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Abstract 

The progressive developments and improvements of Stirling engines show significant effort in reducing the global emission 
level. The ability to use multiple kinds of heat sources with low emission level make it as a promising alternative solution in 
providing a healthier environment for natural population. For the present work, the thermodynamic cycle evaluation is conducted 
to a numerical model of proposed design of single-cylinder rhombic drive beta-configuration Stirling engine. The evaluation is 
carried out based on Schmidt ideal adiabatic model presented by Berchowitz and Urieli. The evaluation is based on three working 
space volumes of proposed beta-configuration engine. The prediction of reciprocating displacement, engine volumetric 
displacement, working fluid cycle pressure, working fluid instantaneous mass, cyclic energy flow and cyclic temperature are 
carried out and discussed. The proposed design’s performance can be enhanced by maximizing the operating temperature 
difference between heat and sink source. Besides, the pressurization method could increase the thermal energy absorption and 
rejection thus enhancing the engine performance. 
 
© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Nowadays, the continuous combustion of fossil fuels from fossil-based power generators caused not only 
negative impact to the environment and society, but also towards the increment of global emission level [1]. Due to 
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this condition, the progressive developments and improvements of power generator technology show great efforts in 
providing a healthier environment for natural population. Stirling engine is one example of externally-heated power 
conversion device that uses external heat source to produced mechanical energy. The Stirling engine provides 
significant advantages whereby it can be easily designed and constructed due to exclusion of internal combustion 
process [2]. Besides, the high efficiency and ability to use multiple kinds of heat sources with low emissions level 
make the Stirling engine as a promising alternative solution in producing environmental-friendly energy conversion 
device [3]. Since the Stirling engine is externally-heated, the ability of using renewable energy sources such as solar, 
biomass, geothermal or even hybrid thermal energy system shows extensive usage of Stirling engine for energy 
conversion systems, for instance in parabolic Dish-Stirling system [4]. 

In the present work, the thermodynamic cycle evaluation is conducted to a numerical model of proposed design of 
single-cylinder rhombic drive beta –configuration Stirling engine. The prediction of reciprocating displacement, 
engine volumetric displacement, working fluid cycle pressure, working fluid instantaneous mass, cyclic energy flow 
and cyclic temperature are carried out and discussed. 

2. Methodology 

2.1. Numerical model 

For the thermodynamic cycle evaluation of rhombic drive beta-configuration Stirling engine, a methodology 
presented by Berchowitz and Urieliis adopted. The evaluation is carried out by using an ideal adiabatic model based 
on Schmidt theory, which utilizes five volumes based on simplified engine model [3]. For the present work, a 
similar approach is applied to the working space volumes of the proposed design of beta-configuration Stirling 
engine. Fig 1 shows the schematic diagram of single-cylinder rhombic drive beta-configuration Stirling engine. The 
working spaceis divided into three spaces, which are the expansion space (hot-end), regenerator space, and 
compression space (cold-end). The expansion space volume varies over a cycle with the movement of the displacer 
piston. The regenerating space volume is based on the annulus between the displacer piston and displacer cylinder. 
The compression space varies due to the movement of both displacer and power piston. Meanwhile, the geometrical 
variables of the rhombic drive beta-configuration Stirling engine are listed in Table 1. 

 

Fig 1.Schematic diagram of rhombic drive beta-configuration Stirling engine. 
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Table 1.Geometrical variables of the rhombic drive beta-configuration Stirling engine. 

Components Label Dimension (mm) 

Total length Lt 416 

Displacer cylinder bore bdc 84 

Displacer piston length ld 182 

Displacer piston bore bd 81 

Regenerator length lR 152 

Power piston length Lpt 50 

Power piston cylinder bore bp 80 

Displacer piston yoke shaft lys 262 

Power piston yoke 2dp 50 

Displacer piston yoke 2dd 50 

Connecting rod length Lp=Ld=L 80.5 

Crank offset radius r 38 

Spur gear pitch diameter (PCD) 2Rg 130 

2.2. Tables 

Based on previous Fig. 1 and Table 1, the reciprocating displacements of the displacer and power piston 
connected with the rhombic drive mechanism, Ydand Yp are given as [5],  

  (1) 

  (2) 

2.3. Volumetric displacements 

The volumes of the expansion and compression space, VE and VC can be calculated, respectively in terms of Yd 
and Yp and the cross-sectional area of the cylinder. The expression of volumetric displacements for expansion and 
compression space can be further written as, 

 (3) 

 (4) 

2.4. Pressure 

Using the ideal-gas equation of state, the working fluid pressure contained in the cylinder is calculated by 
following equation, 

  (5) 

where 
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2.5. Working fluid instantaneous mass 

The equations for mass in each component, 

  (6) 

  (7) 

  (8) 

  (9) 

  (10) 

Therefore, the total mass of the working fluid remains constant, 

  (11) 

2.6. Cyclic energy flow 

Equations for energy in each space, 

  (12) 

  (13) 

  (14) 

  (15) 

  (16) 

  (17) 

  (18) 

2.7. Cyclic temperature 

The temperature changes in expansion, compression and regenerating space, 

  (19) 

  (20) 
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3. Results and discussions 

Based on the engine geometrical variables, the reciprocating displacement for both displacer and the power 
piston is shown in Fig 2. During the engine cycle, the displacer moves at a 90 degree phase angle ahead of the power 
piston in order to draw the working fluid traversing back and forth between the expansion and compression space 
for heating and cooling process. At some instants, the displacer and the power piston were rather closed to each 
other, in the crank interval from 20 – 120-degree crank angle. During this condition, the minimum distance between 
the displacer lower and power piston top surface is treated to be influential factors that affect the dead volume of the 
engine. Less minimum distance means smaller dead volume in the compression space and more working fluid in the 
compression space being drawn into the expansion space for heating provided the power piston and the displacer do 
not coincide with each other [5]. 
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Fig 2. Reciprocating displacements. 

