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ABSTRACT 

Technology of pipeline drag reduction has been advanced for many years. It has 

improved in increasing the pipeline flow potential in crude oil transportation. In the 

pipeline system, surfactant solutions that caused drag reduction are capable in lowering 

the pumping power. In this research experiment, photosensitive cinnamate group 

derivative compound and polymer surfactant as drag reducing agents were chosen 

mainly to study on the effect of photosensitive surfactant on the drag reduction and heat 

transfer performance and also the effect of ultraviolet light irradiation on the heat 

transfer and drag reduction ability of the surfactants. Water was used as the working 

fluid in this research and the main equipment used was Rotating Disk Apparatus. 

Combination of these compounds formed viscoelasticity solution. In this research 

experiment, rheological measurements, drag reduction and heat transfer reduction 

percentages were evaluated. In conclusion, these viscoelasticity solutions have a higher 

drag reduction percentages at higher rotational speed after ultraviolet irradiation. Lower 

heat transfer reduction percentages were analysed for pure photosensitive cinnamate 

group derivative after ultraviolet irradiation and polymer surfactant solutions hence, 

indicated that both solutions are good thermal conductor. 
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ABSTRAK 

 

Teknologi pengurangan seretan dalam saluran paip telah pun berkembang selama 

bertahunan. Ia mengingkatkan potensi pengaliran saluran paip dalam pengangkutan 

minyak mentah. Cecair surfaktan yang berpotensi mengurangkan seretan boleh 

menurunkan kuasa pengepam dalam sistem saluran paip. Dalam eksperimen 

penyelidikan ini, komponen fotosensitif kumpulan cinnamate terbitan and surfaktan 

polimer sebagai ejen pengurangan seretan telah dipilih untuk mengkaji tentang kesan 

surfaktan fotosensitif terhadap prestasi pengurangan seretan dan pemindahan haba dan 

juga kesan penyinaran cahaya ultra-ungu terhadap keupayaan surfaktan yang mampu 

menyebabkan pengurangan seretan dan pengurangan pemindahan haba. Air digunakan 

sebagai cecair dalam kajian ini dan peralatan utama yang telah digunakan ialah 

Peralatan Cakera Memusing. Gabungan sebatian ini membentuk cecair likat-kenyal. 

Ujian reologi, peratusan pengurangan seret dan pemindahan haba telah pun dinilai. 

Kesimpulannya, cecair likat-kenyal ini mempunyai peratusan pengurangan seretan 

tinggi pada kelajuan putaran yang lebih tinggi selepas penyinaran ultra-ungu.  Peratusan 

pengurangan pemindahan haba yang lebih rendah telah dianalisis untuk kedua-dua 

cecair tulen fotosensitif kumpulan cinnamate terbitan selepas penyinaran ultra-ungu dan 

cecair surfaktan polimer, oleh itu, kedua-dua cecair menunjukkan konduktor haba yang 

baik. 
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CHAPTER 1 INTRODUCTION 
 

 

INTRODUCTION 

 

 

1.1 Background of study 

 

Drag reduction is an occurrence where particular amount of drag reducing agent (DRA) 

for instance surfactant, fiber or polymer are added to the flow of solution that will cause 

dramatic frictional drag reduction (Li et al., 2008). In the industrial application, the 

effect of drag reduction is very significant as it is favourable in the pipeline systems. In 

turbulent pipeline flow systems particularly, size of the pumps and energy consumption 

can be decreased as well as an increase in the flow rate and pumping power can also be 

saved by DRA addition. Viscoelastic behaviour is observed in the DRA solution flows. 

 

Toms reported about drag reduction effects in the turbulent flow systems using 

additives in 1948. Addition of low concentration fibrous suspension in the turbulent 

flow caused reduction in drag compared to the pure solvent turbulent flow and which 

this is known as Toms Effect.  

 

Formation of micelles by the surfactants in aqueous solutions described the drag 

reduction where the turbulence intensity is decreased (Toms, 1949). The hydrophobic 

molecular chains of the surfactant move together while the hydrophilic part form 

micelles surface as this phenomenon can reduce the unfavourable hydrocarbon-water 

interface. 
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Polymers are not appropriate as a DRA in circulating fluid systems such as district 

heating and cooling due to their degradation by the pumps. On the other hand, 

capability of forming long cylindrical micelles by the surfactants known to provide 

persistent drag reduction. The micelles are thermodynamically stable within a range of 

temperature enabling it to form back if they are interrupted by high shear forces in 

pumps or valves. The duration is short for the reformation of the micelles even in hot 

water. Effective heat transfer can takes place in the heat exchanger during this duration 

as the flow is in turbulent flow (Gasljevic et al., 1998; Wollerstrand et al., 1997; 

Gasljevic et al., 2001). 

