

ONLINE MUSIC STORE (OMS)

MOHD HAFIZ BIN ROSLAN (CB11022)

DR BALSAM ABDUL JABBAR MUSTAFA

TECHNICAL REPORT SUBMITTED TO IN

FULLFILLMENT OF THE DEGREE OF COMPUTER

SCIENCE IN SOFTWARE ENGINEERING

FACULTY OF COMPUTER SYSTEMS AND

SOFTWARE ENGINEERING

2013/2014

Online Music System | 2013 – Version 2 i

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks to my project supervisor, Dr.

Balsam Abdul Jabbar Mustafa for her insightful comments, outstanding advice, and

exceptional guidance. I would also like to express my heartiest appreciation for his patience

in spending a lot of time to guide me in my project and provide a lot of valuable and

practical suggestions during this period.

Also, I would like to express my appreciation to my friends for sharing their

valuable idea and knowledge with me, in order to assist myself to succeed the project.

Moreover, I am grateful to express my thanks to my family for their understanding,

supports, and encouragement towards the completion of this project.

Online Music System | 2013 – Version 2 ii

ABSTRACT

In the music industry, to find a comprehensive system that meets all requirements

are difficult. There are not too many of them in the world that produced a system like that.

This project is done to overcome the lack of features in the music website. Online Music

Store (OMS) is a web based system that design to build a well-defined website that acts as

a music database. This system includes three categories of users which are unregistered

user, users that classified registered user and musician, and admin. The methodology uses

for the website development is Rapid Application Development (RAD). In this project, the

enhancement of features increases the user’s usability and creates a network among music

enthusiastic.

Online Music System | 2013 – Version 2 iii

TABLE OF CONTENTS

PART TITLE PAGE

TITLE PAGE

ACKNOWLEDGEMENTS i

ABSTRACT ii

 TABLE OF CONTENTS iii

 LIST OF TABLES v

 LIST OF FIGURES viii

LIST OF ABBREVIATIONS xii

I. INTRODUCTION 1

1.1 Background 1

1.2 Main Aims and Objective 2

1.3 Problem Statement 2

1.4 Review of Previous Work 3

1.5 Review of Current System and Its Limitation 4

1.5.1 Features Provided by The Wknd 5

1.5.2 Limitation of The Wknd 9

1.5.3 Features Difference 10

 1.6 Method of Approach 11

 1.7 Scope and Limitation 11

 1.8 Outline of Material 12

II. REPORT BODY 13

 2.1 User Requirement 13

2.1.1 System Requirements 13

2.1.2 Specific Requirements 22

2.1.3 Non-functional Requirements 85

 2.2 Preliminary Design 87

 2.2.1 System Overview 87

2.2.2 System Architecture 88

 2.2.3 System States and Modes 91

Online Music System | 2013 – Version 2 iv

PART TITLE PAGE

 2.3 System Design Description 94

 2.3.1 Global User Subsystem 94

 2.3.2 User Module 94

 2.3.3 Musician/Artists Module 95

 2.3.4 Admin Module 96

 2.4 Detailed Design 97

 2.4.1 Global User Subsystem Classes 97

 2.4.2 User Module Classes 103

 2.4.3 Musician/Artists Module Classes 123

 2.4.4 Admin Module Classes 142

 2.4.5 Others Subsystem (Navigation Bar) 153

 2.5 Method and Material 158

 2.5.1 Project Methodology 158

 2.6 Testing Plan 161

 2.6.1 Objectives 161

 2.6.2 Requirement for Test 162

 2.6.3 Test Strategy 164

 2.6.3.1 Testing Types 164

 2.6.3.2 Tools 171

 2.6.4 Deliverables 172

III. CONCLUSION AND FUTURE WORK 174

REFERENCES 175

APPENDIX A: GANTT CHART 177

Online Music System | 2013 – Version 2 v

LIST OF TABLES

TABLE NO. TITLE PAGE

1.5.3-1 Features Differences 10

2.1.1-1 Hardware Interfaces 19

2.1.1-2 Software Interfaces 20

2.1.2-1 Register Use Case Description 24

2.1.2-2 Song Streaming Use Case Description 27

2.1.2-3 Login/Logout Use Case Description 31

2.1.2-4 Messaging Use Case Description 36

2.1.2-5 Forum Use Case Description 39

2.1.2-6 Upload Use Case Description 42

2.1.2-7 Feedback Use Case Description 45

2.1.2-8 Manage Profile Use Case Description 50

2.1.2-9 Purchasing Use Case Description 53

2.1.2-10 News & Events Use Case Description 57

2.1.2-11 Add Accounts Use Case Description 61

2.1.2-12 Delete Accounts Use Case Description 64

2.1.2-13 View Account Use Case Description 67

2.1.2-14 View User Activities Use Case Description 70

2.1.2-16 User Entity 75

2.1.2-17 Musician Entity 75

2.1.2-18 Message Entity 76

2.1.2-19 Feedback Entity 77

2.1.2-20 Comment Entity 77

2.1.2-21 Purchase Entity 78

Online Music System | 2013 – Version 2 vi

TABLE NO. TITLE PAGE

2.1.2-22 Forum Entity 79

2.1.2-23 Download Entity 80

2.1.2-24 Upload Entity 81

2.1.2-25 Song Entity 82

2.1.2-26 Profile Entity 83

2.1.2-27 Events Entity 83

2.1.2-28 News Entity 84

2.1.3-1 Software System Attributes 86

2.4.1-1 user_signup Details 99

2.4.1-2 login Details 101

2.4.1-3 mm_signup Details 102

2.4.2-1 home Details 105

2.4.2-2 profile Details 108

2.4.2-3 photos Details 110

2.4.2-4 photos_comment Details 112

2.4.2-5 friends Details 113

2.4.2-6 mail Details 116

2.4.2-7 settings Details 117

2.4.2-8 userprofile Details 120

2.4.3-1 mm_profile Details 126

2.4.3-2 mm_album Details 128

2.4.3-3 mm_tracks Details 129

2.4.3-4 mm_events Details 130

2.4.3-5 mm_events_view Details 132

2.4.3-6 mm_events_full Details 133

2.4.3-7 mm_photos Details 134

Online Music System | 2013 – Version 2 vii

TABLE NO. TITLE PAGE

2.4.3-8 mm_photos_comment Details 136

2.4.3-9 mm_info Details 137

2.4.3-10 mm_userprofile Details 139

2.4.4-1 memberlist Details 144

2.4.4-2 userlist Details 146

2.4.4-3 artistlist Details 148

2.4.4-4 user Details 150

2.4.4-5 artist Details 152

2.4.5-1 music Details 154

2.4.5-2 event Details 155

2.4.5-3 forum Details 156

2.6.3-1 Data and Database Integrity Testing 165

2.6.3-2 Function Testing 166

2.6.3-3 User Interface Testing 167

2.6.3-4 Performance Testing 168

2.6.3-5 Load Testing 169

2.6.3-6 Security and Access Control Testing 170

2.6.3-7 Configuration Testing 171

2.6.3-8 Tools 172

Online Music System | 2013 – Version 2 viii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.5-1 The Wknd 4

1.5.1-1 News Page 5

1.5.1-2 Music Page 6

1.5.1-3 Videos Page 7

1.5.1-4 Features Page 8

1.5.1-5 Wknd Store Page 8

2.1.1-1 System Interfaces 14

2.1.1-2 Context Diagram 15

2.1.1-3 Registered User Interface 16

2.1.1-4 Musician Interface 17

2.1.1-5 Admin Interface 18

2.1.2-1 Use Case Diagram for Unregistered User 23

2.1.2-1 Register Activity Diagram 25

2.1.2-1 Register Sequence Diagram 26

2.1.2-2 Song Streaming Activity Diagram 28

2.1.2-2 Song Streaming Sequence Diagram 29

2.1.2-2 Use Case Diagram for Users 30

2.1.2-3 Login Activity Diagram 31

2.1.2-3 Login Sequence Diagram 32

2.1.2-4 Logout Activity Diagram 33

2.1.2-4 Logout Sequence Diagram 34

2.1.2-5 Messaging Activity Diagram 37

2.1.2-5 Messaging Sequence Diagram 38

Online Music System | 2013 – Version 2 ix

FIGURE NO. TITLE PAGE

2.1.2-6 Forum Activity Diagram 40

2.1.2-6 Forum Sequence Diagram 41

2.1.2-7 Upload Activity Diagram 43

2.1.2-7 Upload Sequence Diagram 44

2.1.2-8 Rating Activity Diagram 46

2.1.2-8 Rating Sequence Diagram 47

2.1.2-9 Comment Activity Diagram 48

2.1.2-9 Comment Sequence Diagram 49

2.1.2-10 Manage Profile Activity Diagram 51

2.1.2-10 Manage Profile Sequence Diagram 52

2.1.2-11 Purchasing Activity Diagram 54

2.1.2-11 Purchasing Sequence Diagram 55

2.1.2-12 News & Events Activity Diagram 58

2.1.2-12 News & Events Sequence Diagram 59

2.1.2-3 Use Case Diagram for Admin 60

2.1.2-13 Add Accounts Activity Diagram 62

2.1.2-13 Add Accounts Sequence Diagram 63

2.1.2-14 Delete Accounts Activity Diagram 65

2.1.2-14 Delete Accounts Sequence Diagram 66

2.1.2-15 View Account Activity Diagram 68

2.1.2-15 View Account Sequence Diagram 69

2.1.2-16 View Account Activities Activity Diagram 71

2.1.2-16 View Account Activity Sequence Diagram 72

2.1.2-17 ER Diagram 74

2.2.1-1 Three Tier Architecture 87

2.2.2-1 Online Music Store Packages 88

Online Music System | 2013 – Version 2 x

FIGURE NO. TITLE PAGE

2.2.2-2 External Interfaces 91

2.2.3-1 Unregistered User Subsystem 91

2.2.3-2 Admin Subsystem 92

2.2.3-3 Combined Global User Subsystem 93

2.3.1-1 Global User Subsystem Class Diagram 94

2.3.2-1 User Module Class Diagram 95

2.3.3-1 Musician/Artists Module Class Diagram 96

2.3.4-1 Admin Module Class Diagram 97

2.4.1-1 Global User Subsystem Relationship 98

2.4.1-2 user_signup Class 98

2.4.1-3 login Class 100

2.4.1-4 mm_signup Class 101

2.4.2-1 User Module Relationship 103

2.4.2-2 home Class 104

2.4.2-3 profile Class 106

2.4.2-4 photos Class 110

2.4.2-5 photos_comment Class 111

2.4.2-6 friends Class 112

2.4.2-7 mail Class 115

2.4.2-8 settings Class 117

2.4.2-9 userprofile Class 118

2.4.2-10 friends_photos, friends_photos_comment 122

and friends_friends Class

2.4.3-1 Musician/Artists Module Relationship 123

2.4.3-2 mm_profile Class 124

2.4.3-3 mm_album Class 127

Online Music System | 2013 – Version 2 xi

FIGURE NO. TITLE PAGE

2.4.3-4 mm_tracks Class 129

2.4.3-5 mm_events Class 130

2.4.3-6 mm_events_view Class 131

2.4.3-7 mm_events_full Class 132

2.4.3-8 mm_photos Class 134

2.4.3-9 mm_photos_comment Class 135

2.4.3-10 mm_info Class 136

2.4.3-11 mm_userprofile Class 138

2.4.3-12 mm_friends_album, mm_friends_tracks, 141

mm_friends_events_view, mm_friends_events_full,

mm_friends_photos, mm_friends_photos_comment and

mm_friends_info Class

2.4.4-1 Admin Module Relationship 143

2.4.4-2 memberlist Class 143

2.4.4-3 userlist Class 145

2.4.4-4 artistlist Class 147

2.4.4-5 user Class 149

2.4.4-6 artist Class 151

2.4.5-1 music Class 153

2.4.5-2 event Class 154

2.4.5-3 forum Class 156

2.5.1-1 Rapid Application Development Methodology 158

Online Music System | 2013 – Version 2 xii

LIST OF ABBREVIATIONS

ABBREVIATION TITLE

OMS Online Music Store/Online Music System

The WKND The Wknd Website

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

I/O Input and Output

PHP Hypertext Preprocessor

PSM Projek Sarjana Muda

SRS Software Requirements Specifications

SDD Software Design Description

Online Music System | 2013 – Version 2 1

PART 1: INTRODUCTION

1.1 Background

After year 1997 where Capitol Records announce their intention to offer the

single album from the new Duran Duran album in downloadable form on the Internet,

many companies saw it as a threat to their sales. However, in 2003, Apple Computer

launches the most successful online music store to date. In its first year, Apple sells 70

million songs at $0.99 per song, creating nearly $70 million in legal Internet music

sales. This raises awareness among the “other side” that Internet also can be an effective

sales medium in addition to retail store.

Today, we can found as many as music website in the Internet that evolved

alongside others internet business industry. But the question is which website is

comprehensive enough to achieve higher usability, performance, maintainability, and

survivability?

