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ABSTRACT 

 

Nanofiltration has a pore size range of 0.001-0.01um. NF membranes can filter particles 

up to and including some salts, synthetic dies and sugars, however it is unable to 

remove most aqueous salts and metallic ions, as such, NF is generally confined to 

specialist uses. Nanofiltration (NF) is a promising membrane separation technology due 

to its low energy consumption and unique separation properties. The main objective of 

this research is to produce, characterize and evaluate performance of PES NF hollow 

fiber membrane for acetic acid removal from biomass hydrolyzate solution. An 

asymmetric PES hollow fiber membrane was fabricated using a dry/wet spinning 

process with forced convection in the dry gap. The PES concentration be fix at 20wt%, 

but the value of additive (PVP) is increase from 1wt% and 9wt.% and the rest is the 

value for NMP which act as solvent. The membranes were then analyzed by using 

scanning electron microscope (SEM) and high performance liquid chromatography 

(HPLC). Increase the concentration of PVP resulting decreased the rejection of the 

component it will increase the number of pore at the membrane and resulting in 

permeability of the membrane which increase of concentration of PVP will increase the 

permeability of the membrane. The increasing of additive concentration tends to 

increase the salt permeability while reducing the effective membranes thickness. In this 

case, the thickness of the effective membrane layer (dense layer) is very important and 

well known as one of the determining factors influencing the membranes separation 

ability. 

 

Keywords: Nanofiltration membrane, Hollow fiber Module, Biomass 
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ABSTRAK 

 

Nanofiltration mempunyai pelbagai saiz liang 0.001-0.01um. Membran NF boleh 

menapis zarah sehingga dan termasuk beberapa garam, mati sintetik dan gula, 

bagaimanapun ia tidak dapat menghapuskan garam akueus dan ion logam, oleh itu, NF 

biasanya terhad kepada pakar menggunakan. Nanofiltration (NF) adalah membran 

menjanjikan pemisahan teknologi kerana penggunaan tenaga yang rendah dan sifat 

pemisahan yang unik. Objektif utama kajian ini adalah untuk menghasilkan, mencirikan 

dan menilai prestasi PES NF serat berongga membran untuk penyingkiran asid asetik 

dari penyelesaian Hidrolisat biomass. Satu PES simetri membran gentian geronggang 

telah dibikin menggunakan proses berputar kering / basah dengan olakan paksa dalam 

jurang kering. PSB kepekatan akan menetapkan di 20wt%, tetapi nilai tambahan (PVP) 

adalah peningkatan daripada 1wt% dan 9wt.% Dan selebihnya adalah nilai untuk NMP 

yang bertindak sebagai pelarut. Membran kemudiannya dianalisis dengan menggunakan 

mikroskop imbasan elektron (SEM) dan kromatografi cecair prestasi tinggi (HPLC). 

Meningkatkan kepekatan PVP Hasilnya, Syarikat menurun penolakan komponen ia 

akan meningkatkan bilangan liang pada membran dan menyebabkan kebolehtelapan 

membran mana kenaikan penumpuan PVP akan meningkatkan kebolehtelapan 

membran. Peningkatan kepekatan tambahan cenderung meningkat kebolehtelapan 

garam di samping mengurangkan ketebalan membran yang berkesan. Dalam kes ini, 

ketebalan lapisan membran yang berkesan (lapisan padat) adalah sangat penting dan 

terkenal sebagai salah satu faktor yang menentukan mempengaruhi keupayaan membran 

pemisahan. 

 

Keywords: membran Nanofiltration, Modul serat Hollow, Biomass  
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1 INTRODUCTION 
 

 

1.1 Research Background 

 

Lignocellulosic materials such as agricultural, hardwood and softwood residues 

that produced bioethanol is a promising alternative energy because lignocellulosic 

materials do not compete with food crops. In a typical bioconversion process to produce 

‘‘second generation’’ bioethanol, the hemicellulose is converted to pentose 

(predominately xylose) by hydrolysis pre-treatments, while the cellulose is converted to 

hexose (predominately glucose) by enzymatic hydrolysis. After hydrolysation process, 

these sugars can be fermented and converted to ethanol (Chen et al., 2011) 

 

However, the by-products such as furans, carboxylic acid and phenolic 

substances, were also generated in the hydrolysis process, which can significantly 

suppress fermentative organisms and decrease the ethanol yield and productivity. Acetic 

acid, one of the inhibitors, which was studied in detail due to its highest content in 

hydrolyzates, is generated by the hydrolysis of the acetyl group on hemicellulose and is 

commonly observed along with the release of xylose (Mussatto and Robert, 2004). With 

the presence of acetic acid in high concentration, the growth of fermentation 

microorganisms and the production of ethanol are strongly affected (Palmqvist and 

Hahn-Hagerdal B., 2000) 

 

There are several methods to remove acetic acid including dehydration of acetic 

acid, filtration by membrane and so on. Nevertheless, the application of membrane 

separation in bio-energy studies, especially for acetic acid removal, is still in the early 

stages. Pressure-driven membrane processes have drawn great attention in the industry 

for their unique ability to separate and purify products from process streams including 

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO). 

