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ABSTRACT 

 

In this thesis, a method of lattice Boltzmann is introduced. Lattice Boltzmann Method is 

to build a bridge between the microscopic and macroscopic dynamics, rather than to 

deal with macroscopic dynamics directly. In other words, LBM is to derive macroscopic 

equations from microscopic dynamics by means of statistic, rather than to solve 

macroscopic equations. Then, the methodology and general concepts of the lattice 

Boltzmann method are introduced. Next, a thermal lattice Boltzmann model is 

developed to simulate incompressible thermal flow. This report describes the flow 

pattern of Rayleigh Bernard Convection. This project will be focusing at low Rayleigh 

number and discretization of microscopic velocity using 9-discrete velocity model 

(D2Q9) and 4-discrete velocity model (D2Q4). This two discrete velocity model is 

applying the Gauss-Hermitte quadrate procedure. Rayleigh Bernard Convection and 

Lattice Boltzmann Method have been found to be an efficient and numerical approach 

to solve the natural convection heat transfer problem. Good Rayleigh Bernard 

Convection flow pattern agreement was obtained with benchmark (previous study).  
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ABSTRAK 

 

Di dalam tesis ini, kaedah kekisi Boltzmann diperkenalkan. Kaedah kekisi Bolzmann 

ialah untuk membuat hubungan di antara mikroskopik dan makroskopik. Dalam erti 

kata lain, kaedah kekisi Boltzmann ialah menerbitkan persamaan makroskopik daripada 

pergerakan mikoskopik oleh statistik daripada menyelesaikan persamaan makroskopik. 

Kemudian, methodogi dan konsep umum kaedah kekisi Boltzmann diperkenalkan. 

Kemudian, model terma kekisi Boltzmann adalah untuk membina simulasi di dalam 

aliran terma yg tidak mampat. Laporan ini memperihalkan corak aliran arus perolakan 

Rayleigh Bernard. Projek ini menumpukan pada nombor Rayleigh yang rendah dan arah 

pergerakan halaju mikoskopik menggunakan model 9-diskrit halaju dan model 4-diskrit 

halaju. Kedua-dua model diskrit ini mengadaptasikan prosedur kuadrat Gauss-Hermitte. 

Pemanasan di antara dua plat dan kaedah kekisi Boltzmann merupakan satu cara yang 

berkesan untuk menyelesaikan pemanasan pemindahan haba. Bentuk aliran di antara 

dua plat mempunyai persamaan dengan bentuk aliran kajian sebelum. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  PROJECT BACKGROUND 

  

 Navier-Stokes Equation 

 

                                                    

uPuu
t

u f 2

6

12
                             (1.1) 

 

                                                                            0.u                                                    (1.2) 

 

  Equation 1.1 shows the Navier-Stokes Equation that explains the flow of 

incompressible fluids together with the continuity equation show in equation 1.2 where 

 is the kinematics viscosity,  is the velocity of the fluid parcel,  is the pressure, and  

is the fluid density.  

 Lattice Gas Approach 

  Lattice Boltzmann models were first based on Lattice Gas Approach (LGA) in 

that they used the same lattice and applied the same collision. Instead of particles, 

Lattice Boltzmann (LBM) deal with continuous distribution functions which interact 

locally (only distributions at a single node are involved) and which propagate after 

collision to the next neighbor node. This is the main advantage of LBM compare to 

LGA. The next step in the development was the simplification of the collision and the 

choice of different distribution functions. This gives LBM is more flexible than LGA.  
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Molecular Dynamics  

  In molecular dynamics (MD), one tries to simulate macroscopic behavior of real 

fluids by setting up the model which described the microscopic interaction as good as 

possible. This leads to realistic equation of states whereas LGA or LBM posses only 

isothermal relations between mass density and pressure. The complexity of the 

interactions in MD restricts the number of particles and the time of integration. A 

method somewhat in between MD and LGA is maximally discretized molecular 

dynamics proposed by Colvin, Ladd and Alder (1988). 

 Lattice Boltzmann Method  

  The lattice Boltzmann method (LBM) has developed into an alternative and 

promising numerical scheme for simulating fluid flows and modeling physics in fluids. 

Historically, the lattice Boltzmann approach developed from improvement of lattice 

gases, although it can also be derived directly from the simplified Bhatnagar-Gross-

Krook (BGK) equation.  

The lattice Boltzmann method is based on microscopic models and macroscopic 

kinetic equations. The kinetic nature of the LBM introduces important features that 

distinguish it from other numerical methods. First, the streaming process of the LBM in 

velocity space is linear. Second, the incompressible Navier-Stokes (NS) equations can 

be obtained in the nearly incompressible limit of the LBM. The LBM originated from 

lattice gas approach (LGA), a discrete particle kinetics utilizing a discrete lattice and 

discrete time. The primary goal of LBM is to build a bridge between the microscopic 

and macroscopic dynamics rather than to deal with macroscopic dynamics directly. In 

other words, the goal is to derive macroscopic equations from microscopic dynamics by 

means of statistics rather than to solve macroscopic equation in Figure 1.1 below. 
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Figure 1.1: The relationship between macroscopic and microscopic. 

  Rayleigh-Bernard Convection 

  Rayleigh-Bernard convection is the instability of a fluid layer which is confined 

between two thermally conducting plates, and is heated from below to produce a fixed 

temperature difference. For small temperature differences between the plates there is no 

flow and heat is transported by conduction only. Above a certain temperature 

differences, convection sets in against the downward pointing gravitational acceleration, 

and a regular convection pattern is formed. At even higher temperature differences this 

pattern breaks down, eventually leading to plume dominated convection turbulence. 

Since liquids typically have positive thermal expansion coefficient, the hot liquid at the 

bottom of the cell expands and produces an unstable density gradient in the fluid layer. 

If the density gradient is sufficiently strong, the hot fluid will rise, causing a convective 

flow which results in enhanced transport of heat between the two plates.  

1.2 PROBLEM STATEMENT 

 

Simulate Rayleigh Bernard Convection using Lattice Boltzmann Method to 

study the flow pattern of Rayleigh Bernard Convection. 

 

1.3 OBJECTIVE 

 

 For this thesis the objective is to study the flow pattern of Rayleigh Bernard 

Convection. 

 

 

 
 

  

 

 

 
 

 

 

Translation 

Collision 
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1.4 SCOPE OF WORK 

 

  This project is focusing on the pattern of the Rayleigh Bernard Convection flow 

pattern at low Rayleigh number which is at laminar flow. This project also focusing on 

using D2Q9 and D2Q4 microscopic velocity model for discretization of microscopic 

velocity.    

 

1.5 PROCESS FLOW CHART 

 

  The Figure 1.2 shows the separation of information or processes in a step-by-

step flow and easy to understand diagrams showing how steps in a process fit together. 

This makes useful tools for communicating how processes work and for clarity due to 

time limitation how a particular job is done in Final Year Project. 

 

 

 

 

 

 

 

 

 

 

 

` 

 

 

 

 

 

 

 

Figure 1.2: Flowchart of PSM  

Theory of Lattice Boltzmann 

1) Governing equation 
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5) Time relaxation 
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Figure 1.2: continue 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 In this chapter, the previous study for Bhatnagar–Gross-Krook (BGK) collision 

equation and model, Lattice Boltzmann Equation (LBE) will be discussed in this 

chapter. From BGK and LBE, discretization of microscopic velocity will be discussed. 

Discretization of microscopic velocity consist two models which are 9-discrete velocity 

model (D2Q9) and are 4-discrete velocity model (D2Q4). Furthermore, the 

dimensionless number (Prandlt number, Rayleigh number, Reynolds number and 

Nusselt number) also will be discussed in this chapter. Lastly, Rayleigh Bernard 

Convection and Rayleigh Bernard Convection problem will be discussed in this chapter. 

Rayleigh Bernard Convection problem is the boundary condition that will be used for 

the simulation. 

 

2.2 NAVIER-STOKES EQUATION 

 

                                                        fp
Dt

Du
                                            (2.1) 

 

                                                            0. u                                                    (2.2) 

 

Sources: S. Chen and G.D. Doolen, Annu 1998. 
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Equation 2.1 shows the fluid velocity u of an inviscid (ideal) fluid of density   

under the action of a body force  f is determined and equation 2.2 shows as Euler’s 

equation. The scalar p is the pressure. This equation is supplemented by an equation 

describing the conservation of mass. For an incompressible fluid this is simply to get the 

continuity equation. 

 

Real fluids however are never truly inviscid. We must therefore see how Euler’s 

equation is changed by the inclusion of viscous forces. 

 

                                   
uPuu

t

u f 2

6

12







 




 
                    (2.3)   

 

Sources: C. S. Nor Azwadi 2007. 

 

Equation 2.3 shows the flow of incompressible fluids can be described by the 

momentum equation. Derivation of continuity and momentum equation, we will get the 

Navier-Stokes equation by using Chapmann-Enskog expansion procedure. Chapmann-

Enskog procedure is a method for obtaining an approximate solution. Chapmann-

Enskog also manages to extract from the kinetic equation for the density distribution 

function, F a set of hydrodynamic equations for the particle number, the momentum and 

the energy per unit volume. 

 

2.2.1  Macroscopic Equation for Isothermal 

 

          
6

12 



                                                    (2.4) 

 

Sources:M. Rohde, D. Kandhai, J. J. Derksen, and H. E. A. Van den Akker 2003. 

 

Using Chapmann-Enskog expansion procedure, relation between the time 

relaxation  , in microscopic level and viscosity of fluid υ, in macroscopic level is 

shown above. 
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2.2.2 Macroscopic Equation for Thermal 

 

        TT
t

T
g

2

2

1













u                                     (2.5) 

 

Sources: C. S. Nor Azwadi 2007. 

 

In thermal model, the energy equation is added. The energy equation is shown 

above. 

 

2

1
3   f                                                     (2.6) 

 

2

1
  g                                                    (2.7) 

 

M. Rohde, D. Kandhai, J. J. Derksen, and H. E. A. Van den Akker 2003. 

 

Viscosity and thermal diffusivity will produce when using the Chapmann-

Enskog expansion procedure where   is viscosity and   is thermal diffusivity show in 

equation 2.6 and equation 2.7. 

