solver is used to optimize 

multiple arrays of tidal turbines in a channel (Divett, 2010). Reynolds-averaged Navier 

Stokes (RANS) equations are used with the turbines to stand for frozen rotor. Static
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blade method was similar with the frozen rotor method. The frozen rotor method is used 

in the computational domain to consider the deliberate the rotating effect (Lee, 2010). 

The CFD software was used here to consider the best arrangement of ocean current 

turbines, which generate maximum power. 

Moreover, Large-eddy Scale (LES) is type of CFD, where the larger turbulent 

scales are resolved (Churchfield, 2012). This method was carried out by creating a 

framework to generate inflow tidal turbulence data. With the framework, the wake 

characteristics and power generated had been considered. According to Lawson in 2011, 

Horizontal-axis Tidal Current Turbines (HATTs) were simulated with RANS CFD 

method to characterize the performance. 

2.2 COMPUTATIONAL FLUID DYNAMICS (CFD) 

Computational Fluid Dynamics is research software which is used in 

engineering fields to create simulation and analysis. This researches involve the flow 

characteristics of a fluid through a domain, heat transfer from solid to solid, solid to 

fluid or fluid to fluid, combustion process and the particle tracking of substances in a 

fluid. CFD is particularly dedicated to the former, fluids that were in motion, and how 

the fluid flow behavior influences processes that may include heat transfer and possibly 

chemical reactions in combusting flows (Jiyuan et al., 2008). 

Moreover, the CFD software is used to create numerical models. The numerical 

models are consisting of the models of a real item which are design with the CAD 

software or the Design Modeler in ANSYS CFX. The CFD software creates simulation 

of fluid flow over or through the numerical model to get proof on capability of the 

items. Through the simulation and analysis, accurate data on a model can be obtained. 

The physical characteristics of the fluid motion can usually be described through 

fundamental mathematical equations, usually in partial differential form, which govern 

a process of interest and are often called governing equations in CFD (Jiyuan et al., 

2008).
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Figure 2.1: The different discipline contained within computational fluid dynamics. 
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Figure 2.2: The three basic approaches to solve problem in fluid dynamics and heat 

transfer.
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Source: Jiyuan et al., 2008.



2.3 GOVERNING EQUATIONS 

2.3.1 Navier-Stokes Equation 

This equation is used to calculate the fluid motion. The general Navier-Stokes 

equation is:

P(I
LV 	 (2.1) 

2.3.2 Kinetic Energy Equations 

Kinetic energy (KB) is an energy formed as a result from the motion of a 

medium of fluid or air. The KE equation represents the relationship between velocity, 

mass and kinetic energy. The general equation of KB is: 

	

KE= -' — 	 (2.2) 2 

Where, KB kinetic energy (J) 

m mass (kg) 

v = velocity of a fluid flow (m/s) 

Meanwhile, for KB per unit mass, the formula is presented as following: 

ke - v2 

M	 2	 (2.3) 

The KB can be converted into mechanical energy. The kinetic energy from the 

water flow can be converted into kinetic energy of rotating shaft (KB,) by rotating the 

turbine blade. The formula below proves that velocity is directly proportional to the 

angular velocity as the kinetic energy is converted into mechanical energy: 

	

V r&i
	

(2.4) 

Where, r = radius of turbine shaft 

angular velocity

8 



Substitute Eq. (2.4) into Eq. (2.2)

KE 
= rn.r2ij2

(2.5) 2  

KE= — 	 (2.6) 2 

From the Eq. (2.6), it is proven that the angular velocity of the rotating turbine blade 

increases when the kinetic energy increases. Furthermore, the power of the rotating 

turbine blade calculated with the following equation: 

9 

Where, u = angular velocity 

M = momentum of torque

(2.7) 

These equations prove that the angular velocity of the turbine blade shaft increases 

when the velocity of the fluid flow increases. This is because the kinetic energy of the 

fluid flow is equals to the rotational kinetic energy. Hence, the more kinetic energy is 

converted into rotational kinetic energy in a turbine, the more power will be generated. 

2.3.3 Continuity Equation 

This equation was involving the mass conversation in a control volume in a 

fixed space. The fluid flow is matter may neither be created nor destroyed (Jiyuan, 

2008).


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