Malaysia`s music industry also thrive concurrently with growth of the Internet

technologies. Many musicians express their ideas in the website columns and also sells

theirs work here. The availability of the Internet also gives the musician’s potential to

sell-out their works around the world and connects with others. With this in mind I tried

to develop a system that can give benefits to all musicians.

As music industries become more competitive, and are required to increase their

standards, I believe the Online Music Store will become very popular choice for a music

enthusiasm. I strongly believe this will prove to be a very worthwhile and profitable

investment in the future of music.

Online Music System | 2013 – Version 2 2

1.2 Main Aims and Objectives

i) To create music website for music enthusiasms aims to be as forum for all

musicians and extend their knowledge with social network features in addition

to promoting musicians works.

ii) The system will act as a database of music in Malaysia, organized around local

and international musicians.

iii) To enhance the functionality of the typical music website with features such as

social network, streaming, download, rating system, library system, profiling

system and shopping cart system.

1.3 Problem Statement

There are many music websites can be found on the Internet. Even in Malaysia,

there`s a lot of music websites either for commercial or non-commercial purposes.

These websites or systems were integrated by all people around the world. Some of

them had little knowledge about the website development and some have enough

knowledge to integrate it. With these kind of variety developers involved in the website

development, many problems that occurs involving situation such as reliability,

usability, performance, functionality and security had been found.

Typical problems that always found in the previous music websites are lack of

features. Typically, music website should contains the details about musician, their

materials such as albums and artworks if available, a playlist for the streaming of their

music or downloadable area, comment box for the listeners to give comments, up-to-

date news about the musician, musician and albums rating, purchases section, and all of

the reasonable music features that should be there. From what I`ve found, these

websites not comprehensive enough to fulfil the meaning of music website.

Some problems were found in others music website in Malaysia, like The Wknd

(http://www.the-wknd.com/) website such as poof features integrated. Users can browse

for the music they like but the resources are limited. For example the unavailability of

the user whole album.

http://www.the-wknd.com/

Online Music System | 2013 – Version 2 3

With the growing of the blog technology, many musicians involved themselves

and created their own blogs to promote their works. Here we found the second problem

regarding blog-type website which as we know stored information only for single

musician/single musician group per website. In this website we can find all information

about the musician but lack of usability and wasted time. This situation can be a

problem for users to navigate. They need to jump into one site to another site for

viewing process instead stay at one site.

Website designs are one of the important parts in the website development.

Well-designed website will attract more users to visit and use the system. From what

I’ve found, some of the previous music websites are poor in designed. We can start with

background which contains unsuitable colours. Music website should contain minimal

and light colour in background because of its large contents. User should be able to read

the contents and applied it. As we know, music website had many contents that should

be organized properly. For example the playlist should be in appropriate size and

located properly without disturb others contents. Yes, contents management also the

typical problems that can be found at the previous system. Since design topics are huge,

conclusion can be made that design is important to the website development and this

problems should be avoided.

1.4 Review of Previous Work

Currently, there is no related previous work that had relation with the same

scope like this project. This project originally derived from my own idea. This idea

started with my deep interest in music and would like to create my own music website.

In the Internet, we can find variety type of music website. Those websites sometimes

included the only up-to-date news and events features; others just have details and

downloadable songs features. They are too many varieties of types to be classified here.

With this idea, I`ve come up with my own idea to conclude all of these features into one

website.

This type of music website that includes social network style is already

implemented in the others country like U.S. As far as I`m doing my research, I don’t see

Online Music System | 2013 – Version 2 4

any occurrence in this type of website in our country (Malaysia). With this, I can’t

recommend review about previous work regarding this type of website.

1.5 Review of Current System and Its Limitation

Currently, there is no system like this type of system which is music website

with a social network features but I`ve found a similar system that a lot like this system.

The system I meant about is the music website that was established in Malaysia. This

website not implemented with the social network type but the other contents and

features are lot likes this system (my system). With this I`ve think it`s worth to do

review about this The Wknd website.

The Wknd (http://the-wknd.com/)

Figure 1.5-1: The Wknd

The Wknd is the music website that acts as a promoting platform for the

musician to introduce their works and shared their ideas. This website contains video

performances, music videos, mp3s, new music, events and the latest in Malaysian and

South East Asian music industry. This website stated as the high ranking music website

http://the-wknd.com/

Online Music System | 2013 – Version 2 5

popularity nowadays. This website is design by Bright Light at Midnight (BLAM)

which is an independent design studio that established to provide design and visual

communications solutions to clients from a wide range of industries – from business and

corporate entities, to social networking communities, to entertainment and arts groups.

I ought to say this website is well-designed and have a capability to send

message to viewers but if this website enhance more of its functionality it would be

perfect. This website can be categorised as a blog-type website. Like practically

everything else on the Web, blogs are easy to start and hard to maintain. Writing

coherently is one of the most difficult and time-consuming tasks for a human being to

undertake. So, far from blogs being a cheap strategy, they are a very expensive one, in

that they eat up time. As a result, many blogs are not updated, thus damaging rather than

enhancing the reputation of the organization.

1.5.1 Features provided by The Wknd

There are several features that provided in this website. Each of them played uniquely

roles to this website. They can be break down into 5 categories.

i) News Page

Figure 1.5.1-1: News Page

Online Music System | 2013 – Version 2 6

“News” is the first categories that had three sub categories under its. “News” is a

front page that stored information such as news & update, events and photo gallery.

 News & Update – Stored the information about music industry upcoming, on-

going, past news and update. In addition, in this section also had others

information that unclassified such as reviews and interviews of the musicians

and musician groups.

 Events – Stored the information about the upcoming, on-going and past events

that happens in Malaysia.

 Photo Gallery – Stored the information about photo that taken on the selected

events that occurs around Malaysia.

ii) Music Page

Figure 1.5.1-2: Music Page

“Music” is the second categories that had two sub categories under its. “Music” is a

front page that stored information about the songs by the musicians. In this section,

certain songs can be streaming and download as well.

 New Music – Stored the information about the up-to-date songs that available on

the industry.

Online Music System | 2013 – Version 2 7

 #NOWPLAYING – Stored the information about the selected/favourite song by

the selected/favourite musician. Mostly the songs that stored here are from the

outside country (Malaysia) that gain achievement in music industry and needed

to expose more to the current users on this website.

iii) Videos Page

Figure 1.5.1-3: Videos Page

“Videos” is the third categories that had six sub categories under its. Same with

others features; “Video” is a front page that stored information about the video

matters. Mainly information that store in this features are live video that recorded in

the selected events, interviews, and music videos.

Online Music System | 2013 – Version 2 8

iv) Features Page

Figure 1.5.1-4: Features Page

“Features” is the fourth categories that provided in this website. It contains the

information such as articles and musician-talk. “Features” here can be categorized

as topic that unclassified as others features that provided by this website.

v) WKND Store Page

Figure 1.5.1-5: Wknd Store Page

Online Music System | 2013 – Version 2 9

“WKND Store” is the page where business transaction is occurs. This page is about

the website store that contains information such as albums and materials to be sold.

User needed an account to purchase the materials here. Add to cart systems had

been implemented here. Purchasing can be done via bank transfer, PayPal account

and credit card transfer.

1.5.2 Limitation of The Wknd

Limitation described by the dictionary is restrictive weakness or lack of capacity. We as

human can’t avoid this limitation. There are several points that found in this website

regarding its limitation.

System Function

 The first limitation is about the playlist for the songs. In this website, the playlist is

embedded is from the Soundcloud plugin. Soundcloud is an online audio

distribution platform that allows collaboration, promotion and distribution of audio

recordings by users. Limitation issues here are about the performance. Streaming for

the songs will lead into poor performance. Internet connection will divided since

neither The Wknd website nor Soundcloud used Internet.

 The Wknd website is using a blog type structured so several disadvantages can be

recognized with this situation.

 The third limitation of this website can be found with the lack of contents and

important features. For example, it contains no detail about musician and users

require to look for this information in other site if they intend to do. This

information is really important to development for music website.

 The fourth limitation of this website is the poor usability such as no sorting system

for type of music for easy access to the musician and lack of management.

Admin

 This website is controlled by the admin who authorized to alter the website. Admin

controlled all of the information that send via email by providers and present it at

Online Music System | 2013 – Version 2 10

this website. Any unintended contents can be alter and delete if necessary. So,

admin take part as connection between users and the system.

User

 User can created their own profiles to get special abilities such as gets more update,

discounts and free stuffs. But a social network features such as interacting with each

other’s, get comments and others socialize are not provided by this website

1.5.3 Comparison between The Wknd and Online Music Store

 The Wknd Online Music Store

Social network

 Messaging

 Comments

 Discussion board (forum)

Not have Have

Admin account Have Have

User account

 User profiles

 Photo album

 Rating

Have (photo album only) Have

Musician account

 Musician profiles

 Content management

 Details

 Albums

 Pictures

 Video

 Songs

Not have

Control by admin

Have

Control by registered

musician

Business transaction

1. Add to cart system

Have Have

Table 1.5.3-1: Features Differences

Online Music System | 2013 – Version 2 11

1.6 Method of Approach

To develop a good system, we need to choose a suitable Software Development

Life Cycle for this this system. To develop this system, first I need to clarify all the

requirements needed for this system. After all requirements have been stated and

analysed, I need to design a good User interface for this system. There will be a

continuous interactive process that allows users to understand, modify, and eventually

approve a working model of the system that meets their needs. The third phase is the

construction phases, which mean the system, will start to develop. In this phase user

will be taking part in development and still can suggest for improvement. The last one is

the Cutover Phases is the final task of the methodology. From above phases, the most

suitable methodology for this kind of system is Rapid Application Development

Methodology.

1.7 Scope and Limitation

The uses of software and hardware:

1. Software:

i) PHP languages

ii) XAMPP

 Apache web server

 MySQL Database

iii) Adobe Dreamweaver CS5

iv) Adobe Photoshop CS5

v) Microsoft Visio 2010

2. Hardware:

i) Laptop

ii) Desktop

Online Music System | 2013 – Version 2 12

Users or respondents:

1. Users

i) Unregistered users

ii) Registered users

iii) Musician

2. Supervisor

3. PSM Coordinator

1.8 Outline of Material

The overall of this report consist of three (3) main parts.

Part 1 will discuss on the purpose of the project, current system and its limitation.

Part 2 will discuss on user requirement specification, design description and test

planning on the system.

Part 3 will discuss on the conclusion obtain in the overall process of the

development of the system.

Online Music System | 2013 – Version 2 13

PART 2: REPORT BODY

2.1 User Requirement

During designing a software product, the important and difficult process is to determine

what the user needs is. Generally, customer not able to explain and discuss their needs,

sometimes the information is not in a complete form, self-conflicting and less accurate.

The project manager has the responsibility to understand their customer needs. Once the

requirements is documented in URD, the software will spell out exactly as stated in the

document because the contractual agreement had been sign off between both firms.

2.1.1 System Requirements

Online Music Store (OMS) will develop using web based application which is using

Adobe Dreamweaver CS5 as an implementation platform and PHP scripting language,

and interact with MySQL Server.

1. The web pages (HTML/PHP) will be used for client/users side interfaces

2. PHP language will be used for server side processing

3. Apache web server will be used for PHP and MySQL as a database server will

use to store the information

4. Communication between client and server side is provided through

HTTP/HTTPS protocol

Online Music System | 2013 – Version 2 14

i) System Interfaces

The system interfaces are as below:

Figure 2.1.1-1: System Interfaces

ii) User Interfaces

There are three different category of users who will use the system; coordinator,

student and lecturer. All users will access the system via web browser. The

application should allow basic process such as insert, update, delete, and view for all

of the users. The context diagram shows the user interfaces of the system:

HTML Client
(USERS)

HTTP
Apache HTTP

Server

DATABASE

(MySQL)

Online Music System | 2013 – Version 2 15

Online Music Store (OMS)
Musician

Admin

Unregistered User

register song streaming

manage news&event

uploading

messaging

login

forum

Registered User

login

rating

comment

messaging

forum

uploading

manage profile

download

song streaming

purchasing

add accounts
view account detaildelete account

view user activities

Figure 2.1.1-2: Context Diagram

1. Registered User Interfaces

Registered user interfaces start with the user`s profile. At this user`s profile, it

consist of inbox for message and playlist from the added song. There are menu

on the above interfaces which consists music that will link to the musician

profile, events, news, charts and forum. The Unregistered User interfaces can be

said same with the registered user interfaces. The similarity between those

interfaces are the menu above the interface and the differences between those

interface are unregistered user interface don’t start with user`s profile which

mean there are no inbox for message and playlist from the added song.

Online Music System | 2013 – Version 2 16

Figure 2.1.1-3: Registered User Interface

Online Music System | 2013 – Version 2 17

2. Musician Interfaces

Musician interfaces also start with the musician profile. At this profile, it consist

of interfaces for manage the profile such as inbox for message, interface to

upload items and manage news and events. The top menus of the musician

interfaces are store and forum.