 

2.3 BHATNAGAR-GROSS-KROOK (BGK) 

 

The integral-differential Boltzmann equation (proposed by Boltzmann in 1872) 

can be solving by the model of Bhatnagar–Gross-Krook that had been proposed in 

1954. The derivation of the transport equations for macroscopic variable becomes easier 

when BGK model replaced the nonlinear collision term of Boltzmann equation by a 

simpler term. The term is the relaxation of a state of a fluid to equilibrium state. 

Derivation of numerical schemes (kinetic schemes) is one of the important new 

applications by BGK model to solve hyperbolic conservation of laws (Bhatnagar, P.L., 

Gross, E.P and Krook, M., 1954).  
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Fermi-Dirac or Maxwellian distributions construct the collision process of the 

Lattice Boltzmann models. The single relaxation time BGK operator can solve these 

distribution functions as example microscopic equations are satisfied and Navier-Stokes 

equations are recovered.  

 

)(),(),( ftxftttcxf                            (2.8) 

 

Sources: C. S. Nor Azwadi 2007. 

 

The BGK equation was derived from the Boltzmann equation shown in equation 

2.8. 

 

        ftftftf eqneq  ,,
1

,
1

xxx


                   (2.9) 

 

Bhatnagar, P.L., Gross, E.P and Krook, M. 1954. 

 

Equation 2.9 show Bhatnagar-Gross-Krook equation where,  f , is the single 

relaxation time BGK operator and   tf ,x  is the current distribution of particles on a 

lattice node. The   symbol is the time relaxation parameter and  tf eq ,x  is the 

equilibrium function. 

 

2.4 LATTICE BOLTZMANN EQUATION 

 

)(),(),( ftxftttcxf                        (2.10) 

 

Sources: S. Chen and G.D. Doolen, Annu 1998. 

 

The Boltzmann equation for any lattice model is an equation for the time 

evolution of f ( x , t), the single-particle distribution at lattice site x where f is density 

distribution function, c is microscopic velocity, Ω is collision integral and t is a value 

of unity shown in equation 2.10.  



10 

 



),(),(
)),((

txftxf
txf

eq
                            (2.11) 

 

Sources: S. Chen and G.D. Doolen, Annu 1998. 

 

Since the usual aim of lattice methods is to model macroscopic dynamics, the 

“exact” collision operator is unnecessarily complex and therefore numerically 

inefficient (S. Chen and G.D. Doolen, Annu, 1998). The collision operator is 

approximated by a single-time-relaxation process in which relaxation to some 

appropriately chosen equilibrium distribution occurs at some constant rate. In particular 

the collision term, )( f  is replaced by the single-time-relaxation approximation shown 

in equation 2.11. 

 

The appropriately chosen equilibrium distribution, denoted by eqf , depends on 

the local fluid variables, and 1/   is the rate of approach to this equilibrium. The 

relation 0  and 0 Tc  must be true to conserve mass and momentum, 

respectively. 

 

Here  


1
   is the relaxation constant, the rate of change towards the equilibrium. 

  is relaxation time : 

when   = 1: The distribution functions are exactly set to the equilibrium distribution.  

when   = 2: The distribution functions are midway between incoming  

                      distribution and  the equilibrium distribution. 

 

 eqff     or       dcffdc eq
               (2.12) 

ucfcf eq       or      udccfcfdc eq     (2.13) 

 

Sources: Xiaoyi He and Li-Shi Luo 1997. 
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To derive the macroscopic equations obeyed by this model, one performs a 

Taylor expansion (C. Shu, Y. Peng and Y.T. Chew, 2002) in time ( t ) and space ( x ) and 

takes the long-wavelength and low-frequency limit of the lattice-Boltzmann equation 

for the single-particle distribution. The result is a continuum form of the Boltzmann 

equation correct to second order in the lattice spacing and the time step. The 

macroscopic variables, such as the density,   and flow velocity, u  can be evaluated as 

the moment to the distribution function as equation 2.12 and equation 2.13. 

 

2.5 DISCRETIZATION OF MICROSCOPIC VELOCITY 

 

Discretizing the Boltzmann-BGK equation at a set of velocities that correspond 

to the nodes of a Gauss-Hermite quadrature in velocity space, we effectively solve the 

Boltzmann equation in a subspace spanned by the leading Hermite polynomials (C. S. 

Nor Azwadi 2007). 

 

2.5.1 Lattice Boltzmann Isothermal Model 

 

From the continuous velocity, use the Gauss-Hermite integration to get the 9-

discrete velocity model. Figure below will shown how from continuous velocity to get 

9-discrete velocity model by using Gauss-Hermite integration.  

Using 

                
 Using Gauss-Hermite integration 

 

Figure 2.1: 9-discrete velocity model 

1
2

3

4

5 98

7 6
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                            

eqff
txftttcxf


 ),(),(

             (2.14) 

 

Sources: C. S. Nor Azwadi 2007. 

 

9-discrete velocity model means there are 9 directions that the particles will go 

after the collisions. The equation for 9-discrete velocity is shown in equation 2.14 where 

),(),( txftttcxf   is streaming process and 


eqff 
  is collision process. 

 

There are only 9-discrete velocity for isothermal model because if use less then 

9, we will not get the continuity and momentum equation. If use more then 9, we will 

take long time to simulate. 

 

2.5.1.1 Example flow of Isothermal Model 

 

2.5.1.1.1 Poisuelle Flow 

 

In this numerical simulation, the velocity is not set because the Poiseulle flow is 

driven by a pressure gradient between inlet and outlet end of the channel. In this case 

the pressure gradient is set between the inlet and outlet end of the channel. Setting the 

density to get the different values between inlet and outlet end of the channel. The 

bounce back boundary conditions are applied at the top and bottom walls. 

 

2.5.1.1.2 Couette Flow 

 

In this numerical simulation, the constant velocity is set at the top plate while the 

bottom plate is fixed. The initial conditions is related or similar to a null velocity 

everywhere expect on the top boundary, where the velocity is u = (U, 0). In this case, 

there is no pressure gradient between inlet and outlet end of the channel because the 

velocity is set to get the flow for this system. 
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2.5.2 Lattice Boltzmann Thermal Model 

 

From the continuous velocity, use the Gauss-Hermite integration to get the 4-

discrete velocity model. Figure below will shown how from continuous velocity to get 

4-discrete velocity model by using Gauss-Hermite integration. 

 

 

    Using Gauss-Hermite integration 

 

Figure 2.2: 4-discrete velocity model 

 



eqgg
txgtttcxg


 ),(),(

        (2.15) 

 

Sources: C. S. Nor Azwadi 2007. 

 

4-discrete velocity model means there are 4 directions that the particles will go 

after the collisions. The equation for 4-discrete velocity is shown in equation 2.15 where 

),(),( txgtttcxg  is streaming process and  


eqgg 
  is collision process. 

 

There are only 4-discrete velocity for isothermal model because if use less then 

4, we will not get the continuity and momentum equation. If use more then 4, we will 

take long time to simulate. 

 

43

2 1
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2.5.2.1 Example flow of Thermal Model 

    

2.5.2.1.1 Porous Couette Flow 

 

This numerical flow has two finite parallel flat plates which the upper plate is 

cool, Tc and moves at speed U while bottom plate is hot, TH and it is fixed. There is 

space by a distance of L between the two parallel plates. A constant normal flow of 

fluid is injected through the bottom hot plate and withdrawn at the same rate from the 

upper plate. Periodic boundary conditions are used at the inlet and outlet of the channel. 

For velocity, the non-equilibrium bounce back boundary condition is used. The non-

equilibrium bounce back boundary condition is also used for the temperature. 

  

2.6 BOUNCE-BACK BOUNDARY CONDITION 

 

 

 

 

  

 

 

 

Figure 2.3: D2Q9 model 

 

Sources: C. S. Nor Azwadi 2007. 

 

The lattice gas Approach was the methods to simulate the initial approach of the 

boundary back. D2Q9 and D2Q4 velocity model are using the principle of the 

bounceback boundary conditions. In figure 2.4 shown the simple boundary condition 

where all the distribution functions at the boundaries back along to the initial position in 

lattice. This type of boundary condition can be shown by using 3x3 matrixes shown in 

figure 2.5. 

 

 

1
2

3

4

5 98

7 6
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Figure 2.4: Bounceback boundary condition 

 

Sources: C. S. Nor Azwadi 2007. 
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Figure 2.5: 3x3 matrixes boundary condition 

 

Sources: C. S. Nor Azwadi 2007. 

 

In bounceback boundary condition, velocity at wall defines zero by averaging 

the velocity at the boundary before and after the collision. 

 

2.7 PRANDTL NUMBER 

 

                (2.16) 

 

The Prandtl number, Pr is a dimensionless number, which describes the 

correlation between momentum diffusivity and thermal diffusivity. The ratio of 

momentum diffusivity (kinematic viscosity) and thermal diffusivity shown in equation 

2.16 where:  

 ν: kinematic viscosity, ν = μ / ρ, (SI units : m
2
/s) 

 α: thermal diffusivity, α = k / (ρcp), (SI units : m
2
/s) 

 μ: viscosity, (SI units : Pa s) 
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 k: thermal conductivity, (SI units : W/(m K) ) 

 cp: specific heat, (SI units : J/(kg K) ) 

 ρ: density, (SI units : kg/m
3
 ) 

2.8 RAYLEIGH NUMBER 

In fluid mechanics, the Rayleigh number for a fluid is a dimensionless number 

which connected with buoyancy driven flow. When the Rayleigh number is lower than 

critical value, the heat is transported by conduction only. Heat convection established 

when the Rayleigh number it exceeds the critical value. 

The Rayleigh number is named after Lord Rayleigh and is defined as the product 

of the Grashof number, which describes the correlation between buoyancy and viscosity 

within a fluid, and the Prandtl number, which describes the correlation between 

momentum diffusivity and thermal diffusivity. Hence the Rayleigh number itself may 

also be viewed as the ratio of buoyancy forces and (the product of) thermal and 

momentum diffusivities. 