Applications of NF to the separation, purification and concentration of products from 

streams have been emerging in various fields, including fermentation product 

separation, sugar fractionation and sugar concentration (Weng, 2009) 
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By using nanofiltration membrane, the observed retention of xylose and acetic 

acid varied from 28% to 81% and −6.8% to 90%, respectively, depending on the 

solution pH and the applied pressure. The maximum separation factor was 5.4 when the 

system was operated at pH 2.9 and 24.5 bar. In addition, negative retention of acetic 

acid was observed only in the presence of xylose. The results suggested that 

intermolecular interactions play an important role in the separation of xylose and acetic 

acid (Weng, 2009). 

  

The high demands of sustainable alternative transportation fuels are of interest 

as second-generation biofuels. One type biofuel is ethanol produced from non-food 

biomass. It is necessary to increase the ethanol concentration of the product after 

fermentation to decrease the energy required for the final separation process and to 

commercialize lignocellulosic ethanol technology. In order to increase the yield of 

ethanol, acetic acid should be extracted from the enzymatic hydrolyzates because the 

present of acetic acid limited the production of ethanol. Concentrating enzymatic 

hydrolyzates which are glucose and xylose using membrane separation process, 

nanofiltration, with molecular weight cut offs between ultrafiltration and reverse 

osmosis, is attractive because nanofiltration is a widely used technique in biorefineries 

due to its low energy consumption and unique separation properties. Membrane is very 

important part to remove the acetic acid and increase the concentration of glucose and 

xylose. 

 

Membrane filtration is an efficient, cost-competitive and promising separation 

method during industrial production process (Pinelo et al., 2009). Applications of 

membrane technology for, sugar concentration, sugar fractionation, and inhibitor 

separation from lignocellulose hydrolyzates were studied in recent years. Murthy et al. 

reported the concentration of xylose reaction liquor can be effectively accomplished by 

nanofiltration, while Sjöman et al. found that the xylose purification from hemicellulose 

hydrolyzates could be enhanced by nanofiltration. As the inhibitor with the highest 

content in hydrolyzates, acetic acid was firstly separated by Han and Cheryan from an 

acetic acid–glucose model solution by using NF and RO membranes, and acetate 

rejection of 40% and glucose rejection of 99% were obtained, respectively. Sagehashi et 

al. employed RO membranes to separate phenols and furfural from the aqueous solution 

derived from the superheated steam pyrolysis of biomass, and the solution was 
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concentrated effectively by reverse osmosis separation. Several researchers also 

reported the separation of carboxylic acids or furans from sugars in dilute-acid 

hydrolyzates or fast pyrolysis bio-oils by using NF or RO membranes (Qi et al., 2011; 

Teella et al., 2011; Weng et al., 2009, 2010). 

 

Applications of NF to the separation, purification and concentration of products 

from streams have been emerging in various fields, such as fermentation product 

separation (Han I. S,1995) sugar fractionation (Sjoman E. , 2007) and sugar 

concentration (Murthy G.S., 2005) In general, NF can distinguish molecules via sieving 

effect as well as by charge effect. The retention of uncharged molecules by NF will be 

determined mainly by sieving effects. Molecules with a molecular weight larger than 

that of the sieving characteristics or exclusion properties of the NF membrane would be 

rejected. 

 

The separation of multi-valent ions by NF is high due to the Donnan effect. Han 

and Cheryan were the first to study the separation of sugar from acetic acid. They found 

the pH is a major factor influencing the separation of acetic acid from glucose. More 

recently, Sjoman et al. studied the separation of xylose from glucose via commercially 

available in NF membranes. Murthy et al. reported that concentration of xylose by NF 

from 2% to 10% (w/v) was successful separated in a pilot plant. In addition, they found 

the operational costs for xylose concentration by NF were one-fourth that of a 

conventional evaporation process. Although solution pH is an important factor 

governing NF performance, the effect of solution pH on the separation performance was 

not explored in their pilot plant study. To the best of my knowledge, there were only a 

few investigations on NF separation of acetic acid from monosaccharide except for 

some studies on downstream processing of acetate by NF after glucose fermentation. 

Furthermore, there is limited information on the purification of xylose for bioethanol 

production.  

 

In this study, acetic acid was separated using nanofiltration hollow fibre 

membrane from xylose and glucose by using different concentration of NMP. Constant 

pressure was apply while separation to investigate the result of separation of acetic acid 

from xylose and glucose. From the literatures, NF was concluded as the standard 

membrane process for acetic acid separation from sugars, due to the negative retention 
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of acetic acid. Zhou et al., have mentioned the membrane performance of NF and RO 

membrane for acetic acid separation from monosaccharaides was compared in a 

comprehensive manner.  

 

1.2 Objective of the Research 

 

The main objective of this research is to produce, characterize and evaluate performance 

of Polyethersulfone (PES) NF hollow fiber membrane for acetic acid removal from 

synthetic biomass hydrolysate solution.  

 

1.3 Scope of the Research 

 

In order to fulfill the research objective, the following scopes has been outlined.  

i. To produce two different composition of NF hollow fiber membrane A (20 wt% 

PES, 1wt% PVP, and 79 wt% NMP) and B (20 wt% PES, 9wt% PVP, and 71 wt% 

NMP) 

ii. To characterize and evaluate the performance of PES NF hollow fiber membrane 

using pure solution ( xylose, glucose and acetic acid ) and synthetic hydrolyzate 

solution ( i.e. mixture of xylose, glucose and acetic acid ) 

 

 

 
 
 
 
 
 
 
 

 
 

 

 

 

 



5 
 

2 LITERATURE REVIEW 

 

 

2.1 Biomass 

 

Biomass simply define as all plant material, or vegetation, raw or processed, 

wild or cultivated. Examples of this energy source include fast growing trees and 

grasses, agricultural residues like used vegetable oils, wheat straw, or corn, yard 

clippings , wood waste like paper trash, sawdust, or wood chips, and methane that is 

captured from landfills, livestock, and municipal waste water treatment. Essentially, 

biomass is stored solar energy that human can convert to electricity, fuel, and heat. 