Figure 2.1.1-4: Musician Interface

Online Music System | 2013 – Version 2 18

3. Admin Interfaces

Admin interfaces consists of interfaces to add account, remove account, view

user list, view details account and view user activities. The view user list

account will have control at the side of list to perform an operation desired. In

the view user activities account, the system user (registered user + musician)

history will be display and can print the report. This interface consists of user

activities such as song chart, top rated musician and top streamed song.

Figure 2.1.1-5: Admin Interface

Online Music System | 2013 – Version 2 19

iii) Hardware Interfaces

Minimum hardware requirements:

Client/Users Side

 Processor RAM Disk Space

Internet Explorer (IE)

6.0 / Mozilla / Chrome

& above

Pentium III at

500MHZ

512MB 60GB

Server Side

 Processor RAM Disk Space

Apache HTTP Server

V2.2.17

Pentium IV at

1.3GHz

512MB 200MB

MySQL V5.5.8 Pentium IV at

1.3GHZ

512MB 200MB

(excluding

data size)

Table 2.1.1-1: Hardware Interfaces

iv) Software Interfaces

This section identifies the type of software and their function that will be used to

develop this system. The required software stated below:

Software Function

Microsoft Windows Operating System

 Window 7 Ultimate

 Operating system that will be used

to develop the system

 As a platform for a system to run

Microsoft Office 2010

 Microsoft Word 2010

 Microsoft PowerPoint 2010

 Microsoft Project 2010

 Microsoft Visio 2010

 Prepare reports and documentation

 Prepare slide for presentation

 Scheduling, planning and Gantt

Chart development

 Design, draw chart and diagram

Online Music System | 2013 – Version 2 20

Creatly.com Open source website application for

the chart designing and creating

Adobe Dreamweaver CS5 Design interfaces and generate codes

Adobe Photoshop CS5 Manage the pictures type work

Apache MySQL phpMyAdmin Database for the system; generate

database, database management and

database platform

WinRAR Compress project files

Table 2.1.1-2: Software Interfaces

v) Functional Requirement

Admin

 System shall allow admin to log in to the system and add, delete and alter the

records of musician and their products

 System shall allow admin to add and delete user who are registered with the

system

 System shall allow admin to monitor monthly sells and produce report to the

admin

 System shall allow admin to view the statistic of the system such as how

many user registered, frequently played song, most viewed musician and top

rated musicians

 System shall allow admin to monitor the forum

 System shall allow admin to maintain user details and manage the music

items in the inventory

Registered User

 System shall allow user to login and register to the system and stream,

download and buy music

 System shall allow user to add item to shopping cart

 System shall allow user to reply or received private message

 System shall allow user to store their favourite music into their profile

Online Music System | 2013 – Version 2 21

 System shall allow user to interact with each other via comment box and

forum

 System shall allow user to rate their favourite music

 System shall allow user to search for music and musician based on multiple

keywords such as album name and music category

Unregistered User

 System shall allow user to stream and view the musician products

 System shall allow user to rate their favourite music

 System shall allow user to search for music and musician based on multiple

keywords such as album name and music category

Musician

 System shall allow musician to login and register to the system

 System shall allow musician add, delete and alter their product

 System shall allow musician to interact with other user via private message

or comment box

 System shall allow musician to take part in the forum too

vi) Constraints

There are several constraints that should be notified in this system.

 System is limited to HTTP/HTTPS protocols as the system is a web based

application.

 Use of hardware and software by users should fulfil the minimum

requirement of the system.

 Server must always be available.

Online Music System | 2013 – Version 2 22

vii) Types of files

Compressed files formatting:

 Audio format (.mp3, .mpeg-4, .wma)

 Image format (.jpeg, .png)

 Video format (.avi, mpeg-2, mpeg-4)

viii) Assumptions and Dependencies

1. The system will able to access by major of internet browser such as Internet

Explorer, Google Chrome and Mozilla Firefox.

2. The speed of accessing the system depends on the network speed.

3. Higher RAM provides higher performance of the system.

4. Administrator was already created.

5. PayPal account or credit card demanded for the purchasing activity.

2.1.2 Specific Requirements

i) Function

 Use Case Diagram

Online Music Store (OMS) had four actors which are Unregistered Users,

Registered Users, Musician and Admin. Registered Users and Musician combined

together as Users since major of its cases similar to each other’s. Below is the use

case diagram that divided into three components which is the Unregistered User,

Users (Musician + Registered User) and admin. Reason for the dividing is to make

its easy to classify the system function since the combination of all actors produce a

large and complex use case diagram.

Online Music System | 2013 – Version 2 23

Use Case Diagram #1

Actor : Unregistered User

Figure 2.1.2-1: Use Case Diagram for Unregistered User

Online Music System | 2013 – Version 2 24

Table 2.1.2-1: Register Use Case Description

Use Case: Register

ID: US-001

Scope: Register by unregistered users

Priority: 1/15

Summary: This use case to register the users before they enter the system.

There is an option given whether users want to register or not

register. Registered users had additional abilities than unregistered

users.

Primary Actor: Unregistered User

Supporting Actors: NA

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: User must not registered with the system

Trigger: NA

Normal Flow: 1. Select Register

2. Enter require information

Loop: Repeat 2 if the information is available in the database

3. Proceed to the system

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Registered User

Non-Behavioural

Requirements:

NA

Open Issues:

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Online Music System | 2013 – Version 2 25

Figure 2.1.2-1: Register Activity Diagram

Activity Diagram Flow Detail Description

1. Users will select the Register link in the homepage

2. The Register pages will appear with several information need to input such as name

and address.

3. After the information needed was input, next step is to click the Next button to

process the information.

4. Information inserted will add to the database. If the information already available in

the database, the system will send a message says duplication on the information

and require users to input others information.

5. Activity will end with message says the success in registration and users now in the

registered stated.

Online Music System | 2013 – Version 2 26

Users

Registration Page Conformation Page Database

Register

EnterData

DataConfirmation

DataInvalidMessageSent

DataValid DatabaseUpdatedMessageSent

Figure 2.1.2-1: Register Sequence Diagram

Online Music System | 2013 – Version 2 27

Use Case: Song streaming

ID: US-002

Scope: Streaming a song from a system

Priority: 2/15

Summary: This use case to stream a song from a system. Either unregistered users

or registered user can stream song from the system. A playlist will be

embedded on the system to support the streaming activity.

Primary Actor: 1. Unregistered User

2. Registered User

Supporting Actors: Musician

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: The songs streaming is applied from musician by the unregistered or

registered users

Trigger: NA

Normal Flow: 1. Users select their desired song to play

Loop: Repeat 1 if the selected song is not right

2. A selected song will played.

Loop: Repeat 2 if users decided to repeat the song

Sub-Flows: NA

Alternate Flow/

Exceptions:

1a. Users can download the downloadable songs

2a. Stop the song and move on to others activities

2b. Pause the song in timestamp 1 second to 10 minutes

Post-Condition: Streaming log for the Registered Users

Non-Behavioural

Requirements:

NA

Open Issues:

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-2: Song Streaming Use Case Description

Online Music System | 2013 – Version 2 28

Figure 2.1.2-2: Song Streaming Activity Diagram

Activity Diagram Flow Details Description

1. Users choose the song that like to play in the musician pages.

2. Begin the song play with the play button embedded in the playlist.

3. There are others buttons included such as stop button to stop the playing song and

pause button for the pausing the song.

4. Users can choose other songs desired to continue the hearing.

Online Music System | 2013 – Version 2 29

Users

Musician Page Database

Select Song

ValidateSong

Song play

SongValidated

Figure 2.1.2-2: Song Streaming Sequence Diagram

Online Music System | 2013 – Version 2 30

Use Case Diagram #2

Actor: Users (Musician + Registered User)

Figure 2.1.2-2: Use Case Diagram for User (Musician + Registered User)

Online Music System | 2013 – Version 2 31

Use Case: Login/Logout

ID: US-003

Scope: Login/Logout to begin/end the users session

Priority: 3/15

Summary: This use case to login or logout from the system. The need for this

activity is to create a session to the system. A profile will be creating

for the users that register into the system and the login/logout activity is

like a gateway or identification to the users that owns that profile.

Primary Actor: 1. Musician

2. Registered User

Supporting Actors: NA

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: User must be unregistered into the system

Trigger: NA

Normal Flow: Login:

1. Select login

2. Enter the required information (i.e. username, password)

Loop: Repeat 2 if the data is invalid

3. Session begin

Logout:

1. Select logout

2. Confirmation for the selection

Loop: Repeat 1 if the selection is no which is not intended to logout

3. Session ended

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Login: Session begin

Logout: Session ended

Non-Behavioural

Requirements:

NA

Open Issues:

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-3: Login/Logout Use Case Description

Online Music System | 2013 – Version 2 32

Figure 2.1.2-3: Login Activity Diagram

Activity Diagram Flow Details Description

1. Users select the Login link from the homepage

2. The Login Page will appear with the box required information such as username and

password to be entering.

3. The system will validate the entered information from the database. Valid

information will give permission to the users to enter system while invalid

information will sent a warning message that users can`t enter the system until valid

information is recognized.

4. The session will begin if the users authorized by the system to enter system with

several features such as download songs and make a purchase.

Online Music System | 2013 – Version 2 33

Users

Login Page ValidateData

Select login

EnterData

MessageSent

DataValidated

Database

DataValidate

Figure 2.1.2-3: Login Sequence Diagram

Online Music System | 2013 – Version 2 34

Figure 2.1.2-4: Logout Activity Diagram

Activity Diagram Flow Details Description

1. Users will select the Logout link at the homepage.

2. The confirmation message will popped out asking for confirmation to logout or to

stay.

3. If the users choose to stay, the system will revert back to the current page without

anything happens.

4. If the users choose to logout, the system will terminated the users session and

continue as a unregistered users.

Online Music System | 2013 – Version 2 35

Users

Logout Page Confirmation Page

Select logout

ConfirmLogout

SessionEnd

LogoutConfirmed

Figure 2.1.2-4: Logout Sequence Diagram

Online Music System | 2013 – Version 2 36

Use Case: Messaging

ID: US-004

Scope: To send a message to other users

Priority: 4/15

Summary: This use case to allow registered users to send message to others

registered users. Sent messages can be read via inbox in the user

profile. There are two situations to send message that will describe

below.

Primary Actor: 1. Musician

2. Registered User

Supporting Actors: NA

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: User must be registered into the system.

Trigger: NA

Normal Flow: 1. Search for registered users or musician

2. Select message

3. Start to message

4. Message sent

Loop 1: Repeat 3 if the delete button is selected

Loop 2: Repeat 4 if the edit button is selected

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Message sent

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-4: Messaging Use Case Description

Online Music System | 2013 – Version 2 37

Figure 2.1.2-5: Messaging Activity Diagram

Online Music System | 2013 – Version 2 38

Activity Diagram Flow Details Description

1. Users search for the registered users or musician that his intended to send message.

2. Select the Message link at the above of the searched page.

3. The Message Page will appears and start a typing.

4. After the message sent, users can edit the message and delete it using the inbox in

the user’s profiles.

5. Inbox will store the user’s message activities included the received message from

other users.

Users

Registered/Musician Page MessagingControl

Select user

EnterMessage

receivedRequest

Database

sendRequest DatabaseUpdated

pagesReload

Figure 2.1.2-5: Messaging Sequence Diagram

Online Music System | 2013 – Version 2 39

Use Case: Forum

ID: US-005

Scope: Give the users abilities to join into forum

Priority: 5/15

Summary: This use case to allow registered users and musician to join into forum.

This activity start with moderator opens the title such as “the best

album in 2013” and participants (users) can discuss among the others

regarding the topic.

Primary Actor: 1. Musician

2. Registered User

Supporting Actors: Admin

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: User must be registered into the system.

Trigger: NA

Normal Flow: 1. Users select forum link

2. Users select the topic to join

3. Start typing

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Comment sent

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-5: Forum Use Case Description

Online Music System | 2013 – Version 2 40

Figure 2.1.2-6: Forum Activity Diagram

Online Music System | 2013 – Version 2 41

Activity Diagram Flow Details Description

1. Users select the forum link at the homepage.

2. The Forum Page will come out with a lists of topic available created by moderator

and users.

3. Users select the topic they desired to join.

4. Users begin the typing for comment, critique or give solution. That’s what forum

for.

5. After comment sent, users can edit the comment if mistake happens or delete it from

the system.

6. All forum activities will be stored in the database.

Users

Forum Page ForumControl

Select forum

Select topic

Database

sendRequest
DatabaseUpdated

Topic

TypeComment

receivedRequest

pageReload

Message sent

Figure 2.1.2-6: Forum Sequence Diagram

Online Music System | 2013 – Version 2 42

Use Case: Upload

ID: US-006

Scope: To upload files into the system

Priority: 6/15

Summary: This use case to allow registered users and musician to upload files into

the system. There are differences between registered users and

musician regarding types of files that they can upload. Registered users

can upload files like picture only while musician can upload files like

audio, video and pictures.