                       (2.17) 

For free convection near a vertical wall, this number is: 

 x = Characteristic length (in this case, the distance from the leading edge) 

 Rax = Rayleigh number at position x 

 Grx = Grashof number at position x 

 Pr = Prandtl number 

 g = acceleration due to gravity 

 Ts = Surface temperature (temperature of the wall) 

 T∞ = Quiescent temperature (fluid temperature far from the surface of the 

object) 

 ν = Kinematic viscosity 

 α = Thermal diffusivity 

 β = Thermal expansion coefficient 
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2.9 REYNOLDS NUMBER 

In fluid mechanics and heat transfer, the Reynolds number Re is a dimensionless 

number which described the correlation between the inertial forces ( ) with the 

viscous forces (μ / L). Reynolds numbers can be used to differentiate the differences 

between laminar flow (occur at low Reynolds number) and turbulent flow (occur at high 

Reynolds number). The differences are in laminar flow, the viscous forces are 

dominant, and is characterized by smooth, constant fluid motion, while in turbulent 

flow, it is dominated by inertial forces (tend to produce random eddies, vortices and 

other flow fluctuations). 

2.9.1 Flow in Pipe 

                                      (2.18) 

For flow in a pipe or tube, the Reynolds number is generally defined as shown 

above, where: 

 is the mean fluid velocity in (SI units: m/s) 

 D is the diameter (m) 

 μ is the dynamic viscosity of the fluid (Pa·s or N·s/m²) 

 ν is the kinematic viscosity (ν = μ / ρ) (m²/s) 

 ρ is the density of the fluid (kg/m³) 

 Q is the volumetric flow rate (m³/s) 

 A is the pipe cross-sectional area (m²) 

2.10 NUSSELT NUMBER 

 

Nusselt number is a dimensionless number relating to the Rayleigh number. It 

corresponds to 1 for initial convective motion and increases with an increased 

probability of convective motions occurring. The Nusselt number is the ratio of 

convective to conductive heat transfer. These heat transfers are measured across a 

surface of a test object. The conductive heat transfer is measured under the same 

conditions as the heat convection transfer except that the test object is within a stagnant 
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fluid. The Nusselt may be calculated from a characteristic length of the test object, the 

convective heat transfer coefficient of the test material and the thermal conductivity of 

the fluid. 

    

                       (2.19) 

 

where: 

 h = convective heat transfer coefficient 

 L = characteristic length 

 kf = thermal conductivity of the fluid 

2.11 RAYLEIGH BERNARD CONVECTION 

Rayleigh Bernard system is an instability fluid that contain in two horizontal 

parallel plates. The bottom plate is heated randomly to produce a fixed temperature 

different while the upper plate is still in room temperature. When the temperature 

different between the upper and bottom plate is lower than critical value, the heat is 

transported by conduction only. Heat convection established when the temperature 

different between upper and lower plate is exceed the critical value. In Figure 2.6 and 

Figure 2.7 shows the relationships between top and bottom plates. 

T= T0    (cold) 

 

   d             Fluid 

             T=T
0 
+ δ T (hot) 

Figure 2.6: Boundary condition for Rayleigh Bernard Convection 

 

 

http://www.answers.com/topic/convection
http://www.answers.com/topic/heat-transfer-coefficient
http://www.answers.com/topic/thermal-conductivity
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                                                   T0 

                                               

                                                                                                                                                        

                          Pure conduction 

 

                                                                                                                                                                            

                                                                                                                           

                                                                                                                          

                                                                                                               

                                       T=T
0 
+ δ T (hot) 

                                                                               temperature 

Figure 2.7: The relationship between top and bottom plates 

 The transport of hot fluid up and cold fluid down in the absence of convection 

and the temperature gradient is constant.  

 

Two cases of interest: 

• ∂T small: no convective motion, due to stabilizing effects of viscous friction.  

• ∂T large: convective motion occurs.  

 Rayleigh in 1916 developed the theory which found the condition for the 

instability with two free surfaces. The instability would results if the temperature 

gradient 
dz

dT
 was large enough, so the Rayleigh number exceeds the critical value. 

kv

gd
R a

4
                                                     (2.20) 

 

Sources: Tadashi Watanabe 2004. 

 

 Where g is the acceleration due to gravity,   is the coefficient of thermal 

expansion, d is the depth of the chamber and vk ,  are the thermal diffusivity and 

kinematics viscosity respectively. The parameter Ra represents the ratio of destabilizing 

buoyancy force to the stabilizing viscous force. 
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2.11.1 Rayleigh Bernard Convection Problem 

 

 

 

 

 

 

 

Figure 2.8: Geometry and boundary condition for Rayleigh Bernard problem. 

 

where TH  is hot temperature 

           TC is cool temperature 

 

10
H

L
                                                         (2.21) 

 

 The ratio between the length, L and height, H is shown in equation 2.21 and the 

geometry and boundary condition for Rayleigh Bernard Convection show is Figure 2.8. 

The boundary condition for the Rayleigh Bernard Convection will be used in the 

simulation. The various values of length and height for Rayleigh Bernard Convection 

will be discussed in Chapter 4. The simulation results of the Rayleigh Bernard 

Convection also will be discussed in Chapter 4.   

H 

L  

TH   TC   TH   TC   TH  TC  TH  TC  TH  TC  TH  TC   TH   TC  TH   TC   

 



 

 

 

 

 

CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

 In this chapter, will be show and explain briefly on step or procedure on how the 

simulation from start until get the result desired according to final year project which is 

Simulation of Rayleigh Bernard Convection using Lattice Boltzmann Method. 

Methodology is very important to conduct any simulation to make sure the process 

during the simulation run smoothly from the very beginning until we finish the 

simulation with the result desired. Figure 3.1 shows the steps by steps methodology in 

final year project. Furthermore, the boundary condition of Poiseulle flow, Couette flow 

and Porous Couette flow will be discussed in this chapter. After that, the simulation for 

every flow (Poiseulle, Couette and Porous Couette) also will be discussed. From the 

simulation result, the graph for each flow will be created.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flowchart of PSM  

Title, objective and scope project confirmation 

Research and further reading 

Literature study of Lattice Boltzmann 

Start 
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Figure 3.1: continue 

 

 

Theory of Lattice Boltzmann 

1) Governing equation 

2) Basic principle 

3) Collide function BGK 

4) Equilibrium distribution function 

5) Time relaxation 

6) Discretization of microscopic velocity 

7) Derivation of Navier-Stokes equation 

 

  

Isothermal fluid flow 

1) Simulate Flow in Pipe 

2) Simulate Coutte Flow 

Thermal Lattice Boltzmann 

Model 

1) Theory of Thermal 

Lattice Boltzmann 

Model 

2) Simulate Porous Coutte 

Flow 

 

 

Rayleigh Bernard 

Convection Theory 

Simulate Rayleigh 

Bernard Convection 

Project evaluation 

Project Presentation 

End 
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3.2 COMPUTATIONAL FLUID DYNAMICS (CFD) 

 

 

 

                                            Mathematics calculation               

                                                (Lattice Boltzmann)      

                                                                                                                                 

                                                                                                                                                                          

Pre - processing                                                                                                               

 

                                                            Coding 

 

                                       (Rayleigh Bernard Convection) 

                                          

 

 

 

                                                     Run the coding 

                                                                                                              

                                NO                                                                      Solver 

                                   

 

 

                                                                   

                                                                      YES 

                                                                                                          

                                                            

                                                                                                           Post - process          

                                                                       

  

 

Figure 3.2: Computational Fluids Dynamics (CFD) flowchart 

             

The simulation is conducted to study flow pattern of Rayleigh Bernard Convection 

using Compaq Visual Fortran software. By using CFD (Computational Fluid 

Dynamics), the steps or procedure can be explained from starting until get the results. 

CFD contains three main steps which are pre – processing, solver and post – process. 

CFD flowchart is shown in Figure 3.2. For the processing step, consisted two steps 

which are mathematical calculation and coding. Mathematical calculation is based to the 

Lattice Boltzmann equation. For this report, the coding is related to the problem whish 

is Rayleigh Bernard Convection. For solver consist two steps which are run the coding 

and get the result from the simulation. For the post-process steps, consist one step which 

Result 

Rayleigh Bernard Convection 

Flow pattern using AVS file 
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is the result from the Rayleigh Bernard Convection problem. AVS file is use to get the 

flow pattern of the Rayleigh Bernard Convection. AVS file is software that has been 

used to get the streamlines and the isotherms lines. Streamlines takes from the 

streamline absolute function while for the isotherms lines takes from the temperature 

function. The flow patterns for streamlines and isotherms will be discussed in Chapter 

4.  

 

3.3 ORIGINAL LBM ALGORITHM 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

                            NO         YES 

 

 

 

 

Figure 3.3: Original LBM algorithm flowchart 

 

 The algorithm flowchart for LBM is shown in Figure 3.3. From the algorithm 

flowchart, it consist advection and collision process. The initial values of density 

distribution  are specified at each grid point. Then, the system expands in the four 

steps. Four steps for algorithm flowcharts are advection process, collision process, 

MAIN PROGRAM 

INITIAL CONDITION 

ADVECTION 

COLLISION 

BOUNDARY CONDITION 

OUTPUT 

END CONVERGE 

ITERATION 
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boundary conditions and lastly the simulation results.  Firstly, the advection process is 

solved by applying the streaming process of the density distribution function. Advection 

process is initial position of the particles and then the particles stream (moves).Second 

steps is the collision process. Collision process is solved by Bhatnagar-Gross-Krook 

(BGK) collision model. The Bhatnagar-Gross-Krook collision model and equation have 

discussed earlier in Chapter 2. Third steps are defining the boundary conditions. The 

boundary conditions are defined based on the bounce back boundary conditions. Bounce 

back conditions is the possible direction that the particles will go after the collision 

process. There are two models of possible direction. First is 9-discrete velocity model 

(D2Q9) and second is 4-discrete velocity model (D2Q4). D2Q9 and D2Q4 have 

discussed earlier in Chapter 2. Last steps are the simulation process. The simulation 

results are based on steady state conditions. Poiseulle Flow, Couette Flow and Porous 

Couette Flow simulation results will discuss in subchapter 3.3. Rayleigh Bernard 

Convection simulation process will be discussed in Chapter 4.  

 

3.4 SIMULATION RESULTS 

 

3.4.1 Poiseulle Flow 

 

 In this numerical simulation, the velocity is not set because the Poiseulle flow is 

driven by a pressure gradient between inlet and outlet end of the channel. In this case 

the pressure gradient is set between the inlet and outlet end of the channel. The density 

is setting to get the different values between inlet and outlet end of the channel. The 

bounce back boundary conditions are applied at the top and bottom walls. Figure 3.3 

show the boundary condition of the Poiseulle flow.  