 

1.2 Problem statement and motivation 

 

In the pipeline transportation, drag and skin friction phenomena occur due to the 

interaction between the fluid and the skin of the body which is the dampened surface. 

Skin friction happens in the boundary layer near the solid surfaces while turbulence 

friction happens to the bulk flow of the fluid which eventually decreases the flow rate of 

the fluid. Higher energy is required to transport the fluid if the flow velocity is higher 

significantly increases the friction (Shenov, 1984). High polymers and surfactants are 

the two most classes that used as DRAs (Knight, 2009). Under high shear stress, high 

polymers will undergo permanent degradation, unlike surfactants after experienced 

duration of high shear stress, they can actually restore themselves by flat pack, and 

hence surfactants are selected in recirculation systems as drag reduction agents. 

 

In the heat exchanger, efficiency of heat transfer performance is observed to be lower 

for drag reducing flows. Measurement on the combination of surfantants solution of 

heat transfer characteristics has been done and the correlation between momentum and 

heat transfer was unacceptable because heat transfer reduction rate was detected to be 

higher than drag reducing rate (Usui and Saeki, 1993). Steiff et al.,(1998) noted that 

precise consideration had to be given on the influence of drag reducing additives on heat 

exchangers and recommended on the improvement of the heat exchangers behaviour. 
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In the previous studies, light-responsive threadlike micelles forming surfactants have 

been used as drag reducing fluids. Fluids that response upon light irradiation is known 

as photorheological fluid and the rheological property of the fluid such as viscosity is 

altered. Cinnamic acid derivative and surfactant containing fluid was irradiated with 

ultra-violet (UV) light where the viscosity of the fluid had adjusted (Lee et al., 2004). 

The effect of photorheological by the UV light showed that changes in sizes of micelles 

in the water. Due to the complication between the chains, long cylinders, also known as 

wormlike micelles, high viscosity of the fluid produced, while spherical or short 

cylindrical micelles gave a low viscosity. The length of the micelles can be modified by 

light irradiation. 

 

Recently, heat-transfer properties of drag reducing micellar solutions have been 

introduced by Shi et al.,(2011). The solution contained cationic surfactant and 

photoresponsive organic derivative which in a trans-isomer form. These solutions 

formed numerous threadlike micelles, originally, that was in high viscoelasticity and 

had high drag reducing properties up to 75%. Photoisomerisation of trans to cis of the 

solution happened upon UV light irradiation before it enter the heat exchanger. The 

length of threadlike micelles decreased, thus lowered in viscoelasticity and drag 

reducing properties causing the fluid to perform effective heat transfer properties. This 

process is irreversible upon UV light irradiation. 

 

A photoreversible micellar solution has been improved by Shi et al.,(2012) for district 

heating or cooling systems by using aqueous solution of cationic surfactant and also 

trans form of azobenzene derivative. In pure water, this solution exhibited 

viscoelasticity and drag reducing properties up to 80%, conversely lack in heat transfer 

properties. Before the solutions enter the heat exchanger, under UV light, 

photoisomerisation of azobenzene group of the solvent occurred from trans to cis as it 

gained effective heat transfer properties caused by the formation of shorter cylindrical 

micelles. This process is reversible upon visible light irradiation at the exit of the heat 

exchanger. 

 

Azobenzene group however is thermally unstable. Generally, photochromic variations 

will be caused by azobenzene group in the visible range. Even at room temperature, 

transformation of cis-form of azobenzene group to trans-form will take place. To 
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overcome this issue, studies have been done on the sensitivity of the photochromic 

cinnamate derivatives. In this research, polystyrene sulfonate, sodium salt (PSS) as 

polymer surfactant and methyl trans-cinnamate (MTC) are used, as cinnamate group is 

known to be responsive to UV-Visible light irradiation. 

