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ABSTRACT

Biodiesel is the mono-alkyl ester of long-chain fatty acids derived from renewable 
feedstock. It is one of the most renewable fuels that is also non-toxic and 
biodegradable. The microalgae biomass with high oil content is significant as a 
sustainable resource for biodiesel production. Production of biodiesel using microalgae 
biomass appears to be a viable alternative because there is no conflict with food supply 
compared with the first generation biofuels, such as oil crops and animal fat. This 
thesis deals with the optimisation of the levels of the variables pH and concentration of 
ferric chloride for harvesting marine microalgae by flocculation, marine microalgae 
wild strains limited selection for high level of oil, optimisation of biomass growth and 
oil content in aseptic sparged flasks, and scale-up of marine microalgae cultivation 
from flasks to non-aseptic tubular photobioreactor based on the attainment of turbulent 
flow at both scales. The 22 Factorial Design and the Method of the Path of Steepest 
Ascent are used in the optimisation of the levels of the variables for harvesting 
microalgae by flocculation. Sedimentation efficiency would reach to the top 99% when 
the volume of added ferric chloride solution (concentration 1 mol/L) is 0.44ml per litre 
and pH value is 8.45. For the microalgae wild strains limited selection, Tetraselmis sp, 
Nannochloropsis Palau Sara, Nannochloropsis Somalia, Nannochloropsis sp, 
Chlorella sp, Chetoceros sp  strains of microalgae are cultivated aseptically in sea 
water at the same conditions for 7 days, the biomass are collected and lipid content are 
measured with GC-MS (Gas Chromatography-Mass Spectrometer Detector). The result 
shows that Nannochloropsis sp give the highest lipid content of 6.32 mg/L. In the 
optimisation of biomass growth and oil content in aseptic sparged flasks experiments, 
the 23 Factorial Design is used to investigate the effects of the variables nitrogen and 
phosphorus concentrations, % (v/v) of CO2 in the sparging air mixture, and 
illumination intensity. The Factorial Experiments at the area containing the maximum 
biomass concentration are complemented with the Composite Design. Analysis of the 
Response Surface indicated that at the theoretical point of maximum biomass 
concentration nitrogen and phosphorus concentration (N+P) are at 71.3+4.75mg/L, % 
(v/v) of CO2 is at 0.98% and illumination intensity (L) is at 781.25 lx, with the 
predicted biomass concentration at 143.09 mg/L. Experiments conducted at these 
optimised levels of experimental variables gave the biomass concentration of 136.67 
mg/L and lipid concentration of 2.99 mg/L. In the scale-up of marine microalgae 
cultivation, marine microalgae are grown non-aseptically in the tubular 
photobioreactor which consisted of a vertical air-lift and a horizontal receiver. At the 
same light intensity and with the culture in turbulent flow resulting from sparging at 
4.0L/min with air, and sparging with 1% (v/v) of CO2, a biomass concentration of 155 
mg/L and a lipid content of 3.15 mg/L were achieved. This non-aseptically grown 
marine microalgae biomass will be used as the inoculum for a future large-scale open 
raceway pond cultivation of the marine microalgae grown on sewage-contaminated sea 
water sparged with industrial waste CO2.
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ABSTRAK