 

 

Figure 3.4: Poiseulle flow boundary condition 
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                              (3.1) 

 

 The convergence criterion for Poiseulle flow is shown in equation 3.1 where M 

and N are the mesh number in x and y direction respectively. The measurement of 

velocity (u) and pressure along the channel (both after achieved the steady state) are 

measured in this simulation.  

 

  

 

Figure 3.5: Poiseulle flow graph 

 

 Figure 3.5 show the Poiseulle flow simulation results. The density change 

between the two ends along the centerline of the channel is a straight line. In the inset 

the velocity profile across the channel is displayed for the stationary state. A lattice size 

4 x 33 and time relaxation, f  = 0.55 is used in this test simulation. The result shows 

that the parabolic of the channel flow is obtained when the flow achieved the steady 

state. 
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3.4.2 Couette Flow 

 

 In this numerical simulation, the constant velocity is set at the top plate while the 

bottom plate is fixed. The initial conditions is related or similar to a null velocity 

everywhere expect on the top boundary, where the velocity is u = (U, 0). In this case, 

there is no pressure gradient between inlet and outlet end of the channel because the 

velocity is set to get the flow for this test simulation. The velocity on the plate is set at U 

= 0.05 (boundary condition in LBM units) and channel width is L = 32. Figure 3.6 show 

the boundary condition of the Couette flow. 

 

Figure 3.6: Couette flow boundary condition 

 

 

 

Figure 3.7: Couette flow graph 
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 Figure 3.7 show a normalized velocity profiles for different times. The lattice 

size for this simulation is 4 x 32 and the relaxation time, f  = 1.0 is used. The velocity 

profiles are plotted at various values of times (t = 100, 200, 300, 445, 3500). All values 

of times are in LBM units. From the graph, x-axis is for periodic boundary conditions. 

The result shows that the velocity increases in linear from zero at bottom plate to U at 

top plate at the steady state.  

 

3.4.3 Porous Couette Flow 

 

 This numerical flow has two finite parallel flat plates which the upper plate is 

cool, Tc and moves at speed U while bottom plate is hot, TH and it is fixed. There is 

space by a distance of L between the two parallel plates. A constant normal flow of 

fluid is injected through the bottom hot plate and withdrawn at the same rate from the 

upper plate. Figure 3.8 show the boundary condition of Porous Couette flow boundary 

condition. 

 

 

 

Figure 3.8: Porous Couette flow boundary condition 
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 The analytical solution of the velocity field in steady state is given by Eq. (3.2) 

where Re is the Reynolds number (based on the inject velocity, vo.) 

 

1

1
Re

/Re

e

e
Uu

ly

                                                      (3.2) 

 

 The temperature profile in steady state is given by Eq. (3.3) where T  = TH – Tc 

is the temperature difference between the hot and cool walls and Pr = v/X is the Prandtl 

number.  

 

1

1
RePr

/RePr

e

e
TTT

ly

C                                             (3.3) 

 

 Periodic boundary conditions are used at the inlet and outlet of the channel. For 

velocity, the non-equilibrium bounce back boundary condition is used. The non-

equilibrium bounce back boundary condition is also used for the temperature.  

 

 The normalized temperature profile for various values of Reynolds number (Re 

= 5, 10, 20, 30), Ra = 100 and Pr = 0.71 and are shown in Figure 3.9. Prandtl number = 

0.71 because in this simulation, air is used. 
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Figure 3.9: Porous Couette flow graph with different Re value 

 

Figure 3.10 shown the result for Ra = 100, Re = 10 and Pr = 0.2, 0.8 and 1.5. The results 

in Figure 3.9 and Figure 3.10 show that each temperature and velocity profile have 

agreed the analytical solution. 

 

 

 

Figure 3.10: Porous Couette flow graph with different Pr value 
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 To show that this model is suitable and numerically stable for a wide range of 

Rayleigh number, the computations for Ra = 10 till Ra = 60000 at Pr = 0.71 and Re = 10 

have been done. The result is in Figure 3.11. 

 

 

 

Figure 3.11: Porous Couette flow graph with Ra = 60000 

  

 

 



 

 

 

 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

4.1 INTRODUCTION 

  

 In this chapter the results from the simulation will be analyze according to the 

project objectives. The data that had been gathered from the simulation will be used to 

compare the flow pattern for different Rayleigh number. From the data too, graph to 

show the relationship between the Nusselt number and Rayleigh number will be created. 

In this chapter too, the difference between the result and the graph for different 

Rayleigh number will be discussed. Furthermore, the flow pattern for different Rayleigh 

number also will be discussed in this chapter. From that the suitable flow pattern will be 

choose based on the Nusselt number. 

 

4.2 RAYLEIGH BERNARD CONVECTION 

 

Rayleigh Bernard system is an instability fluid that contain in two horizontal 

parallel plates. The bottom plate is heated randomly to produce a fixed temperature 

different while the upper plate is still in room temperature. When the temperature 

different between the upper and bottom plate is lower than critical value, the heat is 

transported by conduction only. Heat convection established when the temperature 

different between upper and lower plate is exceed the critical value.  

 

D2Q9 and D2Q4 velocity model has been used. In this problem, the Prandtl 

number is fixed at 0.71. The value of 0.71 is for air. While for Rayleigh number is 

varied. In this problem, the value of Rayleigh is become the manipulated variables,    
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(Ra = 1000, 10000, 100000 and 1000000). The flow pattern for different Rayleigh 

number is studied.  

 

 

 

 

 

 

 

Figure 4.1: Geometry and boundary condition for Rayleigh Bernard problem. 

 

where TH  is hot temperature 

           TC is cool temperature      

                                             

                                                         
10

H

L

                                                                
(4.1) 

 

The ratio between the length, L and height, H is 10. The grid dependence test for 

the length, L is set to 100, 150, 200, and 250. The relationship between length and 

height is shown in Table 4.1. 

 

Table 4.1: Relationship between length, L and height, H. 

 

Length, L Height, H 

100 10 

150 15 

200 20 

250 25 

 

 

 

 

 

H 

L 

TH  TC  TH  TC  TH  TC  TH  TC   TH  TC   TH   TC  TH  TC  TH  TC  TH TC   
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4.3 NUSSELT NUMBER AND RAYLEIGH BERNARD NUMBER 

 

 
 

Figure 4.2: Relationship between Nusselt numbers and Rayleigh number 

 

Sources: Tadashi Watanabe 2004. 

 

Figure 4.2 shows that the steady-state Nusselt number as function of the 

Rayleigh number in 2D simulations. The LBE results agree with that of Clever and 

Busse for Rayleigh number less than 20 000 (X. Shan, 1997). 
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Figure 4.3: Relationship between Nusselt numbers with Rayleigh number for grid 100  

 

From figure 4.3 shows that when Rayleigh number, Ra increase, the Nusselt 

number, Nu also increase. This means the Lattice Boltzmann equation for grid 100 x 10 

results agree with Clever and Busse for Rayleigh number less than 20000 (X. Shan, 

1997). Clever and Busse state that, Nusselt number increase according to the increasing 

value of Rayleigh number (X. Shan, 1997). That means that Nu number directly 

perpendicular with Ra number. Others grid for the boundary condition is show in Figure 

4.4. From four grids, only grids 100 x 10 agree with Clever and Busse. While others 

grids disagree with Clever and Busse. 
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Figure 4.4: Relationship between Nusselt number and Rayleigh number  

 

From figure 4.4 shows that when the Rayleigh number value increase, Nusselt 

number value will give the inconsistent value. Therefore, the Lattice Boltzmann 

equation for grid 150 x 15, 200 x 20 and 250 x 25 results disagree with Clever and 

Busse for Rayleigh number less than 20000. From graph 4.3 and 4.4, only for grid 100 x 

10 the Lattice Boltzmann equation results agree with Clever and Busse while other grids 

(150 x 15, 200 x 20 and 250 x 25) results disagree with Clever and Busse. This is 

because there will be other possible causes or factors that make other grids did not agree 

with Clever and Busse Nusselt number versus Rayleigh number graph. The causes or 

factors will be discussed in Chapter 5 under the recommendation subchapter.  

 

4.4  GRID DEPENDENCE TEST 

 

Grid dependence test is produce by perform the graph of Nusselt number versus 

grid. From the graph, the optimum value will take as the flow pattern analysis. The 

purpose for grid dependence test is to find the optimum grid for each Rayleigh number. 

The relationship between grid number and Nusselt number is show in Table 4.2. 



37 

 

 

Table 4.2: Relationship between grid and Nusselt number for Ra = 1000. 

 

Grid Nusselt number 

100 x 10 0.12279 

150 x 15 0.12323 

200 x 20 0.12702 

250 x 25 0.10056 

 

 

 

Figure 4.5: Graph Nusselt number versus grid for Ra = 1000 

 

For Rayleigh number, Ra = 1000, four level grid (100, 150, 200, 250) have been 

tested and the shown in Figure 4.5. From the figure, grid 150 x 15 have been choose as 

the result for Ra = 1000. This is because this grid gives the optimum value for Nusselt 

number versus the grid as the result for the flow pattern. Optimum value here means the 

value that starting to flat or the lowest value for Nusselt number versus the grid. 
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Therefore, the effect of the flow pattern for Ra = 1000 (streamline and isothermal), just 

consider the grid for 150 x 15. The relationship between grid number and Nusselt 

number is show in Table 4.3. 

 

Table 4.3: Relationship between grid and Nusselt number for Ra = 10000. 

 

Grid Nusselt number 

100 x 10 0.12419 

150 x 15 0.11057 

200 x 20 0.10516 

250 x 25 0.15233 

 

  

 

Figure 4.6: Graph Nusselt number versus Grid for Ra = 10000 

 

For Rayleigh number, Ra = 10000, four level grid (100, 150, 200, 250) have 

been tested and the shown in Figure 4.6. From the figure, grid 150 x 15 have been 

choose as the result for Ra = 10000. This is because this grid gives the optimum value 

for Nusselt number versus the grid as the result for the flow pattern. Optimum value 

here means the value that starting to flat or the lowest value for Nusselt number versus 
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the grid.  Therefore, the effect of the flow pattern for Ra = 10000 (streamline and 

isothermal), just consider the grid for 150 x 15. The relationship between grid number 

and Nusselt number is show in Table 4.4. 

 

Table 4.4: Relationship between grid and Nusselt number for Ra = 100000. 