 

1.3 Research objective 

 

The objectives of the research are:  

1. To investigate the effect of photosensitive and polymer surfactants on the drag 

reduction and heat transfer performance. 

2. To investigate the effect of UV light on the heat transfer and drag reduction 

ability of the surfactants. 

 

1.4 Scope of research 

 

The scopes of study are: 

1. Examine on the viscosity of solutions by using Brookfield viscometer. 

2. Determine and evaluate the torque values observed for different mixture of 

solutions from Rotating Disk Apparatus (RDA) by using Thinget Servo 

software. 

3. Analyze the temperature readings difference of heat transfer as RDA used as the 

temperature regulating system. 
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CHAPTER 2 LITERATURE 

REVIEW 
 

 

LITERATURE REVIEW 

 

 

2.1 Overview  

 

 

This chapter basically contains reviews on previous studies related to effective drag 

reduction and heat transfer reduction. Firstly, here are discussions on types of fluid 

flow, drag reduction, drag reducing agents and heat transfer reduction for a better 

understanding on the current studies. Photoresponsive materials are then also discussed 

in detail. 

2.2 Types of fluid flow 

 

Fluid movement in the pipeline system is classified into three types, namely, laminar, 

transitional and also turbulent flow. The factors that affect the fluid flow characteristics 

can be summarized and is expressed in the ratio of inertia forces to viscous forces 

within the fluid in which it is known as Reynolds number (Re). 

 

   
   

 
                                                                                                                      (2-1) 

 

 

Where, 

 V  = velocity of the fluid (ms
-1

) 

 D = diameter of the pipe (m) 

ρ = density (kgm
-3

)  

μ = viscosity of the fluid (Pa.s) 
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Fluid flows are laminar if the Re is less than 2000 and is turbulent if above 4000. The 

flow is in transition when the Re is in between 2000 and 4000. 

 

 

Figure 2-1: Types of fluid flow 

 

Laminar flow which is also known as streamline flow is a type of flow in which the 

movements of the fluid is smooth or in regular paths and there are no changes with time 

in the applied boundary conditions as the flow is steady. The fluid properties such as 

velocity and pressure are remained constant in this flow. When the flow channel is 

small and the viscosity of the fluid is relatively high, laminar flow is observed in the 

stream. 

Besides that, transitional flow is the mixture of laminar and turbulent flows. This flow 

type can either change to laminar or turbulent flow. The stability of laminar flows to 

minor disturbances is reflected as the primary cause of the transformation from 

transition to turbulence as it is related with sheared flows. Fundamentally, even with 

constant imposed boundary conditions, this movement becomes unsteady. The flow 

properties eventually differ in a random and untidy way. At this point, the flow turns to 

turbulence. 

 

While in turbulent flow, the fluid movements are irregular fluctuations and mixing as 

the velocity is not constant at any point both in direction and magnitude with time. It 

also has eddies and current across the cross section of the pipe that rapidly interchange. 

It is a three dimensional and rotational movement of fluid. Turbulent flow is 

distinguished by high flow velocity, heat, mass transport and low viscosity 

Laminar (Re < 2000) 

 

 

Transitional (2000 < Re < 

4000) 

 

 

 

Turbulent (Re > 4000) 
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characteristics of the fluid due to the turbulent diffusivity. Since the flow pattern of this 

flow is random and promotes dispersal of velocity fluctuation throughout the fluid 

surrounding then the involvement is achieved by diffusion.  von Karman noted that this 

type of flow can be created by the fluid flow across solid surfaces or at different 

velocities by the flow of the fluids layers over one another known as wall Turbulence 

and free Turbulence respectively. Development of higher shear stresses can occur 

throughout the fluid if the stress and velocity randomly change with time. This can be 

the reason of irreversibility or losses as it also develop higher internal energy of the 

fluid at the outflow of the kinetic energy of turbulent.  

 

2.3 Drag reduction 

 

Reduction of turbulent flow friction phenomenon of a fluid in a pipeline system by 

adding minor amount of additives is recognized as a drag reducing process. Gadd 

reported the first drag reduction that caused by surfactant solutions (Gadd, 1996). The 

main intention to progress the fluid mechanical efficiency is via DRAs. The DRAs were 

chosen by combining certain cationic surfactants with an appropriate counter ion. In 

fact, drag reducing effects also shown by some of the non-ionic surfactants. Rod-like 

micelles are formed by the drag reducing surfactants and their respective cumulative 

might be exist in the solution. These cumulative rod-like micelles formed network with 

turbulent current, hence drag is reduced (Shikata et al., 1988).  Mechanical deprivation 

happens to these networks in high shear rate areas, which later cured in lower shear 

stress areas like in flow through pipes. In the closed-loop district heating and cooling 

systems, drag reducing surfactants are reflected as an effective way to decrease the 

pumping power. 