Biodisel adalah ester mono-alkyl daripada asid-asid lemak berantai panjang yang 
didapati daripada bahan suapan boleh diperbaharui. Ia merupakan antara bahan api 
yang paling boleh diperbaharui yang juga tidak toksik dan lebih-lebih lagi ia boleh 
diurai secara biologi. Biojisim microalgae yang mengandungi minyak yang banyak 
merupakan sumber lestari yang agak penting bagi penghasilan biodisel. Penghasilan 
biodisel menggunakan minyak microalgae merupakan satu pilihan yang boleh jaya 
kerana tiada konflik dengan bekalan makanan berbanding dengan biobahanapi generasi 
pertama, seperti minyak sayuran dan lemak binatang. Tesis ini memperihalkan 
pengoptimuman aras-aras pemboleubah pH dan kepekatan ferric klorida dalam 
penuaian microalgae dengan pengflokan, seleksi terhad strain liar bagi penghasilan 
minyak yang tinggi, pengoptimuman penghasilan biojisim dan kandungan minyaknya 
dalam sistem aseptik kelalang yang disembur campuran udara dan CO2, dan skala-naik 
penghasilan microalgae dan kandungan minyaknya daripada skala kelalang 1.0L yang 
aseptik kepada skala fotobioreaktor tiub 390L yang tidak aseptik, berdasarkan 
pencapaian aliran bercampur pada kedua-dua skala. Rekabentuk Faktorial 22 dan 
Kaedah Pendakian Paling Curam digunakan dalam pengoptimuman aras-aras 
pembolehubah untuk penuaian microalgae dengan pengflokan. Kecekapan sedimentasi 
mencapai ketinggian lebih daripada 99% bila isipadu larutan ferric klorida (kepekatan 
1 mol/L) yang dicampurkan ialah 0.44mL per litre dan pH berada pada nilai 8.45.
Dalam seleksi terhad strain liar microalgae, strain-strain Tetraselmis sp, 
Nannochloropsis Palau Sara, Nannochloropsis Somalia, Nannochloropsis sp, 
Chlorella sp, Chetoceros sp. dibiakkan secara aseptik dala air laut dalam kadaan yang 
serupa untuk 7 hari, biojisim dituai dan kandungan lipid ditentukan menggunakan 
GC-MS (Gas Chromatography-Mass Spectrometer Detector). Hasil menunjukkan 
Nannochloropsis sp. memberi kandungan lipid tertinggi pada 6.32 mg/L. Dalam 
pengoptimuman penghasilan biojisim dan kandungan minyak dalam experiment 
menggunakan sistem aseptik kelalang yang disembur campuran udara dan CO2, 
Rekabentuk Faktorial 23 digunakan untuk menyelideki kesan pembolehubah
-pembolehubah kepekatan nitrogen dan phosphorus, %(v/v) CO2 dalam semburan 
udara, dan keamatan pencahayaan. Ujikaji Faktorial dikawasan yang mengandungi 
kepekatan biojisim maksimum telah dilengkapi dengan Rekabentuk Komposit. 
Analisis Permukaan Rangsangan menunjukkan bahawa pada titik maksimum teori bagi 
kepekatan biojisim, kepekatan nitrogen dan phosphorus (N+P) adalah pada 
71.3+4.75mg/L, % (v/v) CO2 dalam semburan udara adalah pada 0.98% dan keamatan 
pencahayaan (L) adalah pada 781.25 lx, dengan kepekatan biojisim diramalkan pada
143.09 mg/L. Experimen yang dijalankan menggunakan aras-aras optimum ini 
memberi kepekatan biojisim pada 136.67 mg/L dan kepekatan lipid pada 2.99 mg/L.
Dalam skala-naik pembiakan microalgae, microalgae dibiakkan secara non-aseptik 
dalam fotobioreaktor tiub yang terdiri daripada bahagian pengangkat-udara yang 
menegak dan bahagian penerima cahaya yang mengufuk. Pada keamatan pencahayaan 
yang sama dan dengan kultur berada dalam aliran bercampur yang terhasil akibat 
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semburan udara pada 4.0L/min, dan dengan semburan CO2 pada 1%(v/v), kepekatan 
biojisim 155mg/L dengan kandungan lipid 3.15 mg/L telah dicapai. Mikroalgae yang 
dibiakkan secara non-aseptik ini akan digunakan sebagai inokulum dalam satu 
pembiakan microalgae skala besar menggunakan air laut yang tercemar dengan 
kumbahan dalam kolam lumba terbuka yang disembur CO2 buangan industri dimasa 
depan. 
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CHAPTER 1

INTRODUCTION

This chapter gives the ideas and the rationale of the research formulation, and 

covers the subtopics of background of study, problem statements, research objectives 

and scope of study.

1.1 Background of Study

Researchers in the field of biodiesel are unanimous that oil from microalgae 

will become the favoured feedstock of the biodiesel plant in the future (Mata et al., 

2010; Rosenberg et al., 2008; Chisti, 2008; Dismukes et al., 2008; Gressel, 2008; 

Chisti, 2007). This is mainly because of its high productivity per unit area of farm and 

because it does not compete with food crops for arable lands, since it can be grown in 

lakes or at sea (Howell, 2009; Gressel, 2008). 

Presently the estimated cost of producing 1.0 kg (dry wt.) of microalgae in a 

plant with 10,000 ton per yr capacity is estimated at USD 0.47. Assuming the biomass 

contains 30% of oil by weight, the cost of biomass to provide 1 liter of oil will be 

USD1.40. Assuming the oil recovery process contributes 50% to the cost of the final 

recovered oil, the oil will cost USD2.80 per liter (Chisti, 2008). Assuming that 

conversion to biodiesel is 100% (Mata et al., 2010), and that conversion process 

contributes 30% to the cost of biodiesel, then the present cost-price of biodiesel from 
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microalgae will be around USD4.00 or RM14.00. There is thus a lot more that needs to 

be done to bring it down to the price of mineral diesel of RM1.80 at the pump in 

Malaysia. As oil reserves continue to deplete, such improvements become a race 

against time. 

The microalgae biodiesel value chain comprise of: 

(a) the microalgae strain,

(b) the microalgae cultivation unit, 

(c) the microalgae cultivation, 

(d) the site selection, 

(e) the microalgae harvesting and biomass concentration, 

(g) the microalgae processing and components extraction, 

(h) biodiesel production.