 

Grid Nusselt number 

100 x 10 0.17055 

150 x 15 0.13514 

200 x 20 0.11522 

250 x 25 0.15746 

 

 

 

Figure 4.7: Graph Nusselt number versus Grid for Ra = 100000 

 

For Rayleigh number, Ra = 100000, four level grid (100, 150, 200, 250) have 

been tested and the shown in figure 4.7. From the figure, grid 200 x 20 have been 
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choose as the result for Ra = 100000. This is because this grid gives the optimum value 

for Nusselt number versus the grid as the result for the flow pattern. Optimum value 

here means the value that starting to flat or the lowest value for Nusselt number versus 

the grid. Therefore, the effect of the flow pattern for Ra = 100000 (streamline and 

isothermal), just consider the grid for 200 x 20. The relationship between grid number 

and Nusselt number is show in Table 4.5. 

 

Table 4.5: Relationship between grid and Nusselt number for Ra = 1000000. 

 

Grid Nusselt number 

100 x 10 0.23680 

150 x 15 0.14289 

200 x 20 7.35887E-2 

250 x 25 0.71564 

 

 

 

Figure 4.8: Graph Nusselt number versus Grid for Ra = 1000000 
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For Rayleigh number, Ra = 100000, four level grid (100, 150, 200, 250) have 

been tested and the shown in Figure 4.8. From the figure, grid 200 x 20 have been 

choose as the result for Ra = 100000. This is because this grid gives the optimum value 

for Nusselt number versus the grid as the result for the flow pattern. Optimum value 

here means the value that starting to flat or the lowest value for Nusselt number versus 

the grid. Therefore, the effect of the flow pattern for Ra = 100000 (streamline and 

isothermal), just consider the grid for 200 x 20. 

 

4.5  VELOCITY PROFILE 

 

 

 

Figure 4.9: Horizontal velocity profile at Ra = 100000 
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Figure 4.10: Vertical velocity profile at Ra = 100000 

 

 Figure 4.9 and Figure 4.10 shows the dimensionless horizontal and vertical 

velocity profile at Rayleigh number = 100000. Both figures are the velocity profile for 

each grid (100 x 10, 150 x 15, 200 x 20 and 250 x 25). The vertical and horizontal 

velocity profile is increasing from the bottom to the top walls and development of 

narrow boundary layers alongs the top wall. The peak values for both Figures 

(horizontal velocity and vertical velocity) are because of the intensified activities. 

Increasing the grid number is proportional to the increasing the Rayleigh number and 

increasing buoyancy force effect (C. S. Nor Azwadi, 2007). Both figures show the 

different velocity direction for top and bottom walls that correspond to the vortex 

development.   
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4.6 EFFECT OF THE RAYLEIGH NUMBER 

 

4.6.1 Flow Pattern and Flow Intensity 

 

 

 

 
 

(a) Ra = 1000 

 

 

 
 

 
 

(b) Comparison with previous study for Ra = 10000 

Sources: Xiaowen Shan 1997 

 

 
 

(c) Ra = 100000 

 

  
 

(d) Ra = 1000000 

Figure 4.11: Streamline with different Rayleigh number 

 

The streamlines shown in Figure 4.11 in which subfigures were arranged going 

down with increasing Rayleigh number. The temperature different between the upper 
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and bottom walls will cause the buoyant effects. These will make the recirculating 

vortices are formed which are clearly demonstrated by the closed streamlines. From the 

streamlines shown in Figure 4.11, the red lines shows the highest temperature followed 

by orange lines, yellow lines, green lines, bright blue lines and the lowest temperature is 

in dark blue lines. 

 

The temperature difference between the upper and bottom walls will cause the 

temperature gradient in fluid; consequently density difference induced fluid motions. 

The hot fluid rises form the bottom until to the top of the plate and moves outwards 

along the top wall before turn downwards follow the sidewalls due to the effect of 

cooling.  

  

At lower Rayleigh number Figure 4.11 (a) and Figure 4.11 (b) the temperature 

different between the upper and bottom plate is lower than critical value, the heat is 

transported by conduction only. The vortices become larger and become more stretched 

to match the geometries of the enclosure as the Rayleigh number is increased. As 

increasing the Rayleigh number, the cores of the vortices also will slightly increased.  

 

The streamlines become more packed to the upper and bottom walls as the 

Rayleigh number increased. The enhancement of the flow intensity resulted from the 

augmented flow area is compensated for the attenuation due to additional friction. 

Therefore, at both Ra = 1000 and 10000 the maximum stream functions are nearly 

identical. The vortices increased as the Rayleigh number increased because the higher 

fluid velocity which contributes to better the overall heat transfers. 

 

At higher Rayleigh number Figure 4.11 (c) and Figure 4.11 (d) the temperature 

different between the upper and bottom plate is exceed the critical value, heat 

convection will established. The isotherms are distorted more because of the stronger 

convection effect that leads the stable stratification of the isotherms when increase the 

Rayleigh number. The magnitude of the velocity circulating in the enclosure increases 

as the Rayleigh number increase. This will make the thickness of the thermal boundary 

between the upper and bottom plates become larger.  
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The vortices become larger and become more stretched to match the geometries 

of the enclosure as the Rayleigh number is increased. As increasing the Rayleigh 

number, the cores of the vortices also will slightly increased. The streamlines become 

more packed to the upper and bottom plates as the Rayleigh number increased. As the 

Rayleigh number is further increased (from Ra = 100000 to Ra = 1000000), the 

additional friction is negligible and the enhanced natural convection becomes dominant. 

Therefore the maximum stream functions at higher Rayleigh number is greater than at 

lower Rayleigh number. 

 

4.6.2 Heat Transfer 

 

 

 

 

 

(a) Comparison with previous study for Ra = 1000 

 

Sources: Xiaowen Shan 1997 

 

 

(b) Ra = 10000 
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(c) Ra = 100000 

 

 

 

(d) Ra = 1000000 

 

Figure 4.12: Isotherms with different Rayleigh number 

 

Results show above, is the isotherms for different Rayleigh number when the 

partially heated located at the bottom. The streamlines shown in Figure 4.12 in which 

subfigures were arranged going down with increasing Rayleigh number. The 

temperature difference between the upper and bottom walls will cause the temperature 

gradient in fluid; consequently density difference induced fluid motions and cause of the 

buoyant effects. The hot fluid rises form the bottom until to the top of the plate and 

moves outwards along the top wall before turn downwards follow the sidewalls due to 

the effect of cooling. From the isotherms shown in Figure 4.12, the red lines shows the 

highest temperature followed by orange lines, yellow lines, green lines, bright blue lines 

and the lowest temperature is in dark blue lines. 

 

At lower Rayleigh number Figure 4.12 (a) and Figure 4.12 (b) the heat is 

transported by conduction only and the buoyancy driven by convection is very weak 

and unaffected. As the Rayleigh number increased the isotherms become more packed 

at the upper and lower plates. The isotherms become more concentrated to the upper 

region as increasing the Rayleigh number. Increased the Rayleigh number, the 

discrepancies for the pure conduction will become more considerable. The thermal 

boundary layer become thinner as the Rayleigh number increased because the higher 

fluid velocity which contributes to better the overall heat transfers. 
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At higher Rayleigh number Figure 4.12 (c) and Figure 4.12 (d) the heat is 

transported by convection and the separation of the thermal boundary layers is become 

closer. The isotherms along the heated bottom plate separate away from its upper zone 

and form a thermal plume impinging to the upper corner of the upper plate. This plume 

thermal plume formation become clear for Ra = 10000000. According to the 

asymmetric flow patterns, the isotherms for Ra = 100000 still follow the symmetric line 

but the symmetric line more closer compare to the lower Rayleigh number (Ra = 1000 

and Ra = 10000). For Ra = 1000000, the symmetric line more closer compare to Ra = 

100000. This shown that the isotherms for Ra = 100000 are more clear for the higher 

Rayleigh number. 

 

4.7 DISCUSSIONS 

 

In order to validate the current code, overall heat transfer rates of laminar natural 

convection in Rayleigh Bernard Convection enclosure and the computed velocity field 

were compared with experimental results in previous study. The streamlines and 

isotherms lines were set to be exactly identical to the experiment configurations. As 

shown in Figure 4.11 (b) and 4.12 (a), the streamline and isotherms were compared with 

the previous study. The numerical and the experimental data are connected in very good 

agreement for upper and bottom walls. 

 

Cases with the top and bottom of the Rayleigh Bernard Convection boundary 

condition positioned were studied first. The Rayleigh Bernard Convection have two 

fixed walls where positioned at top and bottom. The effects of the Rayleigh number for 

Ra = 10^3, Ra = 10^4, Ra = 10^5 and Ra = 10^6 were investigated systematically. The 

aspect ratio for the boundary condition also was systematically investigated. The ratio, 

B is between the length, L and height, H of the boundary conditions as shows in 

equation 4.2. 

                                                      
10

H

L

                                                       
(4.1) 

 

The length and height that have been decided at 100, 150, 200 and 250 may put other 

values. This is because other values may produce better flow pattern of Rayleigh 
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Bernard Convection. The comparisons of the flow pattern and flow intensity and the 

heat transfer among all the Rayleigh numbers were presented.  

 

 The two dimensional Rayleigh Bernard Convection is simulated numerically 

using Lattice Boltzmann model. (2D) 9-discrete velocity model was used in this study 

while (3D) 27- discrete velocity model was used by (Tadashi Watanabe, 2004). 

 

 The Prandtl number is fixed at 0.71 because air is used in this study and the 

Rayleigh number  
kv

gd
R a

4

 is varied where ∆T is the temperature difference 

between top and bottom walls while 
dz

dT
 is the temperature gradient. The top and 

bottom walls are applied no-slip boundary conditions using the bounce-back rule of the 

nonequilibrium density distribution. For the side boundaries, the periodic boundary 

condition is used.  

 

 The critical Rayleigh number at the static conductive state becomes unstable and 

given by the linear stability theory and this have been confirmed by the laboratory 

observations (X. Shan, 1997). The computation has to be carried out for a long time 

before the stable convection is developed since the development of the instability is 

very slow at near critical Rayleigh numbers. Computations were started from the static 

conductive state at several different Rayleigh numbers close to critical Rayleigh 

numbers to measure the critical Rayleigh number. 

 

 

 



 

 

 

 

 

CHAPTER 5 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

5.1 CONCLUSION 

 

 Chapter one introduced about the relationship between macroscopic and 

microscopic approach have been discussed. For macroscopic approach, the solution is 

using Navier-Stokes equation (continuity and momentum equation) while for 

microscopic approach, the solution is using Lattice Gas Approach (LGA), Molecular 

Dynamic (MD) and Lattice Boltzmann method (LBM) by simulating fluid flows.  