 

Since in the earlier years, many researches have been done to study on the reduction 

mechanism and ways to overcome it (Knight, 2009). The pressure loss of the solution 

flow is estimated by calculating the Fanning friction factor, f first in order to calculate 

the amount of the drag reduction. 

 

  
   

      
      

                                                                                                           (2-2) 
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Where, 

    = pressure drop 

D = pipe diameter (m)  

ρ = density (kgm
-3

)  

V = mean flow velocity (ms
-1

) 

L = pipe length (m)   

Q = volumetric flow rate (m
3
 s

-1
) 

The percentage of drag reduction (% DR) is stated as 

 

    
    

  
                                                                                                                     -    

 

Where, 

fs = solvent friction function 

f = measured solution friction function 

By using the von Karman or Prandtl-Karman, the solvent friction factor is obtained. 

 

√        (  √  )                                                                                                    2-4) 

 

 

Where, 

Re = Reynolds number 

 

2.4  Drag reducing agent (DRA) 

 

The DRA that have been added to the flow of the pipelines can increase the production 

rate as well as decrease the pumping cost and the corrosion rates in pipelines. According 

to Jubran et al., (2005), benefits of DRA are reduction in pressure with the subordinated 

reductions in pressure surge and pipe thickness, pumping power can be saved, improved 

pipeline capability, and also decreased in the design phase of the pipe diameter and the 

number or pumping facilities size. The advantages of DRA are momentarily avoiding 

the capital cost of the new pumping installations and short time implementation (Jubran 

et al., 2006). The diameter of the pipe, temperature, fluid viscosity and presence of 

water and or paraffin can affect the DRAs performance. The performance can be 

evaluated by using the effectiveness which is defined as 
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                                                                    -    

 

There are mainly two types of DRAs namely polymer and surfactant. 

 

2.4.1 Polymer 

 

Monomers are smaller chemical units that repetitively join together covalently to build a 

large macromolecule known as polymer through a process of polymerization. Polymers 

are characterized in many forms based on the different distribution of monomer units in 

the polymer chain (Goddard and Ananthapadmanabhan, 1993). In nature, polymers are 

abundantly to be found. Protein and nucleic acids are natural polymers that present 

inside human body. Polysaccharide and cellulose are other natural polymers that exist in 

structural component of plants. Synthetic polymer is produced by addition or 

condensation process, each combined monomers will produce water during each 

reaction as a byproduct. Examples of synthetic polymers are plastic and adhesives. 

 

 

Figure 2-2: Types of polymer 

 

The addition of poly(methyl methacrylate) to the solvent monochlorobenzene by Toms 

in 1948, showed that the combined fluid experienced in less resistance to the flow 

compared to the pure solvent (Prajapati, 2009). Reduction of the turbulent flow can be 

achieved as much as 80% equivalent to maximum drag reduction asymptote by addition 

of very small concentration (ppm level) of long chain, flexible polymer to a solvent 

(Virk, 1975) where the  friction factor decreases below ordinary Newtonian turbulent 

flow. No drag reduction is observed at Reynolds number less than the onset value. 
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When more concentrated polymer solution is added, drag reduction happens by 

extension of the laminar region. This means that no laminar-turbulent transition is 

noticed and the friction factor is lower than the ordinary Newtonian turbulent flow at the 

same Reynolds number as the laminar like behaviour is dragged to an extended laminar 

region. As the critical wall shear stress is reached, the drag reduction increased with 

flow rate (Patterson et al., 1969 and Hoyt, 1986). At this point the rate of degradation of 

the polymer happens, higher than the polymer is replenished in the wall region, thus no 

longer effective drag reduction. 

 

Basically, as polymer concentration increases until a definite concentration is achieved, 

the drag reduction also increases at a constant velocity. This concentration is known as 

saturation concentration. Drag reduction will fall if the polymer concentration is above 

the level of saturation concentration (Goren and Norbury, 1967 and Kenis, 1971). 