Improvements in any or all of these value chain components will contribute 

towards lowering the cost-price of microalgae biodiesel. 

1.2 Statement of Problem

The main area of improvement for the geneticists is in genetic engineering, 

which is to produce a high-yielding transgenic microalgae strain with the selective 

advantage which would enable it to grow in highly selective environments so that it 

can be grown in open-culture systems whilst still remaining relatively free of 

contamination by other algae and protozoa (Mata et al., 2010). Until the geneticists 

succeeded in doing that, the main problems facing the biochemical engineers in 

large-scale commercial production of microalgae for biodiesel are the need for 

closed-culture systems and the fact that these are very capital intensive 

(Borowitzka,1999).



3

The choice for the biochemical engineers in the microalgae cultivation unit is 

between the closed-culture systems of photobioreactors and open-culture systems such 

as lakes or ponds, (Borowitzka, 1999; Chen, 1996; Del Campo et al., 2007; Canela et 

al., 2002; Piccolo, 2008). Closed-culture bioreactors support up to five-fold higher 

productivity with respect to reactor volume compared to open-culture systems, but they 

also cost ten times as much to build compared to open-culture systems (Khan et al., 

2009). Open ponds are a very proficient and lucrative method of cultivating microalgae, 

but they become contaminated with superfluous species very quickly, while 

closed-culture bioreactors permit single-species culture for prolonged durations (Khan 

et al., 2009). 

For microalgae cultivation, the ultimate aim is to use local sewage as nutrients 

and CO2 recycled from industrial stacks for sparging it. This is similar in aims with 

The National Aeronautics and Space Administration (NASA) program of developing 

an algae fuel by growing the algae in wastewater with the aim of (a) generating a high 

quality liquid fuel, (b) creating an inexpensive method of treating sewage and (c) 

systematizing an effective way eliminate carbon dioxide (Howell, 2009), although the 

design concept will be different. Response surface methodology analysis of CO2

sequestering by microalgae grown in medium at different C and N concentrations 

(approximating nutrients in secondary effluents from municipal treatment plants) by 

Bilanovic et al. (2009) have shown that the process can be optimised for maximal 

biomass production and maximal CO2 removal.

Poor sewage treatment has been blamed as being one of the causes of corals 

slowly dying in the sea off the east coast of peninsular Malaysia, as algae was found to 

have smothered some reefs, indicating nutrient pollution (Tan, 2008). The power sector 

in Malaysia is polluting too, with Malaysia ranked 24th among the top-50 countries 

with the highest CO2 – emitting power sectors, emitting 61,100,000 tons of CO2 per 

year. There are many industrial sites (for CO2) near the sea on the outskirts of major 
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towns (for sewage) along the east coast of Peninsular Malaysia. For the ultimate site 

selection of the open-culture system, the sea off the coast of Kuantan in the East Coast 

of Peninsular Malaysia presents many good options, as it avoids competing with crops 

for agricultural land.  

However, most marine algae do not have the selective advantage which would 

have enabled them to grow in highly selective environments so that they can be grown 

in open-culture systems and still remain relatively free of contamination by other algae 

and protozoa (Borowitzka, 1999). Hence a hybrid system (Khan et al., 2009) will need 

to be tried in this case. In hybrid systems, both open-culture ponds as well as 

closed-culture bioreactors are used in combination to get better results. The 

open-culture ponds are inoculated with the desired strain that was cultivated in a 

closed-culture bioreactor. This inoculum needs to be large enough for the desired 

species to establish in the open-culture ponds before contamination by other algae and 

protozoa (Khan et al., 2009).

1.3 Research Objectives

The research objectives of this research are as follows:

   To optimise a method for harvesting microalgae.

   To conduct a limited strain selection among wild strains of marine 

microalgae in order to select a high-yielding strain for oil production.

   To optimise the production of the algal biomass and oil of the selected 

strain with respect to the levels of the relevant variables in the aseptic batch 

process.

   To scale up the production of the algal biomass and oil of the selected 

strain in a non-aseptic batch photobioreactor.
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1.4 Scope of Study

The study area of this research was in Kuantan with latitude of 3° 29′24″ N and 

longitude of 103° 12′0″ E.

The scope in the development of a method for harvesting microalgae will be 

limited to flocculation, as it is one of the effective and inexpensive methods for 

harvesting microalgae in large scale. In this research, ferric chloride is chosen as the 

flocculant agent for treating the microalgae culture, with volume of ferric chloride and 

pH being the two independent variables to be optimised. 