 

 Chapter two the literature reviews for isothermal and thermal LBM has been 

discussed. The dimension less number (Prandtl number, Rayleigh number, Reynolds 

number, Nusselt number and Rayleigh Bernard Convection also has been discussed. In 

this chapter also discussed about the bounce back boundary condition. From the 

bounce-back boundary condition principle, 9-discrete velocity model (D2Q9) and 4-

discrete velocity model (D2Q4) have been recovered. 

 

 The methodology (CFD flowchart) and the algorithm that used in the simulation 

to get the results have been explained in chapter three. Result for numerical solution 

isothermal LBM (Poiseulle flow and Couette flow) and thermal LBM (porous Couette 

flow) have been performed. Chapter four discussed about the flow pattern in the in 

Rayleigh Bernard Convection. These simulations used four difference grids and four 

different Rayleigh number. From four difference grids, the optimum value for each 

difference Rayleigh number have been figured by using the grid dependence test. The 

objective of the project was achieved when the simulation results agreed well with 

benchmark (previous study). For the streamlines, the vortices become larger and 
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become more stretched to match the geometries of the enclosure as the Rayleigh 

number is increased. For isotherms, when the Rayleigh number increased, isotherms 

become more packed at the upper plates and become more concentrated to the upper 

region.  

 

 Rayleigh Bernard Convection has become the favored example for the study of 

the spontaneous formation of structures in hydrodynamic systems. As using Rayleigh 

Bernard Convection code, it also can produce the flow patterns same as others codes for 

the convection. Rayleigh Bernard Convection is more accurate to the others ways 

because the fluid involves that placed between flat horizontal plates which are infinite in 

extent and are perfect heat conductors.   

 

5.2 RECOMMENDATIONS 

 

 This subchapter will discussed about how to improve the simulation results and 

possible causes that might happen during run the simulation using Lattice Boltzmann 

Method (LBM). The recommendations must be take the action in next study to get more 

precisely results. The iteration for simulation result should increase to get more accurate 

results. This is because the data that obtained will be increased as the number of the 

iteration increase. So the data that gets from the simulation become more accurate. 

While running the project, there were many possible causes or factors that have been 

affected the simulation results accuracy.  One of the factor is the simulation is converge 

early before finish the iteration value that have been decided. Decreased the condition of 

the convergence to make the simulation did not converge early.  So for the next study, 

make the simulation coding that can accept all values of convergence. This can avoid 

the errors from occur and the coding can simulate until the iteration that have been 

decided. For this Rayleigh Bernard Convection coding, it is too long. Simplify the 

coding so the errors might be happen in the coding can be detect easier compare to long 

coding.  
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APPENDIX A 

 

 
 

Figure 6.1: Gantt chart for PSM 1 
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APPENDIX B 

 

 
 

Figure 6.2: Gantt chart for PSM 2 
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APPENDIX C 

 

Code Test for Rayleigh Bernard Convection 

 

            !   Lattice Boltzmann Method 
                !   based on Square Latteice 
                ! 
                !   Natural convection from heated cubic 
                !    
                !   f5     f4     f3 

                !      .   |   . 
                !        . |f1 
                !   f6-----+----- f2 
                !        . | . 
                !      .   |   . 
                !   f7     f8     f9 
                ! Aspect ratio 3.0 (cubic diameter 80 elements) 
 

            program natural_convection 
     
 
                       parameter(cd = 9, xd = 151, yd = 16, dd = 4) 
            real*8  cx(1:cd), cy(1:cd) 
            real*8  dx(1:dd), dy(1:dd) 
            real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd), ff(1:cd,1:xd,1:yd) 
            real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd), gg(1:dd,1:xd,1:yd) 

            real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 
            real*8  temp(1:xd,1:yd),sumf,sumg 
            real*8  vel(1:xd,1:yd) 
            real*8  u0, rho0, pi,tauv,th,tc,pt,ra,nyu,ok,di,tauc,ri,re,lambda 
               !       real*8  velmaxn,velmaxn1 
 
             u0 = 0.0   ! wall velocity 
             rho0 = 1.0   ! constant density 
             pt = 0.71   ! Prandtl number 

             ra = 100000   ! rayleigh number 
             th = 1.0   ! bottom hot wall 
             tc = 0.0   ! up cool/initial wall temperature 
               ! uwell=0.1   ! lid velocity 
             lambda=0.5 
 
 
            write(*,*) 'calculation start' 

            write(*,*) 'nstep?'                                                                                
    !      iteration step for display 
            read(*,*) nstep 
           write(*,*) 'nstep =',nstep 
               ! write(*,*) 'time relaxation?' 
               ! read(*,*) tauv 
               ! write(*,*) 'tauv =',tauv 
  

             gra = (0.0577**2)/(yd) 
  
             nyu = (gra*((xd)**3)*(th-tc)*pt/ra)**0.5  
               ! nyu = (gra*((xd)**3)*(th-tc)/(ri*re**2))**0.5 !mixed convection 
               ! nyu = (tauv - 0.5)/3. 
             tauv = 3*nyu + 0.5 
               ! di  = (gra*((xd)**3)*(th-tc)/(ra*pt))**0.5 natural convection 
             di = nyu/pt 

             tauc = di + 0.5 
               ! gra = (nyu**2)*ra/(((xd)**3)*pt) 
               ! grad = (0.1731**2)/xd !incompressible limit 
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            write(*,*) 'nyu  =',nyu 
            write(*,*) 'di   =',di 

            write(*,*) 'Tauv =',tauv 
            write(*,*) 'Tauc =',tauc 
            write(*,*) 'gra =',gra 
               !       write(*,*) 'grad =',grad 
 
           write(*,*) 'everything is ok?,press 0 if ok' 
           read (*,*) ok 
 

          cal   initial1                                                       
 (cx,cy,f,f0,g,g0,ux,uy,rho,temp,u0,rho0,th,tc,cd,xd,yd,dx,dy,dd,x1,x2,y1,y2,lambda) 
 
          do iter = 1, 1000000 
   
  call collide1 (f,f0,tauv,cd,xd,yd,g,g0,tauc,dd) 
 
  call force (cx,cy,ux,uy,temp,f,f0,gra,cd,xd,yd) 

 
  call stream1 (f,cd,xd,yd,g,dd) 
 
  call boundary1 (f,f0,rho,u0,cd,xd,yd,g,g0,temp,dd,x1,x2,y1,y2) 
 
  call calc1 
 (cx,cy,f,ux,uy,rho,u0,rho0,cd,xd,yd,temp,g,tc,th,dd,dx,dy,x1,x2,y1,y2,lambda) 
   

  if (mod(iter,nstep) .eq.0) then 
   write(*,*) 'time step=', iter 
   write(*,*) 'velocity=',ux(xd/4,yd/4) 
   write(*,*) 'temperature= ',temp(xd/4,yd/4) 
               !  write(*,*) 'velmax =', velmaxn1 - velmaxn 
  end if 
 
  call equilibrium1 (cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 

               !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
  ! check for convergence 
             if (mod(iter,nstep) .eq.0) then 
       
  write (*,*)'sum_f = ',sumf 
   do k = 1,cd 
    do i = 1,xd 
     do j = 1,yd 
      ff(k,i,j) = f(k,i,j) 

       end do 
    end do 
   end do 
 
   write (*,*)'sum_g = ',sumg 
   do k = 1,4 
    do i = 1,xd 
     do j = 1,yd 

      gg(k,i,j) = g(k,i,j) 
       end do 
    end do 
   end do 
     
                       endif 
 
            if (mod(iter,nstep) .eq.1) then 

   sumf = 0. 
   do k = 1,cd 
    do i = 1,xd 
     do j = 1,yd 
      sumf = sumf +(f(k,i,j)-ff(k,i,j))**2 
     end do 
    end do 
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   end do 
 

   sumf = (sumf/9.0*(yd)*(xd))**0.5 
    
   !***** if converge*****::! 
   if (sumf .le. 1.0d-3) then  
  
   write(*,*)'solution_f converge' 
               !    go to 100 
   end if 

 
   sumg = 0. 
   do k = 1,4 
    do i = 1,xd 
     do j = 1,yd 
      sumg = sumg +(g(k,i,j)-gg(k,i,j))**2 
     end do 
    end do 

   end do 
 
   sumg = (sumg/4.0*(yd)*(xd))**0.5 
    
   !***** if converge*****::! 
   if (sumg .le. 1.0d-3) then  
  
   write(*,*)'solution_g converge' 

               !    go to 100 
   end if 
 
  if (sumg .le. 1.0d-3 .and. sumf .le. 1.0d-3) then 
  write(*,*)'both solution converge' 
 
  go to 100 
  end if 

   
  end if 
    
             end do 
  
    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
  ! check for convergence 
 
               ! if (mod(iter,nstep) .eq.0) then 

               !  do i = 1,xd 
               !   do j = 1,yd 
               !   vel(i,j) = ((ux(i,j)*(yd-1)/di)**2 + (uy(i,j)*(yd-1)/di)**2)**0.5 
               !   end do 
               !  end do 
               ! 
               !  velmaxn = abs(vel(1,1)) 
               !  do i = 1,xd 

               !   do j = 1,yd 
               !    if(abs(vel(i,j)) .gt. velmaxn)  velmaxn = vel(i,j) 
               !   end do 
               !  end do 
               ! 
               ! endif 
 
               ! if (mod(iter,nstep) .eq.1) then 

               !  do i = 1,xd 
               !   do j = 1,yd 
               !   vel(i,j) = ((ux(i,j)*(yd-1)/di)**2 + (uy(i,j)*(yd-1)/di)**2)**0.5 
               !   end do 
               !  end do 
 
               !  velmaxn1 = abs(vel(1,1)) 
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               !  do i = 1,xd 
               !   do j = 1,yd 

               !    if(abs(vel(i,j)) .gt. velmaxn1)  velmaxn1 = vel(i,j) 
               !   end do 
               !  end do 
 
 
               ! endif 
  
    

               !***** if converge*****::! 
               !  if (abs(velmaxn1 - velmaxn) .le. 1.0e-8 )  then  
  
               !  write(*,*)'solution converge' 
               !  go to 100 
               !  end if 
 