Damping of more turbulent eddies is caused by the increasing number of polymer 

molecules as the concentration increases which increases reduction of drag also. When 

the fluid reached saturation concentration level, drag reduction is reduced due to the 

increase in the solution viscosity. 

 

When polymer is added to the turbulent flow in pipeline, the polymer chain is been 

stretched by the high shear state of the turbulent flow itself. Due to this, the effective 

viscosity in the buffer layer of turbulent flow is increased by increasing elongational 

viscosity (Hinch, 1977 and Metzner and Metzner, 1970). According to Lumley (1973), 

reduction in the wall friction will cause the buffer layer thickness to increase. Thus, the 

streamline fluctuation is disturbed causing modification of velocity profile and re-

dispersion of the shear in the boundary layer. The idea of elastic energy storage was 

introduced by Tabor and de Gennes (1986) where the partially stretched polymer 

molecules are used as critical part in drag reduction. The transformation of elastic 

energy, stored by these partially stretched polymer molecules, to kinetic energy is 

observed in the buffer layer of turbulent flow, hence drag is reduced (White and 

Mungal, 2008). 

 

Based on Yang and Duo (2008) report, the coherent turbulent structures in drag 

reducing flows has been studied and informed by using advances in instrumentation and 

visualization techniques for better understanding of turbulent arrangements in the drag 
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reducing flow. The experiments were done by using laser-Doppler velocimeter (LDV), 

particle image velocimeter (PIV) and visualization methods. The measurement of 

polymer drag reducing flows were stated by Rudd (1972), followed by Reischman and 

Tiederman (1975), then Berner and Scrivener (1979) and Berman (1986). In this 

measurement observation had been done on the velocity fluctuation and energy 

spectrum in streamline direction. As a result, the root mean square of streamline 

velocity in drag reducing flows is slightly higher than that in Newtonian fluid flows and 

from high frequencies to low frequencies, the energy is redistributed. 

 

From the experiments results, decreased in the fluctuation in the wall normal direction 

caused drag reduction, hence, the Reynolds shear stress is decreased. The total shear 

stress of the fluid without the presence of polymer reducing agents is higher than the 

sum of Reynolds shear stress and viscous shear stresses. Intensely inhibition of all 

frequency by the energy of the normal velocity component was found by Wei and 

Willmarth (1992) and redistribution of the frequencies from higher level to lower level 

is observed.  

 

Moreover, study on the influence of polymers on the streak spacing, bursting frequency 

and Reynolds shear stress have been done by using flow visualization technique. In the 

near wall region, the velocity field varies during a burst which could expose the 

mechanism of the drag reduction and can explain the basic turbulent structures 

relationship. The effects of the polymers on structure of turbulent have learnt by using 

visualization method. The report showed that there are difference in the streaking 

spacing and bursting rates in drag reducing flow compared to the Newtonian flow 

(Donohue et al., 1972). The viscous sub layer was more stable when polymer solutions 

were present and as the drag reduction increased, the average non dimensional spacing 

between streaks also linearly increased. However, in these experiments, the method for 

assuming the time between the bursts was not precise due to the lacking of the 

measurements correspond to the turbulent velocity (Luchik and Tiederman, 1988).  

 

Researches have been done to overcome this problem by using PIV that could afford 

quantitative measurement information of the effect of the polymer additives on the near 

wall turbulent structures. Decreased in the created turbulence by the wall is observed 

that caused drag reduction when PIV is applied to a channel flow with polymer 
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additives (Warholic et al., 2001). A reduction in the number and strength of near wall 

vertical structures and a coarsening of the low speed velocity streaks, resulting in the 

significant changes of the near wall structure of turbulence have been studied when PIV 

is used in a drag reducing flat plate boundary layer flow (White et al., 2004). 

 

Still, polymer especially high molecular weight polymers can easily degrade 

permanently when exposed to high shear or extensional stress (Patterson et al., 1969). 

As the molecular weight increases, the rate of mechanical degradation also increases. 

This very reason made sure that polymers are not applied in recirculation system where 

high shear stresses in pumps irreversibly damage the high molecular weight polymers. 

