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ABSTRACT 

Concrete has the lowest ratio between cost and strength as compared to others available 
materials and hence it is still the most widely used materials in construction. However, the 
brittle behaviours of concrete has affected the reliability and durability of structures. So, steel 
fibres are suggested adding into conventional concrete to improve the structural behaviours. 
The structural behaviours of two-span continuous steel fibre reinforced concrete (SFRC) 
beam were studied in present investigation using non-linear finite-element analysis. Finite 
element program, Abaqus was adopted to perform the finite element analysis of present 
investigation. The effects of steel fibres in concrete were modelled by SFRC constitutive 
model proposed by Lok and Xiao (1999). Initially, the validation and calibration works FE 
predictions were performed by using experimental results. After the good correlation among 
FE predictions and experimental results were achieved, parametric modelling was carried out 
using by two key parameter; stirrups spacing (i.e. stirrups spacing increment, SI) and fibre 
contents (i.e. volume fraction, Vj). The settings were designed to examine the potential of 
steel fibres to serve as a part of stirrups. Beside these, other key structural parameter included 
strength, ductility, cracking propagation and modes of failure were determined through the 
investigation. The findings showed that the mentioned structural behaviours of beam were 
improved by inclusion of steel fibres significantly at an optimum amount of fibres dosage.



ABSTRAK 

Konkrit mempunyai nisbah yang paling rendah di antara kos dan kekuatan berbanding 
dengan bahan-bahan binaan lain. Oleh itu, ia masih merupakan bahan binaan yang paling 
banyak digunakan dalam pembinaan. Walaubagaimanapun, tingkah laku konkrit yang secara 
rapuh mengesankan kebolehpercayaan dan ketahanan struktur. Jadi, penambahan gentian 
keluli ke dalam konkrit telah dicadang untuk meningkatkan tingkah laku struktur. Tingkah 
laku struktur rasuk berentang dua yang diperkukuhkan oleh gentian keluli atau dikenali 
sebagai "steel fibre reinforced concrete (SFRC)" telah dikaji dalam penyiasatan mi 
menggunakan analisis unsur terhingga yang tidak linear. Program unsur terhingga, Abaqus 
telah diguna untuk melaksanakan analisis unsur terhingga dalam penyiasatan mi. Kesan 
gentian keluli dalam konkrit telah dimodelkan oleh SFRC juzuk model yang dicadangkan 
oleh Lok dan Xiao (1999). Pada mulanya, pengesahan dan penentukuran kerja-kerja ramalan 
unsur terhingga telah dijalankan dengan menggunakan keputusan eksperimen. Selepas 
korelasi yang baik antara ramalan FE dan keputusan eksperimen telah dicapaikan, model 
parametrik dijalankan menggunakan oleh dua parameter utama; susunan stirrups 
(penambahanjarak stirrups, SI) dan kandungan gentian keluli (pecahan isipadu, Vf). Tetapan 
direka untuk memeriksa potensi gentian keluli untuk berkhidmat sebagai sebahagian 
daripada stirrups. Selain itu, parameter struktur utama yang lain termasuk kekuatan, 
kemuluran, keretakan pembiakan dan mod kegagalan telah ditentukan melalui kajian. Hasil 
kajian menunjuk bahawa tingkah laku struktur rasuk telah ditingkatkan secara ketara melalui 
penambahan gentian keluli dengan amaun gentian keluli yang optimum.
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

The using of horsehair in mortar and straw in mud bricks shows that the history of 

fibre-reinforced materials are since ancient times (Jain and Kothari, 2012). In the early 1900s, 

asbestos fibres were used in concrete to improve the performance of convention concrete. 

However, asbestos were believed that will bring health risks to human and several alternative 

fibres such as steel, glass and synthetic fibres were introduced to replace the asbestos fibres 

in 1960s. 