Primary Actor: 1. Musician

2. Registered User

Supporting Actors: Admin

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: User must be registered into the system.

Trigger: NA

Normal Flow: 1. Select file to upload

Loop: Repeat 1 if the file is in invalid forms

2. File uploaded

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Files uploaded

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-6: Upload Use Case Description

Online Music System | 2013 – Version 2 43

Figure 2.1.2-7: Upload Activity Diagram

Activity Diagram Flow Details Description

1. Users select the file to be uploading.

2. Uploading box will popped out and starts the file selection.

3. The system will give warning if the file is in inappropriate format like described in

the constraint topic.

4. The successful uploaded file will store in the database.

Online Music System | 2013 – Version 2 44

Users

Upload

Select file

Upload file

Database

Valid: sendRequest DatabaseUpdated

UploadControl

Message sent

formatValidate

Invalid: sendWarning

Figure 2.1.2-7: Upload Sequence Diagram

Online Music System | 2013 – Version 2 45

Use Case: Feedback

ID: US-007

Scope: To give a feedback to other users

Priority: 7/15

Summary: This use case allows registered users to give a feedback to others users

such as give a rating and ability to comment. Mostly this activity is for

the musician users.

Primary Actor: 1. Musician

2. Registered User

Supporting Actors: Admin

Stakeholders: NA

Generalization: NA

Include: 1. Rating

2. Comment

Extend: NA

Precondition: User must be registered into the system and only applied to musician

users.

Trigger: NA

Normal Flow: Rating:

1. Select users

2. Select rate button

Loop: Repeat 1 if the undo button been selected

3. System updated with the addition rating to the users

Comment:

1. Enter comment in the comment box

Loop: Repeat 2 if the cancel button is selected

2. Comment sent

Loop 1: Repeat 2 if the delete button is selected

Loop 2: Repeat 3 if the edit button is selected

3. System updated with new comment

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: NA

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-7: Feedback Use Case Description

Online Music System | 2013 – Version 2 46

Figure 2.1.2-8: Rating Activity Diagram

Activity Diagram Flow Details Description

1. Users will select the musician to be rating.

2. Process will continue after users click on the rating button at the musician pages.

3. In timestamp 1 second to 3 second, the musician pages will auto refresh and this is

how users can know his rated take action with the increase number near the rating

button.

Online Music System | 2013 – Version 2 47

Users

Musician Page RatingControl

Select user

SelectRate

Message Sent UserRated

Database

RateRequest DatabaseUpdated

Figure 2.1.2-8: Rating Sequence Diagram

Online Music System | 2013 – Version 2 48

Figure 2.1.2-9: Comment Activity Diagram

Online Music System | 2013 – Version 2 49

Activity Diagram Flow Details Description

1. Users will select the musician to be comment.

2. Begin the typing to comment.

3. After the typing, there are two buttons provided which are cancel and send button.

Cancel button will act as a cancelation for the words typed in the comment box

while send button will act as an agreeable for the words typed in the comment box.

4. The system will auto refresh so users can see their comments after 1-3seconds.

5. There are control included in this comment system such as edit and cancellation to

the comments.

6. All of the comments will be added into database.

Users

Musician Page CommentControl

Select user

EnterComment

receivedRequest

Database

sendRequest DatabaseUpdated

pagesReload

Figure 2.1.2-9: Comment Sequence Diagram

Online Music System | 2013 – Version 2 50

Use Case: Manage Profile

ID: US-010

Scope: To manage the registered users profile

Priority: 10/15

Summary: This use case to allow registered users to manage their own profile such

as add and remove songs from profile

Primary Actor: Registered User

Supporting Actors: Admin

Stakeholders: NA

Generalization: NA

Include: 1. Add songs to profile

2. Remove songs from profile

Extend: NA

Precondition: User must be registered into the system and the songs added only can

applied with the users add it from musician pages

Trigger: NA

Normal Flow: 1. Select the musician

2. Select the add button near the chosen song

Loop: Repeat 2 if the delete button is chosen

3. Confirmation box appear

Loop: Repeat 1 if choose to continue

4. Proceed to system

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Songs added to profile

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-8: Manage Profile Use Case Description

Online Music System | 2013 – Version 2 51

Figure 2.1.2-10: Manage Profile Activity Diagram

Activity Diagram Flow Details Description

1. Users select the musician pages that they like.

2. The musician pages appear with the playlist of their songs.

3. Users select the songs they like to be add to their profiles with the button included

near of the song selected.

Online Music System | 2013 – Version 2 52

4. The selected song also included delete button near it functioning to remove the

songs from user’s profile.

5. The confirmation box asks for continue the activity will popped out.

6. If the selection is to continue, the pages will auto reload to the musician selection

pages.

7. If the selection is not to continue, the pages will auto reload to the homepage of the

user`s profile. They can see the playlist with the selected added songs there.

Users

Musician Page

Select musician

Select song

AddSongControlPlaylist Database

addSong

Delete?

removeSong
Reload to user`s profile homepage

addSong

sendRequest databaseUpdated

sendRequest
Reload to user`s profile homepage

Figure 2.1.2-10: Manage Profile Sequence Diagram

Online Music System | 2013 – Version 2 53

Use Case: Purchasing

ID: US-011

Scope: To purchase materials from the system

Priority: 11/15

Summary: This use case to allow registered users to purchase materials such as

albums, songs and artworks provided by musician. Add to cart system

had been implemented in this activity for flexibility of purchasing.

Primary Actor: Registered User

Supporting Actors: Admin

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: User must be registered into the system and purchase the material from

the musician pages

Trigger: NA

Normal Flow: 1. Select musician

2. Select store link in the musician page

3. Select items to purchase

4. Item added to cart

Loop: Repeat 3 for continue purchase

5. View item

Loop: Repeat 5 if agree to remove item from cart

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Purchase succeed

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-9: Purchasing Use Case Description

Online Music System | 2013 – Version 2 54

Figure 2.1.2-11: Purchasing Activity Diagram

Online Music System | 2013 – Version 2 55

Activity Diagram Flow Details Description

1. Users select the musician.

2. The link to store will show if that musician items is purchasable. Go to the link to

continue purchasing.

3. Select the items to be purchase.

4. Add to cart system implemented here so the desired purchased item will be added to

the cart. There are button for add to cart at the items to click.

5. To end the transaction, click on the checkout button. The list of the items added into

cart will show after that.

6. To remove the item from the cart, simply click the delete button available at the side

of each item on the view list.

7. Page will auto reload to summarize latest purchase.

8. Click the checkout button to continue and here come the payment page which

required transaction using PayPal account and credit card like said before in

constraints topic.

Online Music System | 2013 – Version 2 56

Users

Musician Page

Select musician

Select store

Add to cartStore Page DatabaseCart

Select item
Select item

Checkout

sendRequest database
Updated

sendRequest

cartUpdated
Checkout and to the payment page

Remove item

sendRequest database
Updated

sendRequest

cartUpdated
Checkout and to the payment page

Figure 2.1.2-11: Purchasing Sequence Diagram

Online Music System | 2013 – Version 2 57

Use Case: News & Events

ID: US-011

Scope: To manage news and events activities

Priority: 11/15

Summary: This use case to allow musician to manage their past and upcoming

news and events. It included add, delete and edit the contents.

Primary Actor: Musician

Supporting Actors: Registered User

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: User must be musician and registered into the system

Trigger: NA

Normal Flow: 1. Select news and events

2. Select add new entry

3. Insert required information (date, place, news, events)

4. Select view

Loop 1: Repeat 2 if select delete

Loop 2: Repeat 3 if select edit

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: News and events added

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-10: News & Events Use Case Description

Online Music System | 2013 – Version 2 58

Figure 2.1.2-12: News & Events Activity Diagram

Activity Diagram Flow Details Description

1. Users select the News & Events.

2. Select add new entry at the News & Events page.

3. Begin typing the information required such as date, place, events description, news

description and picture if available.

Online Music System | 2013 – Version 2 59

4. Proceed with button ok at the pages.

5. Select view for the whole news and events picture posted by users.

6. Each of the new and events had two button for delete and edit the contents.

Users

News & Events

Select news &
events

Enter data

View PageAdd entry Database

sendRequest

sendRequest

database
Updated

Received list of news & event

Request for delete
sendRequest database

Updated

sendRequest
Received list of news & event

Request for edit
sendRequest database

Updated

sendRequest
Received list of news & event

Figure 2.1.2-12: News & Events Sequence Diagram

Online Music System | 2013 – Version 2 60

Use Case Diagram #3

Actor: Admin

Figure 2.1.2-3: Use Case Diagram for Admin

Online Music System | 2013 – Version 2 61

Use Case: Add Accounts

ID: US-012

Scope: To add accounts into the system

Priority: 12/15

Summary: This use case to add accounts for the users for using this system.

Primary Actor: Admin

Supporting Actors: Users (Registered User + Musician)

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: NA

Trigger: NA

Normal Flow: 1. Select add new accounts

2. Insert required information

3. Account created

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Account created

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-11: Add Accounts Use Case Description

Online Music System | 2013 – Version 2 62

Figure 2.1.2-13: Add Accounts Activity Diagram

Activity Diagram Flow Details Description

1. Admin select add new accounts.

2. The new accounts page will appeared with the information required to fill in such as

name, address, username and password.

3. Click done button for proceed. Information will store in the database.

Online Music System | 2013 – Version 2 63

Admin

Add accounts

Select add
accounts

Enter data

DatabasePage Control

checkWord

sendRequest
checkAvailability

sendRequest
invalidData

Valid: sendRequest

databaseUpdated

Received succeed message

Figure 2.1.2-13: Add Accounts Sequence Diagram

Online Music System | 2013 – Version 2 64

Use Case: Delete Accounts

ID: US-013

Scope: To delete accounts from the system

Priority: 13/15

Summary: This use case to delete accounts for the users for using this system.

Primary Actor: Admin

Supporting Actors: Users (Registered User + Musician)

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: NA

Trigger: NA

Normal Flow: 1. Select delete account

2. Select view users

3. Account deleted

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Account deleted

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-12: Delete Accounts Use Case Description

Online Music System | 2013 – Version 2 65

Figure 2.1.2-14: Delete Accounts Activity Diagram

Activity Diagram Flow Details Description

1. Admin select delete accounts.

2. Select view users.

3. View users will provide list of all users registered in the database. Side of their

name included with delete button.

4. Click the delete button then users will delete permanently from database.

Online Music System | 2013 – Version 2 66

Admin

Delete accounts

Select delete
accounts

Select users list

DatabaseUsers list

deleteUser
databaseUpdated

Received succeed message

Figure 2.1.2-14: Delete Accounts Sequence Diagram

Online Music System | 2013 – Version 2 67

Use Case: View Accounts

ID: US-014

Scope: To view users accounts in details registered in the system

Priority: 14/15

Summary: This use case to view the registered user`s account in details

Primary Actor: Admin

Supporting Actors: Users (Registered User + Musician)

Stakeholders: NA

Generalization: NA

Include: NA

Extend: NA

Precondition: NA

Trigger: NA

Normal Flow: 1. Select view users

2. Select account details

3. Viewed

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: Account viewed

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-13: View Accounts Use Case Description

Online Music System | 2013 – Version 2 68

Figure 2.1.2-15: View Accounts Activity Diagram

Activity Diagram Flow Details Description

1. Admin select view users.

2. View users will appear with the list of all registered users.

3. Each of the users will include account details button.

4. Click for the account details and new page will pop out.

5. The popped out pages shows the details information about the users.

Online Music System | 2013 – Version 2 69

Admin

View users

Select view users

Select user to be view

DatabasePageControl

viewUser

Received information

Figure 2.1.2-15: View Accounts Sequence Diagram

Online Music System | 2013 – Version 2 70

Use Case: View User`s Activities

ID: US-015

Scope: To view users activities in the system

Priority: 15/15

Summary: This use case to view the registered user`s activities through using the

system

Primary Actor: Admin

Supporting Actors: Users (Registered User + Musician)

Stakeholders: NA

Generalization: NA

Include: NA

Extend: 1. Comment

2. Forum

3. Print Report

Precondition: NA

Trigger: NA

Normal Flow: 1. Select view users

2. Select view user`s activities

3. User`s activities viewed

Sub-Flows: NA

Alternate Flow/

Exceptions:

NA

Post-Condition: User`s activities viewed

Non-Behavioural

Requirements:

NA

Open Issues: NA

Source: Requirement Statement

Author: System Analyst

Revision & Date Revision 01 24/4/2013

Table 2.1.2-14: View User Activities Use Case Description

Online Music System | 2013 – Version 2 71

Figure 2.1.2-16: View User Activities Activity Diagram

Activity Diagram Flow Details Description

1. Admin select view users.

2. View users will appear with the list of all registered users.

3. Each of the users will include view user activities button.

4. Click for the view user activities and new page will pop out.

5. The popped out pages shows the details information about the user’s activities.

Online Music System | 2013 – Version 2 72

Admin

View users

Select view users

Select user to be view

DatabasePageControl

viewUserActivities

Received information

Figure 2.1.2-16: View User Activities Sequence Diagram

Online Music System | 2013 – Version 2 73

ii) Performance requirements

 Capacity

System can communicate with 200 users at the same time. Users do not need to wait

for a long time for the transaction of information, since the system is web based

system and more than one user can use the system simultaneously.