               ! end do 

               ! calculate nusselt number 
                        100  bnu = 0.0 
               ! do i = 1, xd 
               !  do j = 1,yd 
               !   if (i .eq. 1) then 
               ! bnu = bnu + (((xd-1)/(di*(th-tc)*(xd)*(yd)))*((ux(i,j)*temp(i,j))-(di*(temp(i+1,j)-                   
 temp(i,j))))) 
               !  else if (i .eq. xd) then 

               !  bnu = bnu + (((xd-1)/(di*(th-tc)*(xd)*(yd)))*((ux(i,j)*temp(i,j))-(di*(temp(i,j)-     
 temp(i-1,j))))) 
               !   else  
               !bnu= bnu + (((xd-1)/(di*(th-tc)*(xd)*(yd)))*((ux(i,j)*temp(i,j))- (di*(0.5*(temp(i+1,j)-  
 temp(i-1,j)))))) 
               !   end if 
               !   end do 
               ! end do 

 
            open (unit=30,file='u vel1.dat',status='replace',action='write',iostat=ierror) 
            write(30,*)'thermal diffusivity      ',di 
           write(30,*)'Rayleigh number        ',ra 
           write(30,*)'Prandtl number           ',pt 
               !      write(30,*)'Reynolds number          ',re 
           write(30,*)'hydro relax. time        ',tauv 
           write(30,*)'termo relax. time        ',tauc 
           write(30,*)'solution converge at     ',iter 

               !      write(30,*)' nusselt number          ',bnu 
 
           do j = 1,yd  
 
           write(30,*) ux((xd+1)/2,j)*(yd-1)/di 
 
           end do 
 

           close(30) 
 
           open (unit=31,file='v vel1.dat',status='replace',action='write',iostat=ierror) 
           do i = 1,xd  
 
           write(31,*) uy(i,(yd+1)/2)*(yd-1)/di 
 
           end do 

 
           close(31) 
 
           open (unit=32,file='variables.dat',status='replace',action='write',iostat=ierror) 
           write(32,*)'x-vel, y-vel, temp' 
           do j = 1,yd 
           do i = 1,xd  
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           write(32,*) ux(i,j)*(yd-1)/di,uy(i,j)*(yd-1)/di,temp(i,j) 

 
           end do 
           end do 
 
           close(32) 
           end 
 
          subroutine         initial1                  

    
 (cx,cy,f,f0,g,g0,ux,uy,rho,temp,u0,rho0,th,tc,cd,xd,yd,dx,dy,dd,x1,x2,y1,y2,lambda) 
               !--------------------------------------------------------------------- 
          real*8  cx(1:cd), cy(1:cd), w(1:cd) 
          real*8  dx(1:dd), dy(1:dd) 
          real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd) 
          real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd) 
         real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

         real*8  temp(1:xd,1:yd) 
         real*8  u0,  rho0, pi,tc,th,lambda 
 
         pi = 4.0*atan(1.0) 
                    cx(1) =  0.0 
                    cy(1) =  0.0 
                    do k = 2,9 
         w(k) = 1. 

         if(mod(k, 2) .eq. 1.) w(k) = sqrt(2.) 
  cx(k) = w(k)*cos((k-2)*pi/4.0) 
                    cy(k) = w(k)*sin((k-2)*pi/4.0) 
                    enddo 
 
         dx(1) = 1.0 
         dy(1) = 1.0 
         dx(2) = -1.0 

         dy(2) = 1.0 
         dx(3) = -1.0 
         dy(3) = -1.0 
         dx(4) = 1.0 
         dy(4) = -1.0 
 
   !    initial condition for velocity 
 
        do i = 2,xd 

  do j = 1,yd-1 
   ux(i,j) = u0; uy(i,j) = u0; rho(i,j) = rho0  
   temp(i,j)=tc 
 
  end do 
       end do 
              !!!!!INITIAL VELOCITY OF LID!! 
       do i = 1,xd 

   ux(i,yd) = 0.0 ; uy(i,yd) = u0; rho(i,yd) = rho0  
   temp(i,yd) = tc 
       end do 
 
       do i = 1,xd 
   ux(i,1) = u0; uy(i,1) = u0; rho(i,1) = rho0 
   temp(i,1) = 1+lambda*(sin((2*pi*(i))/xd)) 
       end do 

 
 
              !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
              ! 
       call equilibrium1 (cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 
 
       do k = 1,cd 
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  do i = 1,xd 
   do j = 1,yd 

    f(k,i,j) = f0(k,i,j) 
   end do 
  end do 
       end do 
 
       do k = 1,dd 
  do i = 1,xd 
   do j = 1,yd 

    g(k,i,j) = g0(k,i,j) 
   end do 
  end do 
       end do 
 
       return  
       end 
 

                  subroutine equilibrium1 (cx,cy,f0,ux,uy,rho,cd,xd,yd,dx,dy,g0,temp,dd) 
             !--------------------------------------------------------------------- 
       real*8  cx(1:cd), cy(1:cd), f0(1:cd,1:xd,1:yd) 
       real*8  dx(1:dd), dy(1:dd) 
       real*8  g0(1:dd,1:xd,1:yd) 
                  real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 
       real*8  temp(1:xd,1:yd) 
       real*8  u2, tmp 

       integer i, j, k, m 
 
                  do i = 1,xd 
  do j = 1,yd 
    u2 = ux(i,j)**2 + uy(i,j)**2 
    f0(1,i,j) = rho(i,j)*(1. - 3./2.*u2)*4./9. 
    do k = 1,4 
    m = k*2    ; tmp = cx(m)*ux(i,j) + cy(m)*uy(i,j) 

    f0(m,i,j) = rho(i,j)*(1. + 3.*tmp + 9./2.*tmp**2 -      
   3./2.*u2)/9. 
    m = k*2 + 1; tmp = cx(m)*ux(i,j) + cy(m)*uy(i,j) 
    f0(m,i,j) = rho(i,j)*(1. + 3.*tmp + 9./2.*tmp**2 -    
  3./2.*u2)/36. 
    end do 
  end do 
        end do 
 

        do i = 1,xd 
  do j = 1,yd 
   do k = 1,dd 
    tmp = dx(k)*ux(i,j) + dy(k)*uy(i,j) 
    g0(k,i,j) = rho(i,j)*temp(i,j)*(1 + tmp )/4 
   end do 
                    end do 
         end do 

 
         return 
         end 
 
 
                    subroutine collide1 (f,f0,tauv,cd,xd,yd,g,g0,tauc,dd) 
             !--------------------------------------------------------------------- 
         real*8  f(1:cd,1:xd,1:yd), f0(1:cd,1:xd,1:yd), tauv 

         real*8  g(1:dd,1:xd,1:yd), g0(1:dd,1:xd,1:yd), tauc 
         integer i, j, k 
 
                    do k = 1,cd 
  do i = 1,xd 
   do j = 1,yd 
    f(k,i,j) = f(k,i,j) - (f(k,i,j) - f0(k,i,j))/tauv 
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    if (f(k,i,j) .le. -1) then 
     write(*,*)i,j,'error' 

    endif 
   end do 
  end do 
        end do 
 
        do k = 1,dd 
  do i = 1,xd 
   do j = 1,yd 

    g(k,i,j) = g(k,i,j) - (g(k,i,j) - g0(k,i,j))/tauc 
    if (g(k,i,j) .le. -1) then 
     write(*,*)i,j,'error' 
    endif 
   end do 
  end do 
        end do 
 

        return 
        end 
 
 
       subroutine force (cx,cy,ux,uy,temp,f,f0,gra,cd,xd,yd) 
             !--------------------------------------------------------------------- 
       real*8 f(1:cd,1:xd,1:yd), temp(1:xd,1:yd),cy(1:cd),cx(1:cd) 
       real*8 f0(1:cd,1:xd,1:yd) 

       real*8 ux(1:xd,1:yd), uy(1:xd,1:yd) 
       integer i, j, k 
 
       tempor = 0.0 
       do i = 1,xd 
                  do j = 1,yd 
       tempor = tempor + temp(i,j) 
       tempave = tempor/(yd*yd) 

       end do 
       end do 
  
       do k = 1,cd 
                  do i = 1,xd 
                  do j = 1,yd 
       f(k,i,j) = f(k,i,j) + 3*gra*(cy(k)-uy(i,j))*f0(k,i,j)*(temp(i,j)-tempave) 
       end do 
       end do 

       end do 
 
       return 
       end 
 
       subroutine stream1 (f,cd,xd,yd,g,dd) 
             !--------------------------------------------------------------------- 
       real*8  f(1:cd,1:xd,1:yd),g(1:dd,1:xd,1:yd) 

                  real*8  tmp(1:cd,1:xd,1:yd),tmpg(1:dd,1:xd,1:yd) 
       integer i, j, k 
             ! 
                  do k = 1,cd 
                  do i = 1,xd 
                  do j = 1,yd 
                  tmp(k,i,j) = f(k,i,j) 
       end do 

       end do 
       end do 
 
       do k = 1,dd 
                  do i = 1,xd 
                  do j = 1,yd 
                  tmpg(k,i,j) = g(k,i,j) 
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       end do 
       end do 

       end do 
     
       do k = 1,cd 
                 if(k .eq. 1) then 
                 do i = 1,xd; do j = 1,yd 
       ii = i    ; jj = j 
                 f(k,ii,jj) = tmp(k,i,j) 
      end do; end do 

 
      else if(k .eq. 2) then 
                 do i = 1,xd-1; do j = 1,yd 
      ii = i + 1; jj = j 
                 f(k,ii,jj) = tmp(k,i,j) 
  end do; end do 
 
     else if(k .eq. 3) then 

                do i = 1,xd-1; do j = 1,yd - 1 
     ii = i + 1; jj = j + 1 
                f(k,ii,jj) = tmp(k,i,j) 
     end do; end do 
 
     else if(k .eq. 4) then 
                do i = 1,xd; do j = 1,yd - 1 
     ii = i    ; jj = j + 1 

                f(k,ii,jj) = tmp(k,i,j) 
     end do; end do 
 
     else if(k .eq. 5) then 
                do i = 2,xd; do j = 1,yd - 1 
     ii = i - 1; jj = j + 1 
                f(k,ii,jj) = tmp(k,i,j) 
     end do; end do 