 

2.4.2 Surfactant 

 

Surfactants have the capacity to absorb at surfaces and interfaces as they are surface 

active agents (Prajapati, 2009). The amount of reduction in surface tension of water can 

be determined by the surface density of the surfactant molecules. By adding the 

surfactant, the surface tension of the solvent stopped lowering as the molecule starts to 

form micelle in the bulk solution. Critical micelle concentration (cmc) defined as the 

concentration at which micelles begin to appear. According to Wang et al., (2011), 

micelles are forced to move nearer to each other if the concentration rises. Due to the 

electronic repulsions, the system energy is increased. The micelles then tend to form 

non spherical shapes in order to maintain the system energy at lower energy level when 

the concentration reaches a second critical value (CMCII). Formation of vesicles or 

dislike shapes will occur in some cases and they tend to create long cylindrical shapes 

known as rodlike or wormlike micelles. 

 

The surfactant molecules form worm-like micellar structures in turbulent flow if the 

surfactant concentration is relatively higher than the critical micelle concentration and 

also if the temperature of the system is greater than the critical micelle temperature. The 

Krafft temperature which is also known as critical micelle temperature is the minimum 

temperature at which surfactants form micelles. Due to this, the properties of the solvent 

are altered and the solution shows viscoelasticity behaviour.  
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By definition, micelle is an accumulation of surfactant molecules that disperse in a 

fluid.  A surfactant body consists of hydrophilic head and hydrophobic tail. Micelles 

form when the hydrophilic head regions move towards one another in contact with the 

surrounding solvent, isolating the hydrophobic tail regions in the center, which this 

occurrence is known as normal phase micelle. Conversely, when the hydrophilic head 

regions move towards the center of the micelle and the hydrophobic tail regions are 

spreading out, inverse micelles formation occur. The factors namely concentration, 

temperature, pH and ionic strength of the surfactants will determine the shape and the 

size of a micelle. 

 

 

Figure 2-3: Schematic of a surfactant molecule 

 

There are three main types of surfactants namely, anionic, nonionic and cationic 

surfactants. Anionic surfactant is most commonly used surfactants. This surfactant has 

negatively charged group on its hydrophilic part, like sulphonate, sulphate or 

carboxylate. Anionic surfactants are used to make basic soaps. It is sensitive to hard 

water. 

 

Besides that, nonionic surfactant is basically made of non-charged hydrophilic by 

polycondensation of ethylene oxide in the presence of a polyethylene chain. It is 

suitable for cleaning purpose and is not sensitive to hard water. 

If the hydrophilic part of the micelle is positively-charged, it is known as cationic 

surfactant. It cannot be used for washing purpose but will speed up to the surfaces 

where they might give antistatic, soil repellent, softening and anti-bacterial or corrosion 

inhibitory effects. 

Drag reduction by surfactants has been observed and there are three theories about it. 

The mechanisms revolve around the area of dampening turbulent swirl currents and 

cross directional flow, hence energy loss is lessened. At the first stage, when the 

surfactant is added to the solvent, it will form rod-like micelles that become entangled. 
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These formed micelles have elastic properties which can delay the cross flow (Fontaine 

et al., 1999). 

An increased in the extensional viscosity is noticed that caused by the structural 

micelles at second stage. This is accountable for the dampened eddy effects (Shenoy, 

1984). 

Lastly, elongation of these micelles happens in the direction of the flow causing the 

viscous sub layer of the flow to be thickened. The cross directional flow and eddy 

currents are then be in conflict with the thickened sub layer (Kostic, 1994). 

Anionic surfactant as drag reducer needs a very high concentration about a few 

thousands ppm to perform, but this will eventually give problems to the environment 

and also leads to large costs. This surfactant will form foam with air in the aqueous 

solution (Radin et al., 1969 and McMillan et al., 1971). Anionic surfactant is not 

suitable most aqueous applications because they are sensitive to calcium and 

magnesium ions exist in most tap water which results in precipitation. It is to be found 

that in water the drag reduction was highly lost when the critical shear stress present for 

these surfactants. The drag reduction was fully obtained after the shear stress was 

lowered below the critical, unlike the polymer drag reducers which permanently 

degrade under high shear stress, noted by Savins. 