Fibre reinforced concrete is a composite material that made primarily of hydraulic 

cements, aggregates and discontinuous, discrete, uniformly dispersed suitable fibres. (ACI 

Committee 544, 2002). Steel, glass, plastic (i.e polypropylene, graphite etc), carbon and 

natural (i.e hemp, kenaf etc) fibres are common in the applications recently. Steel fibres are 

widely in used amongst of these different types of fibres because of the significant effects on 

structural behaviour of normal concrete. Lok and Xiao (1999) mentioned that the benefits of 

steel fibres in structural performances include increasing of tensile strength, improvement of 

cracking resistance and toughness resistance, enhancing of ductility, and inhibiting the crack 

growth. By these outstanding properties, steel fibres reinforced concrete (SFRC) are widely 

used in the applications of pavements, marine, mining and tunnelling (Swamy and Lankard, 
1974).
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The properties of steel fibres are influenced by volume percentage, strength, elastic 

modulus, and a fibre bonding parameter (i.e. aspect ratio) of the fibres. (ACT Committee 544, 

2002). The amount of fibres provided (i.e. volume percentage) perhaps is the most important 

factor of SFRC. Most of the previous experimental investigations were based on different 

amount of steel fibres (Oh et al., 1998; Kotsovos et al., 2007; Campione and Mangiavillano, 

2008; Zijl and Mbewe, 2013). 

The effectiveness of steel fibres as shear reinforcement has been demonstrated in 

previous experimental research work (Swamy and Bahia, 1985; Oh et al., 1998). The 

effectiveness of steel fibres as shear reinforcement can reduce the steel congestion and self-

weight of strutures. 

1.2 PROBLEM STATEMENT 

Plain concrete possess the nature of weak in tension and lacks necessary toughness 

and ductility. However, the issues of ductility is important in the considerations of the 

detailing of all concrete members during reinforced concrete design (Foster, 2001). The 

addition of steel fibres in concrete is able to improve the bearing capacity and ductility of the 

structures. 

Experimental works are the best ways to determine the effectiveness of steel fibre. 

However, based on the case studying on Campione and Mangiavillano (2008), it is found 

that experimental investigation is time consuming and costly for a number of different 

Parameters to be studied. Thus, numerical modelling is carried out to predict the structures 

behaviours by computer finite element software. Syed Mohsin (2012) conducted the 

numerical modelling on the mentioned experiments investigation by increasing the 

Parameters of fibres content. Reliable results were produced by the research in a more
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visually presentations. Beside this, the stress-strain softening of SFRC is also can be easily 

analysed in modelling compare to experiment. 

Previous investigations of SFRC beams are limited to the structural configuration as 

simply supported beam (Furlan and Hanai, 1997; Oh et al., 1998; Campione and 

Mangiavillano, 2008; Meda et al., 2012; Michels et al., 2013 and Hand Ziji and Mbewe, 

2013). There is only one investigation on two-span continuous span, i.e. Kotsovos et al. 

(2007). Due to this prospective, to evaluate the potential of steel fibre in two-span continuous 

beam; there is a need of expand of this previous works to configuration of continuous beam. 

The present work will conduct in the configuration of two spans continuous beams under 

monotonic loading. The outcomes of this research are expected to provide more information 

in numerical modelling of two spans SFRC beams. 

1.3 STUDY OBJECTIVE 

There are three objectives to be achieved in this study. Among of them are; 

I.	 Investigate the behaviour of reinforced concrete beams when steel fibre are added 

into the mix by literature review. 

2. Conduct modelling of the beam using finite element software (Abaqus/CAE) and 

validate it using existing experimental data. 

3. Carry out parametric studies for SFRC beams using different volume of fibre 

percentage and different arrangement of shear reinforcements. 

1.4 SCOPE OF STUDY 

1. To meet the objectives of the current work, the following scopes of research have 
been identified: 

2.
To simulate SFRC two-spans beams with following volume of fibre percentage under 

monotonic loading by finite element simulation (Abaqus):
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3.	 To obtain the structural behaviours of SFRC two-spans beam as following: 

i)	 Flexural strength 

Ductility 

iii) Cracking propagation 

iv) Mode of failure 

v) Plastic hinge formation 

To conduct calibration and validation of finite element software by existing experiment data. 

Table 1.1: The steel fibre contents and stirrup spacing increment that conducted in 

parametric study. 