The energy from the sun is stored in the chemical bonds of the plant material through 

photosynthesis. Typically biomass energy comes from three sources for example 

agricultural crop residues, municipal and industrial waste, and energy plantations. In 

addition, crops such as corn, sugar beets, grains, and kelp can be grown specifically 

for energy generation. Table below shows the properties xylose, glucose and acetic 

acid. 

 

2.2 Biomass Processing 

 

Biomass goes through a size-reduction step to make it easier to handle and to 

make the ethanol production process more efficient. Figure 2.1 shows the biomass 

process. For example, agricultural residues go through a grinding process and wood 

goes through a chipping process to achieve a uniform particle size. Biomass is then 

being treated. In this step, the hemicellulose fraction of the biomass is broken down into 

simple sugars. A chemical reaction called hydrolysis occurs when dilute sulphuric acid 

is mixed with the biomass feedstock. In this hydrolysis reaction, the complex chains of 

sugars that make up the hemicellulose are broken, releasing simple sugars. The complex 

hemicellulose sugars are converted to a mix of soluble five-carbon sugars, xylose and 

arabinose, and soluble six-carbon sugars, mannose and galactose. Table 2.1 show the 

properties of xylose, glucose and acetic acid. Acetic acid, one of the inhibitors, which 

was studied in detail  due to its highest content in hydrolyzates, is generated by the 

hydrolysis of the acetyl group on hemicellulose and is commonly observed along with 



6 
 

the release of xylose. The presence of acetic acid can limited the production of ethanol 

during fermentation process.  

Production of ethanol from lignocellulose has the advantage of abundant and 

diverse raw material compared to sources such as corn and cane sugars, but requires a 

great amount of processing to make the sugar monomers available to the 

microorganisms typically used to produce ethanol by fermentation. Switchgrass 

and Miscanthus are the major value of biomass materials being studied today, due to 

their high productivity per acre. Cellulose, is contained in nearly every natural, free-

growing plant, tree, and bush, in meadows, forests, and fields all over the world without 

agricultural effort or cost needed to make it grow. One of the benefits of cellulosic 

ethanol is it reduces greenhouse gas emissions.  

Absence of production of cellulosic ethanol in the quantities required by the 

regulation was the basis of a United States Court of Appeals for the District of 

Columbia decision announced January 25, 2013 voiding a requirement imposed on car 

and truck fuel producers in the United States by the Environmental Protection Agency 

requiring addition of cellulosic biofuels to their products. These issues, along with many 

other difficult production challenges, lead George Washington University policy 

researchers to state that "in the short term, [cellulosic] ethanol cannot meet the energy 

security and environmental goals of a gasoline alternative."  

 

 

Table 2.1 Properties of xylose, glucose and acetic acid 

 

 

 

Component  Xylose Glucose Acetic Acid 

Molecular formula C5H10O5 C6H12O6 CH3COOH 

Molecular Structure 

   

Molecular Weight (gmolˉ¹) 150.13 180.156 60.05 

Stokes diameter (nm) 0.638 0.726 0.412 

Diffusion coefficient (cm²sˉ¹) 7.69 6.76 11.9 

http://en.wikipedia.org/wiki/Greenhouse_gas
http://en.wikipedia.org/wiki/United_States_Court_of_Appeals_for_the_District_of_Columbia
http://en.wikipedia.org/wiki/United_States_Court_of_Appeals_for_the_District_of_Columbia
http://en.wikipedia.org/wiki/George_Washington_University
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Figure 2.1  Process for biomass. 

 

2.3 Membranes 

 

A membrane can be defined essentially as a barrier, which separates two phases 

and restricts transport of various chemical species in a selective manner as shown in 

Figure 1. The stream that retained by the membrane is the retentate while the one 

permeates through the membrane is the permeate stream. Either of the two streams 

retentate or permeate could be the end-use products in a membrane-based separation 

process (Mulder, 1996). The selectivity of membrane is due to its size, physicochemical 

interactions, shape, electrostatic charge, diffusivity, volatility and polarity/solubility.  

 

 

Figure 2.2: Schematic diagram of the basic membrane gas separation process 
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There are 4 types of membrane module which are plate-and-frame, tubular, spiral 

wound and hollow fiber. Membrane separation by using hollow fibers has become the 

one of emerging technologies which underwent a rapid growth during the past few 

decades. The excellent mass-transfer properties conferred by the hollow fiber 

configuration led to the numerous commercial applications in various fields such as 

the medical field (blood fractionation), water reclamation (purification and 

desalination), ultrafiltration, microfiltration, liquid/liquid or liquid/solid separation, 

reverse osmosis, gas separation, hemodialysis, removal of VOCs from water and so on 

(Feng, 2013). 

 

Through this definition, a membrane should always be associated with its 

application. There are several application of membrane include desolation, dialysis 

and also filtration to gas separation. Different membrane morphologies will be used 

depending on the application. In figure 2.2, a schematic representation of different 

morphologies is given. 