Fig 3 shows the engine volumetric displacements based on rhombic drive mechanism. As the power piston and 
displacer are moving downwards, the volume in expansion space increased while the volume in the compression 
space remains in minimum since there is a minimum clearance between both displacer and piston. After a short 
while, the volume in the expansion space reaches its maximum and starts to decrease while the compression volume 
in the compression space is increased. At particular crank angle, when the volume of the expansion space reaches its 
minimum, the compression volume in the compression space reaches its maximum almost at the same time. 
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Fig 3. Engine volumetric displacements. 

The working fluid cycle pressure is shown in Fig 4. Based on the expansion space’s temperature of 893 K and 
cold space’s temperature of 303 K, the pressure varies from 1.7 to 10.1 bars during the engine cycle. Based on the 
engine volumetric displacement shown in previous Fig 3, the working fluid pressure reaches its maximum as the 
engine total volume reaches its minimum. At particular crank angle position, the pressure is decreased as the both 
displacer and power piston moving downwards in which resulting an increment in expansion and total volume inside 
the engine. After certain period, the pressure starts to increase as the power piston moving upwards in which 
resulting the decrement of compression volume in the compression space. Meanwhile, the P-V diagram for proposed 
BCSE design is shown in Fig 5. 
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Fig 4. Engine cycle pressure. 
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Fig 5. P-V diagram for beta-configuration Stirling engine. 

Fig 6 shows the instantaneous mass of working fluid in each space. The pressure variation is also shown to 
indicate the interaction between mass and pressure within the heater, cooler, and regenerator spaces. The total 
amount of working fluid mass in the engine remains constant since there is an assumption that the engine has a 
perfect sealing so that there is no leakage of working fluid mass during engine operation. Based on this figure, the 
instantaneous mass of working fluid in the compression space is almost a direct mirror image of that of the 
expansion space. This indicates that most of the working fluid is within the compression space during heat rejection 
process. Similarly for expansion space, most of the working fluid is within the expansion space during theexpansion 
process. Based on mass variation plot, higher thermal energy from the heat source can be absorbed by the working 
fluid since most of the mass is transferred to the expansion space. Higher thermal energy is rejected to the sink 
source since most of the working fluid mass is flows to the compression space [6]. 
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Fig 6. Working fluid instantaneous mass in each engine space. 
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Fig 7 shows the cyclic energy flow in the three heat exchangers of the engine as well as thetotal work done over 
a cycle. The result indicates that the energy flow in the regenerator is greater than that of the heater and cooler 
within the engine cycle. The energy flow in the regenerator is about two times larger than that of the heater and 
about 20 times larger than that of the cooler. In the other words, the heat transfer capacity of the heater and cooler is 
respectively 2 and 20 times less than that of the regenerator. As recommended by Reader (1983), the regenerator 
must be able to deal with larger heat load of the heater. However, if the regenerator is not been able to deal with 
larger heat load, the extra load will be placed on the other heat exchangers which reduces the internal operating 
temperature difference and thus reduces the engine power [7].Meanwhile, the engine performance results can be 
found in the Table 2. 
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Fig 7. Cyclic energy flow in each engine space. 

Fig 8 shows the cyclic temperature variation of the expansion and compression spaces as well as the heater, 
cooler, and regenerator temperature. Aligned with the assumptions of perfect heat exchangers and regenerator, the 
working fluid in heater and cooler is maintained at isothermal condition. However, the temperature within the 
expansion and compression space varies over the cycle in accordance with adiabatic nature of these working spaces 
[3]. The influence of the heater temperature during heating and the cooler temperature duringthe cooling process is 
clearly observed. The increases in expansion space temperature can be easily explained, at which the heat is added 
to the working fluid during the expansion process. Meanwhile, the decreases in compression space temperature are 
because of the heat in the working fluid is rejected to the cooler space during the compression process for energy 
conversion from heat into mechanical work [8]. 
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Fig 8. Cyclic temperature of the working fluid. 

Table 2. Engine performance prediction results. 

Parameters Numeric value 

Working fluid mean pressure (bar) 4.5 

Working fluid mass (kg) 0.00128 

Heat transferred to the heater (Watts) 1360.27 

Heat transferred to the cooler (Watts) -680.33 

Thermodynamic cycle power (Watts) 805 

Thermal efficiency (%) 50.1 

4. Conclusions 

The prediction of proposed design performance is carried out based on the numerical model for rhombic drive 
beta-configuration Stirling engine. The prediction of reciprocating displacement, engine volumetric displacement, 
working fluid cycle pressure, working fluid instantaneous mass, cyclic energy flow and cyclic temperature based on 
the proposed engine design are presented and briefly discussed. From the simulation results, the proposed design 
produced 805 W of power output at 300 rpm, based on designated operating temperature and typical engine 
operating speed that operates at atmospheric pressure. However, the engine’s performance can be enhanced by 
maximizing the operating temperature difference between the heat source and sink source. Besides, the 
pressurization method is useful to enhance the thermal energy absorption and rejection during the engine cycle since 
there is an increase in working fluid mass. 
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