Stirrup spacing increasing Volume fraction of steel fibres (vj) 

0%* 

1.0%* 

0% 1.5% 

2.0% 

2.5% 

0%* 

1.0%* 

50% 1.5% 

2.0% 

2.5% 

0% 

1.0% 
100% 1.5% 

2.0% 

2.5%

Notes:



* = Parameter that consist experimental results. 

4. The case study is covered the two-span continuous beam only. The structural design 

of the sample beams is according to the Eurocode 2. The concrete strength of the 

sample beams is 3 ON/mm2 (cube strength) and the reinforcing steel bar is 500N/mm2. 

5. The test configuration is conducted as monotonic loading test. 

6. Only hooked-end steel fibres are considered. 

7. Numerical modelling is conducted by non-linear analysis. 

1.5 SIGNIFICANT OF STUDY 

The findings of present investigations have provided more information regarding the 

structural behaviours of two-span continuous SFRC beams under monotonic loading. Beside 

this, the outcomes of study also highlight the potential of steel fibres to serve as a part of 

shear reinforcements. Apart from that, the cracking patterns during failure of SFRC beams 

are also be provided to the structural designers as a reference that aid to produce a more 

reliable design.

5 



CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Concrete has the lowest ratio between cost and strength as compared to others 

available materials and hence it is still the most widely used materials in construction 

(Tejchman and Bobiñski, 2013). Concrete also possesses many outstanding characteristics 

such as durable, high efficiency, versatile and fire resistant. However, the brittle behaviours 

of concrete has affected the reliability and durability of structures greatly. Thus, some 

improvement methods towards brittleness have been proposed by many scholars. Among of 

them, it is found that adding fibre into the concrete can significantly enhance the ductility of 

concrete. 

The presence of fibres influences fracture energy requirements during crack 

propagation. During the pull-out process (i.e. bond failure), fibres in the path of a propagating 

crack bridges the crack opening and resists further crack growth by dissipating energy 

(Pompo et al., 1995). The capability of fibres of bridging cracks has increased the ductility 

of structural members. There are several factors such as fibre quantity, aspect ratio and bond 

stress are strongly influencing this capability. In order to examine the effectiveness of steel 

fibre in influencing this capability, experimental investigations and numerical modelling 

have been carried out. The study were focused structural behaviours of SFRC in the varieties 

of fibre quantity, aspect ratio and bond stress. The discussion of the structural behaviours are 

made in this chapter based on the improvement of several structural behaviours such as 

flexural strength, ductility, post cracking behaviour and etc. The discussion are made based



on the basis of findings of experimental and numerical investigations done by scholars. On 

the other hand, reviews on few numerical investigations by using different finite element 

program and constitutive model are presented in this chapter. 

2.2 OVERVIEW OF FIBRES 

ACI Committee 544 (2002) adopted the terminology of FRC by dividing them into 

four categories based on materials type and they are SFRC, for steel fibre FRC; GFRC, for 

glass fibre FRC; SNFRC, for synthetic fibre FRC including carbon fibres; and NFRC, for 

natural fibre FRC. Present investigations are focused on the SFRC where steel fibres also are 

the most effective for concrete reinforcement and have higher durability compared to other 

fibres. Classification of steel fibres includes shape, production process and material. Basic 

material used for the production of the fibres are cold-drawn wire, cut sheet, melt extracted, 

shaved cold drawn wire and milled from blocks. Most commercially available steel fibres 

are manufactured from cold drawn steel wire. The shapes available for steel fibres are as 

shown in Figure 2.1. Among of them, the steel fibres with straight and hooked-end shape are 

commonly adopted in the investigations of SFRC (Oh et al, 1998; Robin et a!, 2002; Olivito 

and Zuccarello, 2010; Bencardino et a!, 2008). 