 

 

Figure 2.3 Schematic representation of different membrane morphologies; colored 

parts represent polymer. 

 

There are several types of membrane separation mechanisms exist. In membrane 

applications, the sorption-diffusion mechanism plays the major role where the choice of 

the membrane material is based on selective sorption and diffusion properties. 
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Membrane morphology will not play a major role in issues of selectivity but they do 

with total flux. For examples of these applications is gas separation, pervaporation and 

reverse osmosis. The second separation mechanism is based on the size of the species to 

be separated. Membranes will have typically pore sizes that can give rise to retention of 

certain species. In table 1.1, the pore sizes of the different membrane categories are 

given. Besides average pore size and pore size distribution, other parameters like or 

electrical charge can have a large influence too on its separation characteristics. These 

membranes are often used in pressure driven processes. 

 

Table 2.2 : Pressure driven processes using porous membranes ( J. A. van’t et. al, 

1992) 

 

 The structure or morphology of the membrane will have an effect on the total 

flux through the membrane. Decreasing the total thickness of the membranes would 

therefore be advantageous. However, this is limited due to mechanical stability 

constraints. This is overcome by preparing asymmetric membranes in which the 

separating part of the membrane is situated in a thin layer of the membrane. The 

majority of the structure will only serve as a mechanical support for this selective layer. 

The selective layer and mechanical support of membranes must be optimized. 

 

Membrane 

application 

Pore size Typical flux 

(l/m2.h.bar)) 

Typical 

Pressure (bar) 

Examples of materials 

retained 

Microfiltration >50nm >50 0.1-2 Particles (bacteria, 

yeast) 

Ultrafiltration 1nm – 100 

nm 

10-50 1-5 Macromolecules, 

colloids 

Nanofiltration  1 nm 1.4-12 5-20 Solutes Mw > 500, 

multivalent ions 

Reverse Osmosis Non porous 0.005-1.4 10/100 water 
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Figure 2.4: Cut-offs of different liquid filtration techniques. 

 

 

2.3.1  Membrane Technology 

 

Membrane technology has become a dignified separation technology over the 

past decennia. The main force of membrane technology is the fact that it works 

without the addition of chemicals, with a relatively low energy use and easy and well-

arranged process conductions. Membrane technology is a generic term for a number of 

different, very characteristic separation processes. These processes are of the same 

kind, because in each of them a membrane is used. Membranes are used more and 

more often for the creation of process water from groundwater, surface water or 

wastewater. Membranes are now competitive for conventional techniques. The 

membrane separation process is based on the presence of semi permeable membranes. 

The principle is quite simple: the membrane acts as a very specific filter that will let 

water flow through, while it catches suspended solids and other substances. There are 

various methods to enable substances to penetrate a membrane. Examples of these 

methods are the applications of high pressure, the maintenance of a concentration 

gradient on both sides of the membrane and the introduction of an electric potential.  
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2.4 Membrane Formation 

 

During the three decades of intensive membrane preparation research, different 

techniques have been proposed to generate selective, permeable films. The most used 

and thus important class of techniques is called phase inversion techniques. These 

processes rely on the phase separation of polymer solutions producing porous polymer 

films. Phase separation mechanisms can generally be subdivided in three main 

categories depending on the parameters that induce demixing which are temperature 

induced phase separation (TIPS), reaction induced phase separation (RIPS) and 

diffusion induced phase separation (DIPS). By posing a change in one of these 

parameters at one particular side of the film, asymmetric boundaries are posed on the 

polymer film which can be expressed in the resulting structure. By changing the 

temperature at the interface of the polymer solution, heat will be exchanged and 

demixing can be induced (temperature induced phase separation or TIPS). The original 

polymer solution can also be subjected to a reaction which causes phase separation 

(reaction induced phase separation) (RIPS). The most used technique is based on 

diffusion induced phase separation (DIPS). By contacting a polymer solution to a 

vapour or liquid, diffusional mass exchange will lead to a change in the local 

composition of the polymer film and demixing can be induced. 

 

Figure 2.5  Schematic representation of three DIPS processes: A) precipitation with 

nonsolvent vapor, B) evaporation of solvent, C) immersion precipitation. Main 

direction of diffusion of the different species is indicated by arrows. Polymer, solvent 

and nonsolvent are represented with P, S and NS respectively.  
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Three types of techniques were developed to reach DIPS: coagulation by 

absorption of nonsolvent from a vapor phase, evaporation of solvent and immersion 

into a nonsolvent bath. These techniques are schematically represented in figure 2.3. 

Often combinations of various techniques are made to achieve the desired membrane. 

When a polymer is subjected to a vapor containing a nonsolvent (a species not 

miscible with the polymer), often symmetric structures are generated. Membrane 

formation by evaporation (porous structures) uses polymer solutions containing a 

volatile solvent, a less volatile nonsolvent and a polymer. Preferential loss of solvent 

will generate meta- or unstable compositions and phase separation will be induced at 

this point. Immersion precipitation is achieved by diffusion of nonsolvent from a 

coagulation bath into the polymer film and diffusion of solvent from the polymer 

solution into the nonsolvent bath. Although the processes are quite easy to perform, 

the exact conditions under which a particular membrane will be formed is often 

derived on empirical grounds.  