 
     else if(k .eq. 6) then 
                do i = 2,xd; do j = 1,yd 
     ii = i - 1; jj = j 
                f(k,ii,jj) = tmp(k,i,j) 
     end do; end do 
 
    else if(k .eq. 7) then 
               do i = 2,xd; do j = 2,yd 

    ii = i - 1; jj = j - 1 
               f(k,ii,jj) = tmp(k,i,j) 
    end do; end do 
 
    else if(k .eq. 8) then 
               do i = 1,xd; do j = 2,yd 
    ii = i    ; jj = j - 1 
               f(k,ii,jj) = tmp(k,i,j) 

   end do; end do 
 
   else if(k .eq. 9) then 
               do i = 1,xd-1; do j = 2,yd 
  ii = i + 1; jj = j - 1 
               f(k,ii,jj) = tmp(k,i,j) 
    end do; end do 
    end if 

    end do 
 
 
  do k = 1,dd 
               if(k .eq. 1) then 
               do i = 1,xd-1; do j = 1,yd - 1 
    ii = i + 1; jj = j + 1 
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                g(k,ii,jj) = tmpg(k,i,j) 
     end do; end do 

 
  else if(k .eq. 2) then 
               do i = 2,xd; do j = 1,yd - 1 
      ii = i - 1; jj = j + 1 
               g(k,ii,jj) = tmpg(k,i,j) 
   end do; end do 
 
  else if(k .eq. 3) then 

               do i = 2,xd; do j = 2,yd 
     ii = i - 1; jj = j - 1 
                g(k,ii,jj) = tmpg(k,i,j) 
    end do; end do 
 
   else if(k .eq. 4) then 
                do i = 1,xd-1; do j = 2,yd 
    ii = i + 1; jj = j - 1 

                 g(k,ii,jj) = tmpg(k,i,j) 
   end do; end do 
 
     end if 
     end do 
         
 
      return 

     end 
  
 
 subroutine boundary1 (f,f0,rho,u0,cd,xd,yd,g,g0,temp,dd,x1,x2,y1,y2) 
            !--------------------------------------------------------------------- 
 real*8  f(1:cd,1:xd,1:yd),f0(1:cd,1:xd,1:yd) 
 real*8  g(1:dd,1:xd,1:yd),g0(1:dd,1:xd,1:yd) 
 real*8  temp(1:xd,1:yd) 

 real*8  u0 
 real*8  rho(1:xd,1:yd) 
 
 ! nonequilibrium boundary conditon bottom 
 do i = 2,xd-1  !bottom 
 f(4,i,1) = f(8,i,1) 
 f(3,i,1) = f(7,i,1) !+ 0.5*(f(6,i,1)-f(2,i,1)) 
 f(5,i,1) = f(9,i,1) !+ 0.5*(f(2,i,1)-f(6,i,1)) 
 

 ! no slip bounce back 
 g(1,i,1) = g(3,i,1) 
 g(2,i,1) = g(4,i,1)  
 end do 
 
 do i = 2,xd-1  !upper 
 f(7,i,yd) = f(3,i,yd) 
 f(9,i,yd) = f(5,i,yd) !+ 0.5*(f(6,i,1)-f(2,i,1)) 

 f(8,i,yd) = f(4,i,yd) !+ 0.5*(f(2,i,1)-f(6,i,1)) 
 
 ! no slip bounce back 
 g(3,i,yd) = g(1,i,yd) 
 g(4,i,yd) = g(2,i,yd) 
 end do 
  
 ! left and right boundary condition 

 do j = 2,yd-1  !left boundary 
 f(2,1,j) = f(6,1,j) 
 f(3,1,j) = f(7,1,j) !+ 0.5*(f(8,i,1)-f(4,i,1)) 
 f(9,1,j) = f(5,1,j) !+ 0.5*(f(4,i,1)-f(8,i,1)) 
     
 g(1,1,j) = g(3,1,j)!g0(1,1,j) + g(1,2,j) - g0(1,2,j) 
 g(4,1,j) = g(2,1,j)! g0(4,1,j) + g(4,2,j) - g0(4,2,j) 
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 end do 
 

 do j = 2,yd-1  !right boundary 
 f(5,xd,j) = f(9,xd,j) !+ 0.5*(f(8,i,1)-f(4,i,1)) 
 f(6,xd,j) = f(2,xd,j) 
 f(7,xd,j) = f(3,xd,j) !+ 0.5*(f(4,i,1)-f(8,i,1)) 
 
 g(2,xd,j) =g(4,xd,j)! g0(2,xd,j) + g(2,xd-1,j) - g0(2,xd-1,j) 
 g(3,xd,j) =g(1,xd,j)! g0(3,xd,j) + g(3,xd-1,j) - g0(3,xd-1,j) 
 

 end do 
 
 ! four corner boundary condition 
 f(9,1,yd) = f(5,1,yd) 
 f(8,1,yd) = f(4,1,yd) 
 f(2,1,yd) = f(6,1,yd) 
 g(4,1,yd) = g(2,1,yd)!g0(4,1,yd) + g(4,2,yd-1) - g0(4,2,yd-1) 
 

 f(7,xd,yd) = f(3,xd,yd) 
 f(6,xd,yd) = f(2,xd,yd) 
 f(8,xd,yd) = f(4,xd,yd) 
 g(3,xd,yd) = g(1,xd,yd)!g0(3,xd,yd) + g(3,xd-1,yd-1) - g0(3,xd-1,yd-1) 
 
 f(3,1,1) = f(7,1,1) 
 f(2,1,1) = f(6,1,1) 
 f(4,1,1) = f(8,1,1) 

 g(1,1,1) = g(3,1,1)!g0(1,1,1) + g(1,2,2)- g0(1,2,2) 
 
 f(5,xd,1) = f(9,xd,1) 
 f(4,xd,1) = f(8,xd,1) 
 f(6,xd,1) = f(2,xd,1) 
 g(2,xd,1) = g(4,xd,1)!g0(2,xd,1) + g(2,xd-1,2)- g0(2,xd-1,2) 
 
 return 

 end 
 
 
           subroutine calc1        (cx,cy,f,ux,uy,rho,u0,rho0,cd,xd,yd,temp,g,tc,th,dd,dx,dy,x1,x2,y1,y2,lambda) 
            !--------------------------------------------------------------------- 
 real*8  cx(1:cd), cy(1:cd), f(1:cd,1:xd,1:yd) 
 real*8  dx(1:dd), dy(1:dd) 
 real*8  temp(1:xd,1:yd),g(1:dd,1:xd,1:yd) 
 real*8  ux(1:xd,1:yd), uy(1:xd,1:yd), rho(1:xd,1:yd) 

 real*8  u0,rho0,th,tc,lambda 
 integer i, j, k 
  
 pi = 4.0*atan(1.0) 
 
 do i = 1,xd 
  do j = 1,yd 
   ux(i,j) = 0; uy(i,j) = 0; rho(i,j) = f(1,i,j);ux(i,yd) = 0.0 

   do k = 2,cd 
    ux(i,j) =  ux(i,j) + f(k,i,j)*cx(k) 
    uy(i,j) =  uy(i,j) + f(k,i,j)*cy(k) 
    rho(i,j) = rho(i,j) + f(k,i,j) 
     end do 
    end do 
 end do 
 

 do i = 1,xd 
  do j = 1,yd 
   temp(i,j) = g(1,i,j);  
   do k = 2,dd 
    temp(i,j) = temp(i,j) + g(k,i,j) 
     end do 
    end do 
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 end do 
 

            j = yd   ! top boundary  
            do i = 1,xd 
  ux(i,j) = 0.0 
  uy(i,j) = u0 
           !  rho(i,j) = rho0 
  temp(i,j) = tc 
 end do 
 

 j = 1  !bottom boundary  
            do i = 1,xd 
  ux(i,j) = u0 
  uy(i,j) = u0 
           !  rho(i,j) = rho0 
  temp(i,j) = 1+lambda*(sin((2*pi*(i))/xd)) 
 end do 
 

 i = 1 ! left boundary 
 do j = 2, yd-1 
  ux(i,j) = u0 
  uy(i,j) = u0 
           !  rho(i,j) = rho0 
  temp(i,j) = tc 
 end do 
 

 i = xd ! left boundary 
 do j = 2, yd-1 
  ux(i,j) = u0 
  uy(i,j) = u0 
           !  rho(i,j) = rho0 
  temp(i,j) = tc 
 end do 
 

           ! do i = x1+1,x2-1 
          !  do j = y1+1,y2-1 
          !   ux(i,j) = 0.0; uy(i,j) = 0.0 
          !   temp(i,j) = 0.0 
          !   rho(i,j) = 0.0 
          !  end do 
          ! end do 
       
 

 do i = 2,xd-1 
  do j = 2,yd-1 
   if (i .ge. x1 .and. i .le. x2 .and. j .ge. y1 .and. j .le. y2) then !  define cubic            
 wall temperature 
    temp(i,j) = tc 
    ux(i,j) = u0 
    uy(i,j) = u0 
          !    if (i .eq. x1 .or. i .eq. x2 .or. j .eq. y1 .or. j .eq. y2) then 

          !    rho(i,j) = rho0 
          !    end if 
   else 
   if (rho(i,j) .ne. 0.) then 
    ux(i,j) =  ux(i,j)/rho(i,j) 
    uy(i,j) =  uy(i,j)/rho(i,j) 
    temp(i,j) = temp(i,j)/rho(i,j) 
   else 

    ux(i,j)  = 0. 
    uy(i,j)  = 0. 
    temp(i,j) = 0. 
   endif 
   end if 
    end do 
 end do 
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           ! temperature for inner cubic boundary  
  

           ! do j = y1,y2 
           !  temp(x1,j) = temp(x1-1,j) 
           !  temp(x2,j) = temp(x2+1,j) 
           !   
           ! end do 
           ! do i = x1,xd 
           !  temp(i,y1) = temp(i,y1-1) 
           !  temp(i,y2) = temp(i,j+1) 

           ! end do 
 
 ! upper adiabatic wall 
 do j = 1,yd 
 temp(1,j) = temp(2,j) 
 end do 
 do j = 1,yd 
 temp(xd,j) = temp(xd-1,j) 

 end do 
           ! do j = 2, y1 - 1 
           ! temp(xd,j) = temp(xd-1,j) 
           ! end do 
 
           ! do j = y2 +1, yd-1 
           ! temp(xd,j) = temp(xd-1,j) 
           ! end do 

 
 
           return 
 end 
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