Hooked 

Crimped

—1 
Deformed end (usually coned) 

Deformed wire (usually flattened) 

Figure 2.1: Shapes of steel fibres (adapted from Katzer and Domski, 2012)
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The shapes of steel fibres will affect the anchorage (i.e. bonding stress) with surround 

matrix. Trottier and Banthia (1994) discussed that the fibres with deformations only at the 

ends have the greater energy-absorption capabilities of concrete than those with deformations 

over the entire length. Aspect ratio (lid) and volume fraction (Vt) are the most important 

factors that affect the SFRC properties. Aspect ratio is the ratio of the length to the diameter 

of fibres. According to Katzer (2006), aspect ratio of fibres that ranges from 20.4 to 152 are 

available on the world market commonly and aspect ratio varied from 50 to 100 are used in 

concrete mix generally. Yazici et al. (2006) observed that fibres with higher aspect ratio 

provided higher flexural strength than fibres with lower aspect ratio. On the other hand, 

increasing aspect ratios may also increase the probability of heterogeneous distribution and 

flocculation of fibres in concrete mix. 

Volume fraction is known as the amount of the fibres in the concrete mix. Volume 

fraction is the main factor which affect most of the structural behaviour of the SFRC 

sensitively. Usually, the higher of volume fraction will produce a higher improvement of the 

structural behaviour. However, the volume fraction is generally limited to 2% due to the 

workability and fibre spalling problem with high amount of fibre content. (Tang, 2008). 

2.3 STRUCTURAL BEHAVIOURS 

2.3.1 Flexural Strength 

Flexural strength is the parameter to describe the ability of SFRC to resist bending 

under load without failure. In homogenous materials, flexural strength represents the tensile 

strength and which is the highest stress experienced within the members at the moment of 

failure. Most of the materials which include concrete fail under tensile stress before they fail 

under compressive stress. Concrete has high compressive strength but relatively low tensile 

strength (around 10 to 20% of compressive strength only) (NRMCA, 2000). So, concrete is 

usually reinforced with steel reinforcement and the concrete is not designed to resist tension. 

However, the tensile stress is important in design to estimate the load which cracking will 
develop.



Generally, study of SFRC is focused in improvement of flexure behaviour since the 

beneficial effect of fibres is much more significant in tension than that in compression. The 

fibres in the flexural members will form a tensile skin in the tension zone or near the tension 

surface and develop plastic behaviour of the tension zone. (Ravindrarajah and Tam, 1984). 

Swamy and Al-Noon (1975) observed that the beams reinforced with steel fibres had 

developed the plastic deformations failure. 

The flexural strength of SFRC can be obtained through experimental testing (i.e. 

three-point bending test or four-point bending test). Stress-deflection relationship is obtained 

through the tests and the flexural strength is determined from the failure load (i.e. peak value) 

in the stress-deflection curve. Previous investigations show that the adding of steel fibres can 

improve the flexural strength of the members. (Ravindrarajah and Tam, 1984 Oh et al., 1998; 

Khaloo et al., 2005; Yazici et al., 2007; Campione and Mangiavillano, 2008 and Soutsos et 

al., 2012). However, few investigations declared that the improvement of the ultimate 

flexural strength by adding fibres is not so significant (i.e. around 10% only) and especially 

with lower fibre contents (i.e. Vf 1%) (Khaloo et al., 2005 and Soutsos et al., 2012). 

Khaloo et al. (2005) observed that the fibres does not increase the flexural strength of member 

significantly but the great improvement in energy absorption capacity. The increasing of 

energy absorption capacity has improved the ductility and cracks formation of members 

under loading and this will be discussed in the further section. 

2.3.2 Ductility 

The behaviour of materials is broadly classified into two categories, brittle and ductile. 

Ductile materials undergo large strain before fracture while brittle materials will fail at small 

values of strain. Plain concrete is a brittle material which does not undergo significant 

deformation before fracture and this is unfavourable for structure uses. So, adding of steel 

fibres into the concrete mix is proposed to alter the brittle behaviour of plain concrete. The 

inclusion of steel fibres allows the absorption of certain amount of energy after the maximum
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load carrying capacity and prevents the brittle failure (Tang, 2008). This energy absorption 

is associated with the successive pull-out of the fibres which uses large amount of energy 

(Furlan and Hanai, 1997). 

The examination of ductility of SFRC can be through the flexural test as mentioned earlier. 