The scope in the development of a method for determining the amount of oil in 

the microalgae biomass will be limited to separation and identification of fatty acids in 

the microalgae. They will be analysed in Agilent 6890 Gas Chromatograph equipped 

with a HP-88 (100m×0.25mm ID, 0.2μm film thickness, J&W 112-88A7), using 

helium as carrier gas at 1.0ml/min. Fatty acids methyl esters will be identified by 

comparison with known standard mixture FAME Mix C4-C24 (Cat.no.18919-1AMP, 

SUPELCO, USA) and quantified by area percents of total fatty acids. The other 

analysis method is Agilent 7890A Gas Chromatography (GC) system equipped with a 

DB-1MS (30m×0.25mm ID, 0.25μm film thickness, Agilent 122-0132) and Agilent 

5975C Mass Spectrometer Detector (MSD), using helium as carrier gas at 1.0ml/min.

The standard methyl nonadecanoate (C19) was added into the sample to quantify the 

fatty acid.

The scope of the strain selection among wild strains of marine microalgae in 

order to select a high-yielding strain for biomass and oil production will be limited to 

the strains obtained from Institute of Tropical Aquaculture, Universiti Malaysia 

Terengganu and from Marine Finfish Production and Research Centre, Tanjong 

Demong, 22200 Besut, Terengganu.
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The scope of the optimisation of the production of the algal biomass and oil of 

the selected strain with respect to the levels of the relevant variables in the aseptic batch 

process will be limited only to the variables which ultimately can practically be 

controlled at the large scale open-culture process.

The scale up the production of the algal biomass and oil of the selected strain 

from the aseptic batch process in sparged 2L Scott Bottles to non-aseptic 390L volume 

batch photobioreactor will be based on the achievement turbulent flow by airlift at the 

large scale.
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CHPTER 2

LITERATURE REVIEW

2.1 Introduction

Economic growth combined with a rising population has led to a steady 

increase in the global energy demand. The enormity of the energy crisis has 

multifolded dramatically over the past decade (Varma and Behera, 2003), and together 

with the adverse environmental consequences of exhaust gases from fossil fuels, have 

made modern bioenergy gain increased public and scientific attention. 

Biomass is one the best sources of energy (Kulkarni and Dalai, 2006). 

Large-scale production of biomass energy could contribute to sustainable development 

on several fronts, environmentally, socially and economically (Goldemberg, 2000). 

Biodiesel is the monoalkyl ester of long-chain fatty acids derived from 

renewable feedstocks (Meher et al., 2006). The suitability of biodiesel obtained from 

canola, soybean, palm, sunflower, and algal oil as a diesel fuel substitute have been 

well-reported (Lang et al., 2002; Spolaore et al., 2006). The primary advantages of 

biodiesel are that it is one of the most renewable fuels which are also non-toxic and 

biodegradable (Gerpen, 2005). Compared to many other alternative transportation fuels, 

biodiesel can be used in existing diesel engines without modification, and it is suitable 

for blending in any ratio with petroleum diesel (Singh and Gu, 2010).
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Global climate change requires immediate and substantial reductions in 

anthropogenic greenhouse gases (GHG) emissions, particularly fossil CO2. Carbon 

sequestration could be a major tool for reducing atmospheric CO2 emissions from 

fossil fuel usage (Khan et al., 2009). Microalgae, a group of fast-growing unicellular or 

simple multi-cellular microorganisms, have the ability to fix CO2 while capturing solar 

energy with efficiencies 10-50 times greater than that of terrestrial plants (Li et al., 

2008) and produces biomass for the subsequent production of biofuels (Khan et al., 

2009). Microalgae-based carbon sequestration technologies can, in principle, not only 

cover the cost of carbon capture and sequestration but also produce environmentally 

friendly biodiesel. Carbon sequestration offers an opportunity for reducing greenhouse 

gas emission that can complement the current strategies of improving the energy 

efficiency and increasing the use of non-fossil energy resources (Bilanovic et al., 2009; 

Khan et al., 2009).

The viability of microalgae for biodiesel production has been studied by a 

number of researchers (Mata et al., 2010; Singh and Gu, 2010). As microalgae can 

grow in lakes or in the sea and do not compete with cereal crops for agricultural land, 

the possibility of producing biodiesel from microalgae will make it potentially 

competitive against biodiesel from canola, soybean, palm, and sunflower oil. 

2.2 Potentials and economics of microalgae biodiesel

2.2.1 Advantage of the microalgae biodiesel

Microalgae are very important from an ecological point of view. Their 

important role as a food source is due to their content of minerals, vitamins and oils, 

and their richness in polyunsaturated fatty acids (PUFAs). PUFAs such as α-linolenic, 

eicosapentaenoic and docosaesaenoic acids, belongs to the ω-3 group (Metting and 

Pyne, 1986; Schwartz, 1990; Kay, 1991; Shimizu, 1996; Shimizu, 2003). 