 

2.5 Separation Technology For Inhibitor Removal 

 

Acetic acid, one of the inhibitors, which was studied in detail due to its highest 

content in hydrolyzates, is generated by the hydrolysis of the acetyl group on 

hemicellulose and is commonly observed along with the release of xylose. The growth 

of fermentation microorganisms and the production of ethanol are strongly affected by 

the presence of acetic acid in high concentration. In order to separate acetic acid from 

hydrolyzates, biological, physical, and chemical methods as well as combined 

treatments have been employed for example detoxification method including micro- 

biology, vacuum evaporation, extraction, overliming, activated charcoal adsorption, and 

ion exchange. 

 

2.5.1 Extraction process 

 

Extraction plant consists of the extraction tower, the rectification tower for the 

recovery of the extraction agent, and the water-stripping tower. As a rule, the feed 

mixture has a greater density than the solvent, and is fed in at the top end of the 



13 
 

extraction tower. Inside the tower it streams towards the bottom and in the process gives 

off acetic acid to the extraction agent. Depending on the effort, residual concentrations 

of 0.1-0.5 wt% can be achieved. Since the aqueous phase is simultaneously saturated 

with the extraction agent in the extraction tower, it is recovered in a downstream 

stripping tower. It can in this respect be performed with live steam. The extraction agent 

accumulates at the top end of the rectification tower and the acetic acid at the bottom of 

the tower resulting in acetic-acid concentrations of practically 100 wt%. If there is a risk 

of any higher-boiling components also passing into the organic phase during extraction, 

then it is recommended that the acetic acid should be discharged in vapor form. 

 

 

 

 

Figue2.6  Flow diagram for extraction process 
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2.5.1 Evaporation Process 

 

Evaporation is a simple procedure to remove acetic acid, furfural and other 

volatile components in the hydrolyzates. However, this method retains the concentration 

of non-volatile toxic compounds (extractives and lignin derivatives) in the hydrolyzates. 

Palmqvist et al., (1996) observed the removal of most volatile fraction (10% v/v) from 

willow hemicellulose hydrolyzate by roto-evaporation. Wilson et al., (1989) found a 

decrease in the concentration of acetic acid, furfural and vanillin by 54%, 100% and 

29%, respectively, compared with the concentrations in the hydrolyzate. Larsson et al., 

(1999) observed the removal of furfural (90%) and HMF (4%) using vacuum 

evaporation from wood hemicellulosic hydrolyzate. For instance, Converti et al.(2000) 

hydrolyzed the E. globules wood by steam explosion and dilute acid treatment at 100 

◦C, followed by boiling or evaporating the obtained hydrolyzate for 160 min to decrease 

the concentration of acetic acid and furfural from 31.2 to 1.0 g/l and from 1.2 to 0.5 g/l, 

respectively. These are below their inhibitory levels for the fermentation of xylose to 

xylitol by Pachysolen tannophilus strain, showing that in this case the simple 

evaporation method is sufficient to eliminate the inhibition of acetic acid and furfural. 

Solvent extraction with ethyl acetate is effective to remove all of the inhibitory 

compounds except for the residual acetic acid (Wilson et.al,1989) e.g. ethyl acetate 

extraction can be used to remove 56% acetic acid and all of furfural, vanillin, and 4-

hydroxybenzoic acid (Palmqvist, 2000). Solvent extraction with ethyl acetate is 

effective to remove all of the inhibitory compounds except for the residual acetic acid 

(Wilson et.al,1989) ,e.g. ethyl acetate extraction can be used to remove 56% acetic acid 

and all of furfural, vanillin, and 4-hydroxybenzoic acid (Palmqvist, 2000) 

 

Another potential substrate sugarcane bagasse was hydrolyzed and vacuum 

evaporated followed by activated charcoal treatment, revealed 89% removal of furfural 

(Rodrigues et al., 2001) with partial elimination of acetic acid. Zhu et al., (2011) applied 

the complex extraction to detoxify the prehydrolysate corn stover using mixed 

extractant (30% trialkylamine-50% n-octanol−20% kerosene). The detoxification 

resulted into removal of 73.3% acetic acid, 45.7% 5-HMF and 100% furfural.  
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2.5.2 Activated Charcoal Treatment 
 

The detoxification of hemicellulose hydrolysates, by activated charcoal is 

known to be a cost effective with high capacity to absorb compounds without affecting 

levels of sugar in hydrolysate (Canilha et al., 2008; Chandel et al., 2007). The 

effectiveness of activated charcoal treatment depends on different process variables 

such as pH, contact time, temperature and the ratio of activated charcoal taken versus 

the liquid hydrolysate volume (Prakasham et al., 2009).  

 

2.5.3 Ion Exchange Resins 
 

Treatment with ion exchange resins has been known to remove lignin-derived 

inhibitors, acetic acid and furfurals respectively, leading to hydrolysate that show a 

fermentation similar to that of an inhibitor-free model substrate. The ion-exchange 

resins based separation of fermentative inhibitors may not be cost effective (Lee et al., 

1999), however, it provides most effective means of inhibitor separation when the 

hydrolyzate being adjusted to a pH of 10 which requires significant quantities of base 

chemicals (Wilson and Tekere, 2009). Further, the anion treatment also helps to remove 

most inhibitors (i.e. levulinic, acetic, formic acids, and furfural and 5-HMF).  

 

The effect of four different ion exchange resins (cation and anion) was 

investigated for the detoxification of Eucalyptus hemicellulosic hydrolysates for the 

improved xylitol production by Candida guilliermondii (Villarreal et al., 2006). The ion 

exchange detoxification drastically enhanced the fermentability of the hydrolyzate. 