Ductility ratio (i.e. ratio of ultimate deflection to deflection at yield) is represented the 

ductility of the SFRC. Figure 2.2 shows the comparison of load-deflection curve of plain 

concrete and SFRC with 1% addition of fibres from a monotonic loading test (Campione and 

Mangiavillano, 2008). From the diagram, it is observed that the brittle behaviour of plain 

concrete has altered to ductile behaviour which can be explained by the plastic deformation 

of the SFRC with 1% addition of fibres after yield stage. The plain concrete is failure directly 

after the yield stage while SFRC with 1% addition of fibres encountered the strain softening 

after the yield stage before failure. It is also shown both members has close value of 

deflection at yield stage but SFRC with 1% addition of fibres has four times greater of 

ultimate deflection to plain concrete which also denotes the four times greater of ductility 

ability of it. Other investigations includes third-point and four-point bending test also shows 

that the ductility is significantly enhances by adding steel fibres and the ductile behaviour of 

SFRC (Furlan and Hanai, 1997; Altun et al., 2007; Soutsos et al., 2012 and Michels et al., 

2013).

160 

120
	 yr = 1% 

0.

80	
V, 0% 

40
Plain 

,	 10	 15	 20	 25	 30	 35 

ö(mm) 

Figure 2.2: 
Load-deflection curve of plain concrete and SFRC with 1% addition of fibres 

from a monotonic loading test (adapted from Campione and Mangiavillano, 2008)



2.3.3 Cracking Propagation 

Cracking propagation describes the post cracking behaviour of a member. Concrete 

starts to exhibit nonlinear response after the first crack is formed (Tasdemir et al., 1990). 

Cracking propagation is the growing of cracks within the member after the initiation of first 

crack. After the crack initiation stage, existed cracks will extend when applied loads resulting 

a crack extension force that beyond its crack resistant. Cracking propagation will be 

continuing through the applied of loading until the ultimate strength is reached at failure 

stage (Sanford, 2003). 

The behaviour of cracking propagation of brittle materials and ductile materials are 

different. For the brittle materials, the cracking are growing rapidly and fracture immediately. 

While the crack extension of ductile materials is tardy at initial and also do not lead to the 

failure immediately. The cracking are growing along with the increasing of applied loadings 

until the member failures at the ultimate strength. The reduction of cracking propagation of 

SFRC is governed by the energy absorption capability of fibres. Cracking propagation occurs 

when the strain energy released provides enough energy required for the crack to grow. Thus, 

the energy absorption capability of fibres by the pull-out resistance of fibres has reduced the 

cracking propagation. Investigations shows that the effectiveness of steel fibres in increasing 

energy absorption capability denote the cracking propagation are reduced significantly by 

adding fibres (Robins et al., 2002; Khaloo and Afshari, 2005; Altun et al., 2007 and Olivito 
and Zuccarello, 2010). 

2.3.4 Mode of Failure 

The mode of failure consists of shear failure, bending failure (flexural), cracking 

failure and deflection failure. The shear failure and flexural failure are focused here as the 

Scope of study. Shear failure is characterized by large diagonal shear crack where the flexural

I  
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failure is failed by means of diagonal tension (Matthys, 2000). The pictures below show the 

examples of shear failure and flexural failure of beam. 

7.LZ 'i i1 I, i 

Figure 2.3: Shear Failure of Beam (Adapted from Matthys, 2000) 

Figure 2.4: Flexural Failure of Beam (Adapted from Matthys, 2000) 

The study of mode of failure of SFRC members allow the examination of the 

capability of steel fibres in increasing the shear strength of concrete. Normally, the shear 

resistant is contributed by the stirrups in the members. However, the stirrups are usually 

leading to the problem of steel congestion especially at the beam-column joint sections. The 

steel congestion may causes the segregation of concrete and affecting the strength of 

members strongly. Many investigations concluded that the adding of steel fibres are 

improving the shear strength of members significantly (Swamy and Bahia, 1985; Sharma, 

1986; Oh et al., 1998; Cho and Kim, 2003 and Campione et al., 2006). Campione etal. (2006) 

observed that the shear resistant of the members were increased by the better bond conditions 

arisen by fibres. Investigations also found that the reduction of shear deformations at all 

stages of loading had increased as fibre content increased. Figure 2.4 shows the mode of
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