 Response Time

The system should be able to react and perform well. The respond time of data

saving should within 5 seconds. All data will be saved after the confirmation is

made, time for saving will not exceed 30 seconds.

 Error Handling

Error handling should be implementing and the application should be able to handle

all run time errors. If an error condition occurs, the system should output helpful

error message and if not recovery is not possible, it should exit gracefully.

iii) Logical Database Requirements

An entity-relationship (ER) diagram is a specialized graphic that illustrates the

relationships between entities in a database. Since the system will be using the

database to connect one form to another, the entities must be defined within it

characteristics. Every single entity has it Primary Key (PK) which is unique

character among all characters in single entity. There is also the entity that has

Foreign Key (FK) which is the primary key from other entity. The cardinality must

be stated in order to show their relationship between each other.

Online Music System | 2013 – Version 2 74

Figure 2.1.2-17: ER diagram

Online Music System | 2013 – Version 2 75

The data descriptions of each of these data entities are as follows:

Table 2.1.2-16: User Entity

Attributes Definition Data Type Details

user_id Defines user id as auto

incremental

INT(200) Used as unique

identifier for each

user

user_name Defines user name VARCHAR(100) The name of the

user

user_add Defines user address VARCHAR(200) The address of

the user

user_email Defines user email

(XXXX@XXXX.XXX)

VARCHAR(50) The email of the

user and used as

a username to log

in into the system

user_passwd Defines user password VARCHAR(20) Used by a user to

log in into the

system

Table 2.1.2-17: Musician Entity

Attributes Definition Data Type Details

musician_id Defines musician id as

auto incremental

INT(200) Used as unique

identifier for

each musician

musician_name Defines musician name VARCHAR(100) The name of the

musician

muscisian_add Defines musician

address

VARCHAR(200) The address of

the musician

musician_email Defines musician email

(XXXX@XXXX.XXX)

VARCHAR(50) The email of the

musician and

Online Music System | 2013 – Version 2 76

used as a

username to log

in into the

system

musician_passwd Defines musician

password

VARCHAR(20) Used by a

musician to log

in into the

system

Table 2.1.2-18: Message Entity

Attributes Definition Data Type Details

msg_id Defines message id

as auto incremental

INT(200) Used as unique

identifier for each

message

user_id Defines user id as

auto incremental

INT(200) Used as unique

identifier for each

message. Also a

foreign keys from

user entity

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

message. Also a

foreign key from

musician entity

msg_text Defines sent

message

VARCHAR(500) The message that

was sent recorded

here

msg_time Defines message

time (HH:MM:SS)

TIME() The time where

message that was

sent recorded here

Online Music System | 2013 – Version 2 77

msg_date Defines message

date (YYYY-MM-

DD)

DATE() The date where

message that was

sent recorded here

Table 2.1.2-19: Feedback Entity

Attributes Definition Data Type Details

rate_id Defines rate id as

auto incremental

INT(200) Used as unique

identifier for each

rate

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

rate. Also a foreign

key from musician

entity

rate_count Define rate counting INT(200) To count the rating

from user that rated

the musician

Table 2.1.2-20: Comment Entity

Attributes Definition Data Type Details

comment_id Defines comment id

as auto incremental

INT(200) Used as unique

identifier for each

comment

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

comment. Also a

foreign key from

Online Music System | 2013 – Version 2 78

musician entity

comment_text Defines sent

comment

VARCHAR(500) The comment that

was sent recorded

here

comment_time Defines comment

time (HH:MM:SS)

TIME() The time where

comment that was

sent recorded here

comment_date Defines comment

date (YYYY-MM-

DD)

DATE() The date where

comment that was

sent recorded here

Table 2.1.2-21: Purchase Entity

Attributes Definition Data Type Details

purchase_id Defines purchase id

as auto incremental

INT(200) Used as unique

identifier for each

purchase

user_id Defines user id as

auto incremental

INT(200) Used as unique

identifier for each

purchase. Also a

foreign keys from

user entity

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

purchase. Also a

foreign key from

musician entity

purchase_item Defines purchased

item

VARCHAR(500) The purchases item

that was purchased

recorded here

purchase_time Defines purchases TIME() The time where

Online Music System | 2013 – Version 2 79

time (HH:MM:SS) purchases item that

was purchased

recorded here

purchase_date Defines purchases

date (YYYY-MM-

DD)

DATE() The date where

purchases item that

was purchased

recorded here

Table 2.1.2-22: Forum Entity

Attributes Definition Data Type Details

forum_id Defines forum id as

auto incremental

INT(200) Used as unique

identifier for each

forum

user_id Defines user id as

auto incremental

INT(200) Used as unique

identifier for each

forum. Also a

foreign keys from

user entity

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

forum. Also a

foreign key from

musician entity

forum_title Defines forum title VARCHAR(100) The title of the

forum

forum_text Defines sent

message/comment

VARCHAR(500) The

message/comment

that was sent

recorded here

forum_time Defines TIME() The time where

Online Music System | 2013 – Version 2 80

message/comment

time (HH:MM:SS)

message/comment

that was sent

recorded here

forum_date Defines

message/comment

date (YYYY-MM-

DD)

DATE() The date where

message/comment

that was sent

recorded here

Table 2.1.2-23: Download Entity

Attributes Definition Data Type Details

download_id Defines download

id as auto

incremental

INT(200) Used as unique

identifier for each

download

user_id Defines user id as

auto incremental

INT(200) Used as unique

identifier for each

download. Also a

foreign keys from

user entity

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

download. Also a

foreign key from

musician entity

download_item Defines

downloaded item

MEDIUMBLOB The downloaded

item stored here for

future references

download_desc Defines

downloaded item

description

VARCHAR(500) The downloaded

item foot notes or

description for

future references

Online Music System | 2013 – Version 2 81

download_time Defines

downloaded time

(HH:MM:SS)

TIME() The time where

downloaded item

was download

recorded here

download_date Defines

downloaded date

(YYYY-MM-DD)

DATE() The date where

downloaded item

was download

recorded here

Table 2.1.2-24: Upload Entity

Attributes Definition Data Type Details

upload_id Defines upload id

as auto incremental

INT(200) Used as unique

identifier for each

upload

user_id Defines user id as

auto incremental

INT(200) Used as unique

identifier for each

upload. Also a

foreign keys from

user entity

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

upload. Also a

foreign key from

musician entity

upload_item Defines uploaded

item

MEDIUMBLOB The uploaded item

stored here for

future references

upload_desc Defines uploaded

item description

VARCHAR(500) The uploaded item

foot notes or

description for

Online Music System | 2013 – Version 2 82

future references

upload_time Defines uploaded

time (HH:MM:SS)

TIME() The time where

uploaded item was

upload recorded

here

upload_date Defines uploaded

date (YYYY-MM-

DD)

DATE() The date where

uploaded item was

upload recorded

here

Table 2.1.2-25: Song Entity

Attributes Definition Data Type Details

song_id Defines song id as

auto incremental

INT(200) Used as unique

identifier for each

song

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

song. Also a

foreign key from

musician entity

song_title Defines song title VARCHAR(100) The title for the

song

song_album Defines song album VARCHAR(100) The album for the

song

song_release Define song release

date (YYYY-MM-

DD)

DATE () The released date

for the song

song_song Define uploaded

song

MEDIUMBLOB The uploaded song

stored here

Online Music System | 2013 – Version 2 83

Table 2.1.2-26: Profile Entity

Attributes Definition Data Type Details

user_id Defines user id as

auto incremental

INT(200) Used as unique

identifier for each

profile. Also a

foreign keys from

user entity

song_id Defines song id as

auto incremental

INT(200) Used as unique

identifier for each

profile. Also a

foreign keys form

the song entity

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

profile. Also a

foreign key from

musician entity

add_song Defines added song MEDIUMBLOB The added song

stored here

Table 2.1.2-27: Events Entity

Attributes Definition Data Type Details

events_id Defines event id as

auto incremental

INT(200) Used as unique

identifier for each

event

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

event. Also a

Online Music System | 2013 – Version 2 84

foreign key from

musician entity

events_desc Defines event

description

VARCHAR(500) The event foot notes

or description for

future references

events_text Defines event

message/comment

VARCHAR(500) The event

message/comment

recorded here

events_time Defines event time

(HH:MM:SS)

TIME() The time where

event held recorded

here

events_date Defines event date

(YYYY-MM-DD)

DATE() The date where

event held recorded

here

events_pict Defines event

picture

MEDIUMBLOB The picture of the

event stored here if

available

Table 2.1.2-28: News Entity

Attributes Definition Data Type Details

news_id Defines news id as

auto incremental

INT(200) Used as unique

identifier for each

news

musician_id Defines musician id

as auto incremental

INT(200) Used as unique

identifier for each

news. Also a foreign

key from musician

entity

news_text Defines news

message/comment

VARCHAR(500) The news

message/comment

Online Music System | 2013 – Version 2 85

recorded here

news_time Defines news time

(HH:MM:SS)

TIME() The time where

news held recorded

here

news_date Defines news date

(YYYY-MM-DD)

DATE() The date where

news held recorded

here

2.1.3 Non-functional Requirements

Attributes Description

Reliability Mean Time Between Failures: 30 days.

 Mean Time To Repair: 1 hour.

 Accuracy: 100%.

Availability This system has to be available 24 hours / days. Every

week typically on Monday morning around 3am to 5am,

the system will be shut down for maintenance and

updating

 The system will recover as soon as possible while it has

problem

 Approximate bugs recover for critical – 2 days.

 Approximate bugs recover for half-critical – 1

day.

 Approximate bugs recover for non-critical – 4

hour.

Security All network transactions that involve financial

information or personally identifiable information shall

be encrypted.

 Any errors in purchasing transaction can be claimed only

if users have proof regarding the transaction.

 The system shall not allow confidential data stored in the

Online Music System | 2013 – Version 2 86

Attributes Description

system’s database to be accessed, whether directly or

indirectly.

Maintainability This system shall permit the swapping and upgrade of

hardware without down time.

 This system shall permit the upgrade of software without

down time.

 The Mean Time To Fix shall not exceed one person day.

 The user will be able to reset all options and all stored

user variables to default settings.

Portability This system compatible with Window operating system

such as Window XP, Window Vista and Window 7. In

addition, this system not compatible with Macintosh

operating system (Mac OS)

 This system can comply with personal computer

(Desktop and Laptop) and not comply with mobile

technology

 This system only can only be running on the Mozilla

Firefox, Opera, Google Chrome and Internet Explorer

browser

Table 2.1.3-1: Software System Attributes

Online Music System | 2013 – Version 2 87

2.2 Preliminary Design

2.2.1 System Overview

Three-tier architecture is a client-server architecture in which the functional

process logic, data access, computer data storage and user interface are developed and

maintained as independent modules on separate platforms. At first glance, the three tiers

may seem similar to the model-view-controller (MVC) concept; however, topologically

they are different. A fundamental rule in three tier architecture is the client tier never

communicates directly with the data tier; in a three-tier model all communication must

pass through the middle tier. Conceptually the three-tier architecture is linear. However,

the MVC architecture is triangular: the view sends updates to the controller, the

controller updates the model, and the view gets updated directly from the model

Figure 2.2.1-1: Three Tier Architecture

Online Music System | 2013 – Version 2 88

2.2.2 System Architecture

This paragraph identifies the internal organizational structure of the system. The

relationship among system subsystem will be described.

i) Static Organization

In this section, it’ll describe all the packages available in the system. There

are five packages in this system which is Admin, Unregistered User, Global

User, Registered User and Musician.

Admin
Unregistered

User
Musician

Registered
User

Global User

Figure 2.2.2-1: Online Music Store Packages

This section describes the details description for each subsystem/package

1. Admin

Admin package determine the system admin function such as control the

process, manage and its interface stored in one package. This package

consists of the following classes/unit.

a) addaccount_page class

b) addaccount_process class

c) deleteaccount_page class

d) deleteaccount_process class

e) viewuser_page class

f) viewuser_process class

g) viewaccount_page class

h) viewaccount_process class

Online Music System | 2013 – Version 2 89

i) viewuseractivity_page class

j) viewuseractivity_process class

2. Unregistered User

Unregistered User package determine the unregistered user function such

as control the process, manage and its interface stored in one package.