Total 32.7 g/l of xylitol was achieved after 48 h fermentation, which correspond to 0.68 

g/l/ h volumetric productivity and 0.57 g/g xylitol yield factor (Villarreal et al. 2006). 

The ion exchange resins also led to a considerable loss of fermentable sugars from the 

hydrolyzate. Chandel et al. (2007) observed that ion exchange resins diminish furans 

(63.4%) and total phenolics (75.8%) from sugarcane bagasse acid hydrolysates. 

Although the ion exchanges resins is effective, however is not cost effective that reflects 

its limited feasibility in commercial industrial purpose in lignocellulosics derived 

products synthesis.  
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3 METHODOLOGY 

 

3.1 Dope Solution Preparation 

 

20 wt % of Polyethersulfone (PES) was weight and mix into 79 wt% of N-methyl-2-

perolydone (NMP) with 1 wt% of Poly-Vanylchloride (PVP) under 60 ºC hotplate by 

continuous stirring. Another dope solution was make using 9wt% PVP and 71wt% 

NMP. 

 

3.2 Hollow Fibre Spinning 

 

An asymmetric PES hollow fiber membrane is fabricated using a spinning 

process with forced convection in the dry gap. On extrusion from the spinneret, the 

dope solution being push by hydrogen gas passed through a spinneret with 0.8mm ID 

and 1.4mm OD. The spinning was run with 8cm air gap. Water was use as coagulation 

medium and the spinning was run. The prepared membranes were immersed in a 

copious amount of water over a couple of days to remove the solvent and bore fluid 

from the membranes. The membrane was then air dried. 
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Figure 3.1 Schematic diagram for hollow fibre membrane production. 

 

 

Figure 3.2 Spinning Equipment used For Membrane Formation 
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3.3 NF Cross Flow System 

 

 Dried membrane was module before separation process. The membrane was 

module using U shaped cell membrane. Figure shows the shape of our module. 15-30 

hollow fiber membrane was used in module development. PVC was used as the tube for 

the module. The module was then connecting in cross flow system. 4 modules were 

produce for each membrane A and B to get the average value of After the pure water 

flux and salt retention tests, 2 L model solution was added in the feed tank, and then the 

feed solution was circulated through the system until the experimental conditions were 

stable. The filtration of model solutions was done in total recirculation mode, i.e. both 

permeate and retentate were recycled back to the feed tank. Small amount of samples 

 (1 mL) were taken from permeate and retentate for chemical analysis during the 

experiment. The filtration pressures used were 5 bar which were lower than the 

maximum allowed pressures for each membrane. For each experimental condition, flux 

was measured twice to obtain an average value. 

Table 3.1: Composition, flowrate and time use for one rotation for each solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 U shaped cell membrane 

Hollow 

Fibre 

Composition (wt%) 

(PES:PVP:NMP) 

Water flowrate 

(m
3
/min) 

Rotation 

(m/s) 

Air gap 

(cm) 

A 20:1:79 5.329 х 10
-6

 11.44 8 

B 20:9:71 4.553 x 10
-6

 11.70 8 
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Figure 3.4 Separation equipment use for filtration 
 

3.4 HPLC Analysis 

 

3.4.1 Sugar Analysis 

Xylose and glucose were quantified by the high performance liquid chromatography 

(HPLC) system using a 4.6 mm х 250 mm High Performance Carbohydrate column. 

Degassed, Acetonirile and water with ratio 75:25 (v/v) was used as mobile phase. The 

column temperature was maintained at 80 ºC and the flow rate for the mobile phase was 

fixed at 0.6 ml/min. Peaks were detected by the refractive index (RI) detector and 

quantified on the basis of area and retention time of the sugar standards. 

 

3.4.2 Acid Analysis 

Acetic acid was estimated by HPLC using a Biorec HPX column at 65 ºC using 0.004N 

of Sulfuric Acid as mobile phase at a flow rate of 0.6 ml/min. Peaks were detected by 

the refractive index (RI) detector and quantified on the basis of area and retention time 

of the sugar standards. 
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3.5 Scanning Electron Microscope (SEM) 

 

The cross-sections of membranes morphology of Nanofiltration membranes were 

observed using scanning electron microscope. For this purpose, the membrane samples 

were dried and then fractured cryogenically in liquid nitrogen before mounting on 

sample stubs. The samples were then sputtered with a thin layer of gold using a 

sputtering apparatus. After gold sputtering, the samples were examined with electron 

microscope. 
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4 RESULT AND DISCUSSIONS 

 

4.1 Morphology by SEM and water Flux 

 

The effect of PVP on the formation of membranes was studied extensively by 

several authord. The performances of ultrafiltration membranes by Lafreniere et al. Han 

and Nam have also conducted study on the effect of water-soluble additive on the 

morphological structure of asymmetric membranes. PVP should increase the 

membranes hydrophilicity when PVP is entrapped by membranes materials (Marchese 

et al , 2003)  and also resulted in the alteration of ultrafiltration membranes performance 

in terms of solute rejection and fouling phenomenon. Furthermore, it has been known 

that the addition of PVP in the polymer solution could be controlled in order to form the 

best morphological membranes structure.  