Since nonionic surfactants do not carry any charges, they are less affected by the other 

ions. Nevertheless, only in a narrow temperature range around their cloud point, 

nonionic surfactants will show reduction. Straight chain alkyl groups of nonionic 

surfactant are found to be effective by Zakin and Chang (1985) as at temperatures 

around cloud point, 1% concentration of nonionic surfactant of some mixture proved to 

be effective drag reducers. The mixtures had the chemical structure of C18H35-(OCH2-

CH2)n-OH. Addition of a multivalent salt such as sodium sulfate can cause the cloud 

point to be lowered or by decreasing the value of n. Thus, the temperature of the drag 

reduction can be lessened to the temperature below the cloud point. 

While surfactant that has both positive and negative charges in the head group is known 

as a zwitterion surfactant. The difference between the charges caused the presence of 

dipole moment in the head group. 
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Furthermore, for cationic surfactant, the alkyl chain length is dependence by the upper 

temperature limit for effective drag reduction. Recover of the drag reduction can be 

achieved when the temperature is decreased below the upper critical temperature level. 

The lower temperature limit is influenced by the solubility of the surfactant (Rose and 

Foster and Chou et al.,). At low temperature, the solubility of long chain surfactants 

improved by unsaturation of the alkyl chain, hence, drag is reduced (Rose and Foster 

and Rose et al., and Chou et al.,). Studies had been done on the drag reduction 

effectiveness of mixed cationic surfactant systems (Chou and Zakin and Lu et al.,). The 

results obtained shows that for short chains cationic surfactants, the effective drag 

reduction temperature range is at lower temperatures while for long chains, the drag 

reduction temperature range prolongs to higher temperatures. When the long chain and 

short chain surfactants are mixed together, the temperature range can be extended. By 

doing this, the lower temperature limit of the long chain surfactant can be lowered while 

there will be only slightly decreased in upper temperature limit. Therefore, this type of 

surfactant is suitable for both heating and cooling as it has extensively ranges of 

temperatures (Chou and Ge and Ge et al.,). 

2.5 Heat transfer reduction 

 

In crude oil pipelines that use DRA, heat loss to the atmosphere can be kept at minimum 

level while maintaining the flow of the oil at lower pumping power. Thus, thermal 

insulation cost of the pipelines can be declined (Jubran et al., 2007). 

 

Research on the heat transfer, drag reduction and fluid characteristics for turbulent flow 

polymer solution in pipes has been done by Matthys (1991). In the presence of the drag 

reducing agent, the problem of the decrease convective heat transfer is studied. Major 

reduction happened in the convection heat transfer caused by the addition of the DRAs 

as drag is decreased. The main reason of this situation is lack of studies on the polymer 

solutions heat transfer to the viscoelastic flows complexity. He also mentioned that the 

macroscopic and correlation work were available for purely viscous non-Newtonian 

fluids but not for viscoelastic non-Newtonian fluids with presence of drag reducing 

agents in the flows. 
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Drag reducing solution is capable in heat transfer reduction as well (Knight, 2009). The 

micelles that formed are in viscoelasticity state and are believed to be responsible of 

thermal resistance between the fluid and the wall that has been part of the heat transfer 

mechanism. The percentage of heat transfer reduction (% HTR) is stated as 

 

      
      

   
                                                                                                           (2-6) 

 

Where, 

Nus = solvent Nusselt number  

Nu = solution Nusselt number 

 

The Nusselt number for the flow in tubes is calculated by using the following equation. 

 

    
    

 
                                                                                                                (2-7) 

 

Where,  

hi = inner tube heat transfer coefficient (Wm
-2

.K
-1

)  

Di = inner tube diameter (m)   

K = heat conductivity (Wm
-1

.K
-1

) 

 

There will be minor insulation has to be utilized on the oil pipelines if DRAs are added 

to the flow as the oil needed to be heated so that it can turn into less viscous compound, 

hence the flow will be smooth. At times, in district heating and cooling systems, heat 

transfer is essential for the system to be functioned properly. A central location is used 

in this system to heat or cool a primary flow loop of water, which later as it exchange 

heat with a secondary flow loop of water, then pumped to the neighboring buildings.  

 

The individual building is heated or cooled using this secondary flow loop, it is housed 

in. Larger heat transfer area is needed when the operating or capital cost is reduced due 

to the drag reduction, resulting declination of higher reduction in heat transfer. The 

main motive that cause this system to develop in Europe and United States for decades 

is waste heat energy from electrical power generation plants is used to heat the primary 

water used for circulation. The need for single heating and cooling units are eliminated 