This package consists of the following classes/unit.

a) register_page class

b) register_process class

3. Global User

Registered User package determine the global user function such as

control the process, manage and its interface stored in one package. To

be fully understand about global user package, we can say with the

generalization of the users into two parts which is Registered User and

Musician, somehow they have several function that shared together. So

with the global user package classifying, the function do not have to

repeat, just call it from this package. This package consists of the

following classes/unit.

a) login_page class

b) login_ process class

c) logout_process class

d) messaging_page class

e) messaging_process class

f) forum_page class

g) forum_process class

h) upload_page class

i) upload_process class

Online Music System | 2013 – Version 2 90

4. Registered User

Registered User package determine the registered user function such as

control the process, manage and its interface stored in one package. This

package consists of the following classes/unit.

a) addsong_process class

b) removesong_process class

c) rating_process class

d) comment_process class

e) download_process class

f) songstreaming_process class

g) purchasing_page class

h) purchasing_process class

5. Musician

Musician package determine the musician function such as control the

process, manage and its interface stored in one package. This package

consists of the following classes/unit.

a) newsevents_page class

b) newsevents_process class

Online Music System | 2013 – Version 2 91

ii) External Interfaces

Login Main Page

Global User
Unregistered

User

Admin

Registered
User

Musician

Figure 2.2.2-2: External Interfaces

2.2.3 System States and Modes

This section describes states diagrams for Online Music Store (OMS). Figure below

show the state diagram for Unregistered User subsystem.

Register

register user

Not register

user not register

Login

authenticate user

Main page

home page of the system

Figure 2.2.3-1: Unregistered User Subsystem

Online Music System | 2013 – Version 2 92

Figure below show the state diagram for Admin subsystem.

Login

authenticate admin

Add account

add new account

Delete account

delete account from database

User list

View registered user list

View user account

View account from user list

View user activities

View activities from user list

Figure 2.2.3-2: Admin Subsystem

Online Music System | 2013 – Version 2 93

Figure below show the state diagram for Global User combined with Registered User

and Musician subsystem.

Login

authenticate user

Logout

session end

Rating

rate user

Comment

comment user

Messaging

private message

Forum

join forum

Add song

add song to profile

Download

download items

Song streaming

stream a song

Purchase

purchase items

News & Events

Manage news and events

Registered
User

Musician

Figure 2.2.3-3: Combined Global User Subsystem

Online Music System | 2013 – Version 2 94

2.3 System Design Description

Online Music Store (OMS) consists of three modules which are Users,

Musician/Artists and Admin. Currently, OMS not using any framework, and

resulting from this, the classes of the three modules combine together in one

subsystem. Categorization of the modules is the best way to elaborate this

project`s system design descriptions.

2.3.1 Global User Subsystem

Figure below shows the classes which are associated with Global User

Subsystem via class diagram.

Menora_Music

+register_user()

-username
-password
-firstname
-lastname
-email
-birthdate
-gender

user_signup

+register_mm()

-username
-password
-email
-artist_name
-country

mm_signup

+login()
+get_type()

-username
-password
-type

login

Figure 2.3.1-1: Global Users Subsystem Class Diagram

2.3.2 Users Module

Figure below shows the classes which are associated with Users Module via

class diagram.

Online Music System | 2013 – Version 2 95

Menora_Music

+news_feed()
+library()
+recomendation_artist()
+recomendation_event()

-session_username
-member_id
-album_id
-track_id
-event_id
-count_id

home

+photo_gallery()
+shout_box()
+postcomment()
+compose_msg()
+recent_activities()
+chat()
+rate()

-session_username
-member_id
-photo_id
-get_userid
-chat_id
-msg_id
-rate_id
-post_id
-postcomment_id

profile

+add_photo()
+comment()

-session_username
-photo_id
-photo_comment_id

photos

+photoscomment()

-session_username
-member_id
-get_userid
-photoscomment_id

photos_comment

+list_friends()
+friends_request()
+search()

-session_username
-member_id
-get_userid
-friends_id

friends

+send_msg()
+inbox()
+sent()
+draft()
+trash()
+reply_msg()

-session_username
-member_id
-get_userid
-msg_id
-status
-content

mail

+update()
+upload_picture()

-session_username

settings

+add_friends()
+sent_msg()
+shout_box()
+postcomment()
+list_friends()
+list_photos()
+rate()

-session_username
-get_userid
-msg_id
-photo_id
-friends_id
-rate_id
-post_id
-postcomment_id

userprofile

+comment()

-session_username
-get_userid
-photo_id
-photo_comment_id

friends_photos

+photoscomment()

-session_username
-get_userid
-photoscomment_id

friends_photos_comment

+list_friends()
+search()

-session_username
-get_userid
-friends_id

friends_friends

 2.3.2-1: Users Module Class Diagram

2.3.3 Musician/Artists Module

Figure below shows the classes which are associated with Musician/Artists

Module via class diagram.

Online Music System | 2013 – Version 2 96

Menora_Music

+add_photo()
+comment()

-session_username
-photo_id
-photo_comment_id

mm_photos

+photoscomment()

-session_username
-member_id
-get_userid
-photoscomment_id

mm_photos_comment

+list_friends()
+friends_request()
+search()

-session_username
-member_id
-get_userid
-friends_id

friends

+update()
+upload_picture()

-session_username

mm_info

+random_tracks()
+shout_box()
+postcomment()
+recent_activities()
+rate()
+count()

-session_username
-member_id
-album_id
-track_id
-event_id
-count_id
-get_userid
-rate_id
-post_id
-postcomment_id

mm_profile

+add_album()
+count()

-session_username
-album_id
-count_id

mm_album

+add_tracks()
+count()

-session_username
-album_id
-track_id
-count_id

mm_tracks

+add_event()

-session_username
-event_id

mm_events

+list_event()

-session_username
-event_id
-eventcomment_id

mm_events_view

+eventcomment()

-session_username
-event_id
-eventcomment_id
-get_userid

mm_events_full

+random_tracks()
+shout_box()
+postcomment()
+recent_activities()
+rate()
+count()

-get_userid
-album_id
-track_id
-event_id
-count_id
-rate_id
-post_id
-postcomment_id

mm_userprofile

+count()

-album_id
-count_id

mm_friends_album

+count()

-album_id
-track_id
-count_id

mm_friends_tracks

+comment()

-photo_id
-photo_comment_id

mm_friends_photos

+photoscomment()

-get_userid
-photoscomment_id

mm_friends_photos_comment

+list_event()

-event_id
-eventcomment_id

mm_friends_events_view

+eventcomment()

-event_id
-eventcomment_id
-get_userid

mm_friends_events_full

-get_userid

mm_friends_info

Figure 2.3.3-1: Musician/Artists Module Class Diagram

2.3.4 Admin Module

Figure below shows the classes which are associated with Admin Module via

class diagram.

Online Music System | 2013 – Version 2 97

Menora_Music

+approved_user()

-member_id
-type
-conformation

memberlist

+add_new_user()
+update_user()
+delete_user()
+view()

-member_id
-type

user

+add_new_user()
+update_user()
+delete_user()
+view()

-member_id
-type

artist

-get_userid
-count_id

view

+conform()
+decline()
+remove()

-member_id
-type
-conformation

userlist

+conform()
+decline()
+remove()

-member_id
-type
-conformation

artistlist

Figure 2.3.4-1: Admin Module Class Diagram

2.4 Detailed Design

This section divided into the following paragraphs and subparagraphs to describe

the detailed design.

2.4.1 Global User Subsystem

Figure below shows global user subsystem with its relationship among the other

subsystem classes.

Online Music System | 2013 – Version 2 98

Menora_Music

+register_user()

-username
-password
-firstname
-lastname
-email
-birthdate
-gender

user_signup

+register_mm()

-username
-password
-email
-artist_name
-country

mm_signup

+login()
+get_type()

-username
-password
-type

login

1

1

1
1

Figure 2.4.1-1: Global User Subsystem Relationship

 Global User Subsystem Class

Below is the details explanation about the classes available in the Global User

subsystem.

i) user_signup Design

+register_user()

-username
-password
-firstname
-lastname
-email
-birthdate
-gender

user_signup

Figure 2.4.1-2: user_signup Class

Online Music System | 2013 – Version 2 99

a) Input/Output Data Elements

Input: username, password, firstname, lastname, email, birthdate, gender

Output: User registered

b) Details

Class Type : View and Controller Class

Responsibility : To add a new account into the database so they can login into

the system.

Attributes : username : Varchar

: password : Varchar

: firstname : Varchar

: lastname : Varchar

: email : Varchar

: birthdate : Varchar

: gender : Varchar

Methods : register_user() : Insert the input into the

database

Table 2.4.1-1: user_signup Details

Online Music System | 2013 – Version 2 100

c) Algorithm

Method: register_user()

BEGIN

 Get input from button ($_POST)

 Set type = user for categorization

 Check if username if available

 If username not available

 Then insert the data into the database

END

ii) login Design

+login()
+get_type()

-username
-password
-type

login

Figure 2.4.1-3: login Class

a) Input/Output Data Elements

Input: username, password, type

Output: User enter the system

b) Details

Class Type : View and Controller Class

Responsibility : Select the requested input user from database and if available

the user can enter the system

Attributes : username : Varchar

Online Music System | 2013 – Version 2 101

: password : Varchar

: type : Varchar

Methods : login() : Select the database with

requested input

: get_type() : Get the requested type

Table 2.4.1-2: login Details

c) Algorithm

Method: login()

BEGIN

 Get input from button ($_POST)

 If type is equal to User (get_type())

 Select the requested input then direct user to User Homepage

 If type is equal to Artist (get_type())

 Select the requested input then direct user to Artist Homepage

 If type is equal to Admin (get_type())

 Select the requested input then direct user to Admin Homepage

END

iii) mm_signup Design

+register_mm()

-username
-password
-email
-artist_name
-country

mm_signup

Figure 2.4.1-4: mm_signup Class

Online Music System | 2013 – Version 2 102

a) Input/Output Data Elements

Input: username, password, email, artist_name, country

Output: User registered

b) Details

Class Type : View and Controller Class

Responsibility : To add a new account into the database so they can login into

the system.

Attributes : username : Varchar

: password : Varchar

: email : Varchar

: artist_name : Varchar

: country : Varchar

Methods : register_mm() : Insert the input into the

database

Table 2.4.1-3: mm_signup Details

c) Algorithm

Method: register_mm()

BEGIN

 Get input from button ($_POST)

 Set type = user for categorization

 Check if username if available

 If username not available

 Then insert the data into the database

END

Online Music System | 2013 – Version 2 103

2.4.2 Users Module

Figure below shows users module with its relationship among the other

subsystem classes.

Menora_Music

+news_feed()
+library()
+recomendation_artist()
+recomendation_event()

-session_username
-member_id
-album_id
-track_id
-event_id
-count_id

home

+photo_gallery()
+shout_box()
+postcomment()
+compose_msg()
+recent_activities()
+chat()
+rate()

-session_username
-member_id
-photo_id
-get_userid
-chat_id
-msg_id
-rate_id
-post_id
-postcomment_id

profile

+add_photo()
+comment()

-session_username
-photo_id
-photo_comment_id

photos

+photoscomment()

-session_username
-member_id
-get_userid
-photoscomment_id

photos_comment

+list_friends()
+friends_request()
+search()

-session_username
-member_id
-get_userid
-friends_id

friends

+send_msg()
+inbox()
+sent()
+draft()
+trash()
+reply_msg()

-session_username
-member_id
-get_userid
-msg_id
-status
-content

mail
+update()
+upload_picture()

-session_username

settings

+add_friends()
+sent_msg()
+shout_box()
+postcomment()
+list_friends()
+list_photos()
+rate()

-session_username
-get_userid
-msg_id
-photo_id
-friends_id
-rate_id
-post_id
-postcomment_id

userprofile

+comment()

-session_username
-get_userid
-photo_id
-photo_comment_id

friends_photos

+photoscomment()

-session_username
-get_userid
-photoscomment_id

friends_photos_comment

+list_friends()
+search()

-session_username
-get_userid
-friends_id

friends_friends

1

1

1

1

1

1

1

1..*

1

1
1

1

1

1

1

1

1
1

1

1

Figure 2.4.2-1: Users Module Relationship

Online Music System | 2013 – Version 2 104

 Users Module Class

Below is the details explanation about the classes available in the Users Module.

i) home Design

+news_feed()
+library()
+recomendation_artist()
+recomendation_event()

-session_username
-member_id
-album_id
-track_id
-event_id
-count_id

home

Figure 2.4.2-2: home Class

a) Input/Output Data Elements

Input: session_username, member_id, album_id, track_id, event_id, count_id

Output: N/A

b) Details

Class Type : View Class

Responsibility : The homepage of the register user (type = User) after succeed

with login.