 

In this case, the amount of residual or dissolution of PVP causes an increase in 

the number of membrane pore size and pore size distribution. Figure 4.0 shows the 

SEM photographs of cross-sectional images of PES membranes at different PVP 

concentration ranges of 1wt% and 9wt%. As we can see from the figures, both 

membrane show almost same morphology which consist of finger-like macrovoids in 

theinner and outer structure. It is based on the composition of PVP in each solution of 

membrane. This means that increasing of PVP concentration in the polymer solution 

causes reduction of membranes effective skin layer and also enhances the number of 

formation for membranes pore and pore size distributions.  

 

The fact that increasing of additive concentration tends to increase the number of 

membrane pore has been proven and obviously shown by the membranes cross-

sectional structure. As PVP is increased, the number of membranes pore was also found 

to increase which in turn resulted in higher flux and lower rejection. In fact, the change 

of membranes morphological structure by addition of additives is quite noticeable. In 

addition, the number of macrovoids was also found to disappear gradually as PVP 

concentration is increased. It is reported that the addition of PVP, which is frequently 

used as pore former additive, could induce the formation of finger-like structures and 

macrovoids both at the outer and the inner surfaces. 
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Figure 4.1 Cross sectional photomicrographs of PES hollow fibers prepared at 

different composition A (20 wt% PES, 1 wt% PVP and 79 wt% NMP) and B (20 wt% 

PES, 9 wt% PVP and 71 wt% NMP) 

 

 

 

 

 

 

 

 

 

 

A (20:1:79) B (20:9:71) 
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4.2 Cross Flow Filtration 
 

 

Table 4.1 Permeability for each membrane A and B 

 

SAMPLE A B 

PES:PVP:NMP (wt%) 20:1:79 20:9:71 

Area (m²) 26.39 x10-3 19.792x10-3 

Normalizes Flux 

(L/m².h.bar) 

0.412 119.723 

 

 

Table 3.0 shows dope formulation for the asymmetric PES nanofiltration membranes 

produced in this study. In order to study the influence of additive concentration on the 

NF performance, membrane morphology and structural parameters, two dope 

formulations have been prepared by varying of PVP concentration were 1.00 and 9.00 

wt%. Using a U shaped cell, the membrane performance which is described in terms of 

flux and salt rejection was tested under operating pressure of 5 bar. The permeation 

experiment was performed using 5g/L for each xylose, glucose, acetic acid and also 

hydrolyzate solutions. Based on Fig. 1, the experimental data showed that the 

membrane permeability was increased as the PVP concentration is gradually increased. 

From the literature, membrane permeability increase as the PVP concentration increase 

and resulted in the reduction of salt rejection.  
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Figure 4.2 Normalized flux for membrane A and B 

 

 

4.3 HPLC Analysis 

 

4.3.1 Xylose and Glucose concentration 
 

The concentration of xylose and glucose can be determined by using graphical method.  

As we can see from figure area obtained from the peak can determine the value at 

calibration curve by insert the value into the equation y= mx+c which y is area, m is 

slope, x is concentration and c is intercept. 

 

Figure 4.3 Peak and area for xylose and glucose from HPLC analysis  
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Figure 4.4 Calibration curve for xylose and glucose 
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4.3.2 Acetic Acid 

 

Step to determine for acetic acid concentration was similar with step to determine 

xylose and glucose. The concentration of acetic acid also can be determined by using 

graphical method.  As we can see from figure area obtained from the peak can 

determine the value at calibration curve by insert the value into the equation y= mx+c 

which y is area, m is slope, x is concentration and c is intercept. 

 

 

 

 

 

Figure 4.5 Peak and area for acetic acid from HPLC analysis 
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Figure 4.6 Calibration curve for acetic acid 
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Table 4.2 Concentration obtain from separation for membrane A ( 20wt% PES,1wt% PVP and 79 wt% NMP) 

 

Type of 

Solution 

Feed 

Conc.(g/L) 

Feed 

Vol. (L) 
Mass(g) 

Retentate Permeate 

Flow 

Rate(mᶟ/L) 

Vol 

(mᶟ) Flowrate(ml/Min) Vol(ml) Conc.(g/L) Mass (g) 

glucose 3.122272144 2 10 152 1984 1.6 16 3.559234 0.056947744 

xylose 6.187646917 2 10 148 1983 1.7 17 3.0905 0.0525385 

acetic acid 9.944004738 2 10 140 1980 2 20 0.261739 0.00523478 

 

 

 

 

Table 4.3 Concentration obtain from separation for membrane B ( 20wt% PES,9 wt% PVP and 71 wt% NMP) 

 

Type of 

Solution 

Feed 

Conc.(g/L) 

Feed 

Vol. (L) 
Mass(g) 

Retentate Permeate 

Flow 

Rate(mᶟ/L) 

Vol 

(mᶟ) Flowrate(ml/Min) Vol(ml) Conc.(g/L) Mass (g) 

glucose 3.122272144 2 10 152 1593 40.7 407 2.811815 1.144408705 

xylose 6.187646917 2 10 148 1550 45 450 5.57168 2.507256 

acetic acid 9.944004738 2 10 140 1500 50 500 9.878928 4.939464 
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Table 4.4 Concentration obtain from separation for membrane A ( 20wt% PES,1wt% PVP and 79 wt% NMP) in hydrolysate solution 

 

        

Type of 

Solution 

Feed 

Conc.(g/L) 

Feed Vol. 