Attributes : session_username : Varchar

: member_id : Integer

: album_id : Integer

: track_id : Integer

Online Music System | 2013 – Version 2 105

: event_id : Integer

: count_id : Integer

Methods : news_feed() : View the most update

activities from the artists

: library() : Total views and tracks played

of the session user

: recommended_artist() : View the random list of artists

available in the system

: recommended_event() : View the events sorted by

upcoming date

Table 2.4.2-1: home Details

c) Algorithm

Method: news_feed ()

BEGIN

 Get member_id, album_id, track_id and event_id from database

 Display the result

END

Method: library ()

BEGIN

 Get count_id from database

 Display the result

END

Online Music System | 2013 – Version 2 106

Method: recommended_artist ()

BEGIN

 Get member_id which type = Artist from database

 Display the result

END

Method: recommended_event ()

BEGIN

 Get event_id from database sort by date descending (upcoming date)

 Display the result

END

ii) profile Design

+photo_gallery()
+shout_box()
+postcomment()
+compose_msg()
+recent_activities()
+chat()
+rate()

-session_username
-member_id
-photo_id
-get_userid
-chat_id
-msg_id
-rate_id
-post_id
-postcomment_id

profile

Figure 2.4.2-3: profile Class

a) Input/Output Data Elements

Input: session_username, member_id, photo_id, get_userid, chat_id, msg_id,

rate_id, post_id, postcomment_id

Online Music System | 2013 – Version 2 107

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : This page contains the profile of the user include quick button to

compose message, random view of the photos uploaded, shout

where interaction medium are, and list of activities that`s going

on in the system

Attributes : session_username : Varchar

: member_id : Integer

: photo_id : Integer

: get_userid : Integer

: chat_id : Integer

: msg_id : Integer

 : rate_id : Integer

 : post_id : Integer

 : postcomment_id : Integer

Methods : photo_gallery() : Random uploaded photo that

can be view on the page

: shout_box() : Enables user to post their

comment (interaction

medium)

: postcomment() : Enables user to post the

comment under the posted

comment

Online Music System | 2013 – Version 2 108

: compose_msg() : Quick link to compose

message to a friends

: recent_activities() : View the activities that’s

going on in the system

: chat() : Enables online user (same

session) to chat among them

: rate() : Like and dislike button

function that placed below the

comment`s post

Table 2.4.2-2: profile Details

c) Algorithm

Method: photo_gallery ()

BEGIN

 Get photo_id from database where uploaded by session_username

 Display the result with limitation being set to 4 (4 random photos only)

END

Method: shout_box ()

BEGIN

 Get session_username from database

 View post if session_username posted something on own wall

 Get userid and friend_id from database

 If userid is friends with session_username

 Display his post

END

Online Music System | 2013 – Version 2 109

Method: postcomment ()

BEGIN

 Get member_id and userid from the database

 Check friends with session_username

 If friends then allow him to post a comment

 Display the comment below the posted comment

END

Method: compose_msg ()

BEGIN

 Select friends list

 Type content and send

 Send msg_id to database to save the id

 Message send is success

END

Method: recent_activities ()

BEGIN

 Get userid and updated content

 Insert the updated items into database

 Display

END

Method: rate ()

BEGIN

 Select post_id to be rate

 Click on the rate button to rate (like or dislike)

 Insert the result into database

 Display the inserted result with total count of rate

END

Online Music System | 2013 – Version 2 110

iii) photos Design

+add_photo()
+comment()

-session_username
-photo_id
-photo_comment_id

photos

Figure 2.4.2-4: photos Class

a) Input/Output Data Elements

Input: session_username, photo_id, photo_comment_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : Photo management page that enables user to upload the image

types and organize the uploaded image

Attributes : session_username : Varchar

: photo_id : Integer

: photo_comment_id : Integer

Methods : add_photo() : Add a photo into database

Table 2.4.2-3: photos Details

Online Music System | 2013 – Version 2 111

c) Algorithm

Method: add_photo ()

BEGIN

 Select a photo to be uploads with the name of the photo

 Insert chosen photo into database

 Get photo_id to display the result

 Get photo_comment_id to display total comments

END

iv) photos_comment Design

+photoscomment()

-session_username
-member_id
-get_userid
-photoscomment_id

photos_comment

Figure 2.4.2-5: photos_comment Class

a) Input/Output Data Elements

Input: session_username, member_id, get_userid, photo_comment_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : Photo comment page that enables user to post a comment

regarding the photo and received the comment from others

Attributes : session_username : Varchar

Online Music System | 2013 – Version 2 112

: member_id : Integer

: get_userid : Integer

: photo_comment_id : Integer

Methods : photoscomment() : Control the function of the

photo comment including post

and received comment

Table 2.4.2-4: photos_comment Details

c) Algorithm

Method: photoscomment ()

BEGIN

 Post comment on the available text box

 Insert content into database

 Select userid that comment on the photo too

 Get photo_comment_id to display total comments

END

v) friends Design

+list_friends()
+friends_request()
+search()

-session_username
-member_id
-get_userid
-friends_id

friends

Figure 2.4.2-6: friends Class

Online Music System | 2013 – Version 2 113

a) Input/Output Data Elements

Input: session_username, member_id, get_userid, friends_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : User`s friend management pages include the list of the user`s

friends, friends request and the function to accept or delete the

friends request

Attributes : session_username : Varchar

: member_id : Integer

: get_userid : Integer

: friends_id : Integer

Methods : listfriends () : List of the user`s friends

: friends_request() : Enables the user to perform a

function on friends request

whether to accept it or decline

: search() : Search function for the friends

who already friended with the

user

Table 2.4.2-5: friends Details

Online Music System | 2013 – Version 2 114

c) Algorithm

Method: listfriends ()

BEGIN

 Select friends_id where friends_id is friend with session_username

 Get member_id from database and display the result

END

Method: friends_request ()

BEGIN

 Select friends_id where friends_id is requested friend with session_username

 Perform action

 If action = accept then add the friends_id in the database

 Else do nothing

 Get friends_id and display the result

END

Method: search ()

BEGIN

 Enter a character

 If character = member username then display the result

END

vi) mail Design

+send_msg()
+inbox()
+sent()
+draft()
+trash()
+reply_msg()

-session_username
-member_id
-get_userid
-msg_id
-status
-content

mail

Online Music System | 2013 – Version 2 115

Figure 2.4.2-7: mail Class

a) Input/Output Data Elements

Input: session_username, member_id, get_userid, msg_id, status, content

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : Mail page enables user to send mail, save and delete the mail

whether it was received from others or its own sent mail

Attributes : session_username : Varchar

: member_id : Integer

: get_userid : Integer

: msg_id : Integer

 : status : Varchar

 : content : Text

Methods : send_msg() : Send the message to chosen

friends

: inbox() : Control the page that received

message from others

: sent() : Control the page that store the

sent message

Online Music System | 2013 – Version 2 116

: draft() : Control the page that store the

message that being save by

user

: trash() : Control the page that store the

deleted message that perform

by the user

: reply_msg() : Enables user to reply message

Table 2.4.2-6: mail Details

c) Algorithm

Method: mail ()

BEGIN

 Select friends_id to send message

 Call send_msg()

 Insert sent message into database

 Call sent()

 Display sent message into sent()

 If perfom an action to the message in the sent()

 If perform = save then status = draft (call draft())

 If perform = delete then status = trash (call trash())

 Get userid and message_id where userid sent message to session_username

 Display content and call inbox()

 If reply = yes then call reply_msg()

END

vii) settings Design

+update()
+upload_picture()

-session_username

settings

Online Music System | 2013 – Version 2 117

Figure 2.4.2-8: settings Class

a) Input/Output Data Elements

Input: session_username

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : The setting page to let user to update his profile

Attributes : session_username : Varchar

Methods : update() : Update the profile

: upload_picture() : Upload the default picture

Table 2.4.2-7: settings Details

c) Algorithm

Method: update ()

BEGIN

 Get input from button posted

 Update database and set the value = input

 Display updated result

END

Method: upload_picture ()

Online Music System | 2013 – Version 2 118

BEGIN

 Get session_username and current photo

 Update database and set the photo = latest photo

 Display updated result

END

viii) userprofile Design

+add_friends()
+sent_msg()
+shout_box()
+postcomment()
+list_friends()
+list_photos()
+rate()

-session_username
-get_userid
-msg_id
-photo_id
-friends_id
-rate_id
-post_id
-postcomment_id

userprofile

Figure 2.4.2-9: userprofile Class

a) Input/Output Data Elements

Input: session_username, get_userid, photo_id , friends_id, rate_id, post_id,

postcomment_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : Userprofile page act as a view pages for the not login user.

Example, when a login user wants to view others page including

Online Music System | 2013 – Version 2 119

his friends, this page will come out. Several functionalities

implement here such as add to friend function, send message,

shout box, list of user`s friends and random view of user`s

photos

Attributes : session_username : Varchar

: get_userid : Integer

: photo_id : Integer

: friends_id : Integer

: rate_id : Integer

 : post_id : Integer

 : postcomment_id : Integer

Methods : add_friends() : Function for adding a user to

the list of friends

: send_msg() : A link to compose message to

the user

: shout_box() : Enables user to post their

comment (interaction

medium)

: postcomment() : Enables user to post the

comment under the posted

comment

: list_friends() : Display a user`s list of friends

Online Music System | 2013 – Version 2 120

: list_photos() Display a user`s uploaded of

friends with random

displaying

: rate() : Like and dislike button

function that placed below the

comment`s post

Table 2.4.2-8: userprofile Details

c) Algorithm

Method: add_friends ()

BEGIN

 Get userid from database where userid is no friend with session_username

 If userid = friend then the add to friend button will disappear

 If userid != friend then get userid and display the add to friend button appear

 Insert userid in the friends table

 Get friends_id and display friends list

END

Method: send_msg ()

BEGIN

 Select friends_id

 Type content and send

 Send friends_id to database

 Get msg_id

 Message send is success

END

Method: shout_box ()

BEGIN

 Get session_username from database

 View post if session_username posted something on own wall

Online Music System | 2013 – Version 2 121

 Get userid and friend_id from database

 If userid is friends with session_username

 Display his post

END

Method: postcomment ()

BEGIN

 Get member_id and userid from the database

 Check friends with session_username

 If friends then allow him to post a comment

 Display the comment below the posted comment

END

Method: list_photos()

BEGIN

 Get photo_id from database where uploaded by session_username

 Display the result with limitation being set to 4 (4 random photos only)

END

Method: rate ()

BEGIN

 Select post_id to be rate

 Click on the rate button to rate (like or dislike)

 Insert the result into database

 Display the inserted result with total count of rate

END

Online Music System | 2013 – Version 2 122

ix) friends_photos, friends_photos_comment and friends_friends Design

+comment()

-session_username
-get_userid
-photo_id
-photo_comment_id

friends_photos

+photoscomment()

-session_username
-get_userid
-photoscomment_id

friends_photos_comment

+list_friends()
+search()

-session_username
-get_userid
-friends_id

friends_friends

Figure 2.2-3: friends_photos, friends_photos_comment and friends_friends Class

a) Input/Output Data Elements

For these three classes, their input and output attriburte same as above design.

1. friends_photos (add get_userid) = photos

2. friends_photos_comment = photos_comment (exclude member_id)

3. friends_friends = friends (exclude member_id)

b) Details

Detail of these three classes same as above class.

Class type: View class

Responsibility: These classes are used for viewing the profile. So the details of

these classes are the same from its controller class which is all defined in the

above.

c) Algorithm

Method of these three classes same as above class.

Online Music System | 2013 – Version 2 123

2.4.3 Musician/Artists Module

Figure below shows musician/artists module with its relationship among the

other subsystem classes.

Menora_Music

+add_photo()
+comment()

-session_username
-photo_id
-photo_comment_id

mm_photos

+photoscomment()

-session_username
-member_id
-get_userid
-photoscomment_id

mm_photos_comment

+update()
+upload_picture()

-session_username

mm_info

+random_tracks()
+shout_box()
+postcomment()
+recent_activities()
+rate()
+count()

-session_username
-member_id
-album_id
-track_id
-event_id
-count_id
-get_userid
-rate_id
-post_id
-postcomment_id

mm_profile

+add_album()
+count()

-session_username
-album_id
-count_id

mm_album

+add_tracks()
+count()

-session_username
-album_id
-track_id
-count_id

mm_tracks

+add_event()

-session_username
-event_id

mm_events

+list_event()

-session_username
-event_id
-eventcomment_id

mm_events_view

+eventcomment()

-session_username
-event_id
-eventcomment_id
-get_userid

mm_events_full

+random_tracks()
+shout_box()
+postcomment()
+recent_activities()
+rate()
+count()

-get_userid
-album_id
-track_id
-event_id
-count_id
-rate_id
-post_id
-postcomment_id

mm_userprofile
+count()

-album_id
-count_id

mm_friends_album

+count()

-album_id
-track_id
-count_id

mm_friends_tracks

+comment()

-photo_id
-photo_comment_id

mm_friends_photos

+photoscomment()

-get_userid
-photoscomment_id

mm_friends_photos_comment

+list_event()

-event_id
-eventcomment_id

mm_friends_events_view

+eventcomment()

-event_id
-eventcomment_id
-get_userid

mm_friends_events_full

-get_userid

mm_friends_info

1

0..*

1

0..*

0..1

0..*
0..1

0..*

1

0..* 0..1 0..*

0..1

0..*

1

0..1

1

1

1

0..1

1

0..*

0..1

0..*

1

0..* 0..1

0..*

1

0..* 0..1

0..*

Figure 2.4.3-1: Musician/Artists Module Relationship

Online Music System | 2013 – Version 2 124

 Musician/Artists Module Class

Below is the details explanation about the classes available in the Musician/Artists

Module.

i) mm_profile Design

+random_tracks()
+shout_box()
+postcomment()
+recent_activities()
+rate()
+count()

-session_username
-member_id
-album_id
-track_id
-event_id
-count_id
-get_userid
-rate_id
-post_id
-postcomment_id

mm_profile

Figure 2.4.3-2: mm_profile Class

a) Input/Output Data Elements

Input: session_username, member_id, album_id, track_id, count_id, get_userid,

rate_id, post_id, postcomment_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : This pages act as a home page to the user type=’Artist’. It

enables the artists to post/received comment via shout box,

organize their content such as biography and see the random

Online Music System | 2013 – Version 2 125

display of the uploaded albums and events.