(L) Mass(g) 

Retentate Permeate 

Flow 

Rate(mᶟ/L) Vol (mᶟ) Flowrate(ml/Min) Vol(ml) Conc.(g/L) Mass (g) 

glucose 3.122272144 2 6.244544 153 1983 1.5 17 0.211279 0.003591736 

xylose  8.154070972 2 16.30814 149 1982 1.8 19 3.090524 0.058719961 

acetic acid 1.273853851 2 2.547708 140 1978 2 22 1.231855 0.027100805 

 

Table 4.5 Concentration obtain from separation for membrane B ( 20wt% PES,9wt% PVP and 71 wt% NMP) in hydrolysate solution.  

 

        
Type of 

Solution 

Feed 

Conc.(g/L) 

Feed Vol. 

(L) 
Mass(g) 

Retentate Permeate 

Flow 

Rate(mᶟ/L) 
Vol (mᶟ) 

Flowrate(ml/Min) Vol(ml) Conc.(g/L) Mass (g) 

glucose 3.122272144 2 6.244544 154 1594 40.6 406 2.165532 0.87920603 

xylose 8.154070972 2 16.30814 148 1549 45.1 451 5.57168 2.512827609 

acetic acid 1.273853851 2 2.547708 140 1523 47.7 477 2.886341 1.376784888 
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Table 4.6 Flux of concentration at pressure 5 bar (L/m².h.bar) 

 

Membrane xylose glucose Acetic Acid 
Hydrolyzate 

xylose glucose acetic acid 

A 0.12882 0.12124 0.15155 0.14397 0.12882 0.16671 

B 4.54669 4.11223 5.05188 4.55679 4.10212 4.819493 

 

 

Base on the figure 4.7, it shows that increase the concentration of PVP will decrease the 

rejection of the component. It is because increasing the concentration of PVP will 

increase the number of pore at the membrane and resulting in permeability of the 

membrane which increase of concentration of PVP will increase the permeability of the 

membrane. The increasing of additive concentration tends to increase the salt 

permeability while reducing the effective membranes thickness. In this case, the 

thickness of the effective membrane layer (dense layer) is very important and well 

known as one of the determining factors influencing the membranes separation ability. 

 

Table 4.7  Rejection value of xylose, glucose and acetic acid for each concentration 

of PVP 

 

Concentration (%) solution mass feed (g) 
mass 

permeate (g) 

Rejection 

(%) 

1 

xylose 10 0.0525385 99.474615 

glucose 10 
0.056947744 99.43052256 

acetic acid 10 
0.00523478 99.9476522 

9 

xylose 10 2.507256 74.92744 

glucose 10 2.507256 74.92744 

acetic acid 10 
4.939464 50.60536 
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Figure 4.7 Percentage of rejection for xylose in different concentration of NMP. 

 

 

 

 

 
 

Figure 4.8 Percentage of rejection for glucose in different concentration of NMP. 
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Figure 4.9 Percentage of rejection for acetic acid  in different concentration of 

NMP. 

 

 

Table 4.7  Rejection value of xylose, glucose and acetic acid in hydrolysatefor each 

concentration of PVP 

Concentration (%) solution mass feed (g) 
mass 

permeate (g) 

Rejection 

(%) 

1 

xylose 16.30814194 0.058719961 99.6399347 

glucose 6.244544287 0.003591736 99.94248201 

acetic acid 2.547707702 0.027100805 98.93626712 

9 

xylose 16.30814194 2.512827609 84.59157629 

glucose 6.244544287 0.87920603 85.92041325 

acetic acid 2.547707702 1.376784888 45.95985689 

 

 

0

10

20

30

40

50

60

70

80

90

100

1 9

R
e

je
ct

io
n

 o
f 

A
ce

ti
c 

A
ci

d
 (

%
) 

Conc. of PVP (%) 

Rejection of Acetic acid VS Conc. of PVP 



33 
 

 
  

Figure 4.10  Graph of percentage for rejection of hydrolysate in different 

concentration of PVP 

 

 

Base on figure 4.8, it shows that 9wt % give lowest rejection compared with 1wt%.  

Based on the graph, we can see that acetic acid is the highest rejection compare to 

xylose and glucose. We can conclude that acetic acid can be remove as the retentate of 

the separation process.  
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5 CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

 
The combination of theoretical models and experimental data allowed the determination 

of membrane performance and the deduction of membranes morphological structure, 

thus offering a better understanding on the effect of additive concentration on the 

membranes performance and morphological structure of PES nanofiltration membranes 

separation process. Based on this study, the following conclusions have been made: 

 

(1) The addition of additive into polymer solutions significantly alters membrane 

morphological structure thus directly affecting membranes separation performance. 

 

(2) As additive concentration is increased, the membranes possess thinner top layer. 

In addition, the number of membranes pore has been increasing while the macrovoids 

have been disappearing. This phenomenon resulted in a higher membranes flux without 

compromising membranes rejection. 

 

(3) Acetic acid is remove from the sugar since the molecular weight of the acetic 

acid is smaller than both xylose and glucose. 

 

5.2 Recommendation 

There are some recommendations and further study can be done on the production of 

nanofiltration hollow fibre membrane: 

 

i. Various the concentration to identify which concentration of PVP is the best 

ii. Spinning parameter should be various to determine which parameter is better to 

produce good separation 

iii. Change the synthetic hydrolyzate with real hydrolyzate to identify the 

effectiveness of the membrane 
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