Attributes : session_username : Varchar

: member_id : Integer

: album_id : Integer

: track_id : Integer

: event_id : Integer

 : count_id : Integer

 : get_userid : Integer

 : rate_id : Integer

 : post_id : Integer

 : postcomment_id : Integer

Methods : random_tracks() : Generate the random tracks

from the uploaded tracks

: shout_box() : Enables user to post their

comment (interaction

medium)

: postcomment() : Enables user to post the

comment under the posted

comment

: recent_activities() : View the activities that’s

going on in the system

: rate() : Like and dislike button

function that placed below the

Online Music System | 2013 – Version 2 126

comment`s post

 : count() : Function to calculate how

many user`s pages visited and

total play of the user`s tracks

Table 2.4.3-1: mm_profile Details

c) Algorithm

Method: random_tracks ()

BEGIN

 Get album_id, tracks_id from the database

 Compare album_id and tracks_id with session_username

 If album_id && tracks_id associated with session_username

 Display random tracks

END

Method: shout_box ()

BEGIN

 Get session_username from database

 View post if session_username posted something on own wall

 Get userid and friend_id from database

 If userid is friends with session_username

 Display his post

END

Method: postcomment ()

BEGIN

 Get member_id and userid from the database

 Check friends with session_username

 If friends then allow him to post a comment

 Display the comment below the posted comment

Online Music System | 2013 – Version 2 127

END

Method: recent_activities ()

BEGIN

 Get userid and updated content

 Insert the updated items into database

 Display

END

Method: rate ()

BEGIN

 Select post_id to be rate

 Click on the rate button to rate (like or dislike)

 Insert the result into database

 Display the inserted result with total count of rate

END

Method: count ()

BEGIN

 Select rate_id, member_id from the database

 Compare rate_id with member_id if those two associated

 If associated then get the rate_id with totalcount

 Else then do nothing

END

ii) mm_album Design

+add_album()
+count()

-session_username
-album_id
-count_id

mm_album

Figure 2.4.3-3: mm_album Class

Online Music System | 2013 – Version 2 128

a) Input/Output Data Elements

Input: session_username, album_id, count_id

Output: New album add

b) Details

Class Type : View and Controller Class

Responsibility : This pages enable user to add the new album and view the list of

the added albums

Attributes : session_username : Varchar

: album_id : Integer

: count_id : Integer

Methods : add_album () : Add a new album with picture

: count() : Function for counting the total

played of the tracks in the

each album

Table 2.4.3-2: mm_album Details

c) Algorithm

Method: add_album ()

BEGIN

 Click on the “Add album” link and insert the particular form

 Get input from inserted and save it into the database

 Retrieve album_id from database and display the list of uploaded album

END

Online Music System | 2013 – Version 2 129

iii) mm_tracks Design

+add_tracks()
+count()

-session_username
-album_id
-track_id
-count_id

mm_tracks

Figure 2.4.3-4: mm_tracks Class

a) Input/Output Data Elements

Input: session_username, album_id, track_id, count_id

Output: New track add

b) Details

Class Type : View and Controller Class

Responsibility : This pages enable user to add the new track in each of the

uploaded album

Attributes : session_username : Varchar

: album_id : Integer

: track_id : Integer

: count_id : Integer

Methods : add_tracks () : Add a new tracks

: count() : Function for counting the total

played of the tracks in the

each album

Table 2.4.3-3: mm_tracks Details

Online Music System | 2013 – Version 2 130

c) Algorithm

Method: add_tracks ()

BEGIN

 Click on the “Add tracks” link and insert the particular form

 Get input from inserted and save it into the database

Retrieve tracks_id and album_id from database and display the list of uploaded

tracks

END

iv) mm_events Design

+add_event()

-session_username
-event_id

mm_events

Figure 2.4.3-5: mm_events Class

a) Input/Output Data Elements

Input: session_username event_id

Output: New event add

b) Details

Class Type : View and Controller Class

Responsibility : This pages enable user to add the new event

Attributes : session_username : Varchar

: album_id : Integer

Online Music System | 2013 – Version 2 131

Methods : add_event () : Add a new event

Table 2.4.3-4: mm_events Details

c) Algorithm

Method: add_event ()

BEGIN

 Click on the “Add events” link and insert the particular form

 Get input from inserted and save it into the database

 Retrieve event_id from database and display the list of uploaded events

END

v) mm_events_view Design

+list_event()

-session_username
-event_id
-eventcomment_id

mm_events_view

Figure 2.4.3-6: mm_events_view Class

a) Input/Output Data Elements

Input: session_username, event_id, eventcomment_id

Output: N/A

b) Details

Class Type : View and Controller Class

Online Music System | 2013 – Version 2 132

Responsibility : This page show the list of the created event

Attributes : session_username : Varchar

: event_id : Integer

: eventcomment_id : Integer

Methods : list_event () : Display the list of the created

events

Table 2.4.3-5: mm_events_view Details

c) Algorithm

Method: list_event ()

BEGIN

 Get event_id

 If event_id associated with session_username

Then display the list of events with link to the event`s comment

(eventcomment_id)

END

vi) mm_events_full Design

+eventcomment()

-session_username
-event_id
-eventcomment_id
-get_userid

mm_events_full

Figure 2.4.3-7: mm_events_full Class

Online Music System | 2013 – Version 2 133

a) Input/Output Data Elements

Input: session_username, event_id, eventcomment_id, get_userid

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : This page show the event content and comments when clicked

on the previous page (mm_event_view class)

Attributes : session_username : Varchar

: event_id : Integer

: eventcomment_id : Integer

 : get_userid : Integer

Methods : event_comment () : Display the list of the created

events

Table 2.4.3-6: mm_events_full Details

c) Algorithm

Method: event_comment ()

BEGIN

 Get event_id

 If event_id associated with session_username

 Then get content with get_userid

 If get_userid associated with evencomment_id

 Then display comment

 Else then add new comment and display result

END

Online Music System | 2013 – Version 2 134

vii) mm_photos Design

+add_photo()
+comment()

-session_username
-photo_id
-photo_comment_id

mm_photos

Figure 2.4.3-8: mm_photos Class

a) Input/Output Data Elements

Input: session_username, photo_id, photo_comment_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : Photo management page that enables user to upload the image

types and organize the uploaded image

Attributes : session_username : Varchar

: photo_id : Integer

: photo_comment_id : Integer

Methods : add_photo() : Add a photo into database

Table 2.4.3-7: mm_photos Details

c) Algorithm

Method: add_photo ()

Online Music System | 2013 – Version 2 135

BEGIN

 Select a photo to be uploads with the name of the photo

 Insert chosen photo into database

 Get photo_id to display the result

 Get photo_comment_id to display total comments

END

viii) mm_photos_comment Design

+photoscomment()

-session_username
-member_id
-get_userid
-photoscomment_id

mm_photos_comment

Figure 2.4.3-9: mm_photos_comment Class

a) Input/Output Data Elements

Input: session_username, member_id, get_userid, photo_comment_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : Photo comment page that enables user to post a comment

regarding the photo and received the comment from others

Attributes : session_username : Varchar

: member_id : Integer

: get_userid : Integer

Online Music System | 2013 – Version 2 136

: photo_comment_id : Integer

Methods : photoscomment() : Control the function of the

photo comment including post

and received comment

Table 2.4.3-8: mm_photos_comment Details

c) Algorithm

Method: photoscomment ()

BEGIN

 Post comment on the available text box

 Insert content into database

 Select userid that comment on the photo too

 Get photo_comment_id to display total comments

END

ix) mm_info Design

+update()
+upload_picture()

-session_username

mm_info

Figure 2.4.3-10: mm_info Class

a) Input/Output Data Elements

Input: session_username

Output: N/A

Online Music System | 2013 – Version 2 137

b) Details

Class Type : View and Controller Class

Responsibility : The setting page to let user to update his profile

Attributes : session_username : Varchar

Methods : update() : Update the profile

: upload_picture() : Upload the default picture

Table 2.4.3-9: mm_info Details

c) Algorithm

Method: update ()

BEGIN

 Get input from button posted

 Update database and set the value = input

 Display updated result

END

Method: upload_picture ()

BEGIN

 Get session_username and current photo

 Update database and set the photo = latest photo

 Display updated result

END

Online Music System | 2013 – Version 2 138

x) mm_userprofile Design

+random_tracks()
+shout_box()
+postcomment()
+recent_activities()
+rate()
+count()

-get_userid
-album_id
-track_id
-event_id
-count_id
-rate_id
-post_id
-postcomment_id

mm_userprofile

Figure 2.4.3-11: mm_userprofile Class

a) Input/Output Data Elements

Input: get_userid, album_id , track_id, event_id, count_id, rate_id, post_id,

postcomment_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : mm_userprofile page act as a view pages for the not login user.

Example, when a login user wants to view others page including

his friends, this page will come out. Several functionalities

implement here such as info, random tracks display, list of

random album and events, shout box and total viewed page and

played.

Attributes : get_userid : Integer

: album_id : Integer

Online Music System | 2013 – Version 2 139

: track_id : Integer

: event_id : Integer

 : count_id : Integer

 : rate_id : Integer

 : post_id : Integer

 : postcomment_id : Integer

Methods : random_tracks() : Generate the random tracks

from the uploaded tracks

: shout_box() : Enables user to post their

comment (interaction

medium)

: postcomment() : Enables user to post the

comment under the posted

comment

: recent_activities() : View the activities that’s

going on in the system

: rate() : Like and dislike button

function that placed below the

comment`s post

 : count() : Function to calculate how

many user`s pages visited and

total play of the user`s tracks

Table 2.4.3-10: mm_userprofile Details

Online Music System | 2013 – Version 2 140

c) Algorithm

Method: random_tracks ()

BEGIN

 Get album_id, tracks_id from the database

 Compare album_id and tracks_id with session_username

 If album_id && tracks_id associated with session_username

 Display random tracks

END

Method: shout_box ()

BEGIN

 Get session_username from database

 View post if session_username posted something on own wall

 Get userid and friend_id from database

 If userid is friends with session_username

 Display his post

END

Method: postcomment ()

BEGIN

 Get member_id and userid from the database

 Check friends with session_username

 If friends then allow him to post a comment

 Display the comment below the posted comment

END

Method: recent_activities ()

BEGIN

 Get userid and updated content

 Insert the updated items into database

 Display

END

Method: rate ()

Online Music System | 2013 – Version 2 141

BEGIN

 Select post_id to be rate

 Click on the rate button to rate (like or dislike)

 Insert the result into database

 Display the inserted result with total count of rate

END

Method: count ()

BEGIN

 Select rate_id, member_id from the database

 Compare rate_id with member_id if those two associated

 If associated then get the rate_id with totalcount

 Else then do nothing

END

xi) mm_friends_album, mm_friends_tracks, mm_friends_events_view,

mm_friends_events_full, mm_friends_photos, mm_friends_photos_comment

and mm_friends_info Design

+count()

-album_id
-count_id

mm_friends_album

+count()

-album_id
-track_id
-count_id

mm_friends_tracks

+list_event()

-event_id
-eventcomment_id

mm_friends_events_view

+eventcomment()

-event_id
-eventcomment_id
-get_userid

mm_friends_events_full

+comment()

-photo_id
-photo_comment_id

mm_friends_photos

+photoscomment()

-get_userid
-photoscomment_id

mm_friends_photos_comment

-get_userid

mm_friends_info

Figure 2.4.3-12: mm_friends_album, mm_friends_tracks,

mm_friends_events_view, mm_friends_events_full, mm_friends_photos,

mm_friends_photos_comment and mm_friends_info Class

Online Music System | 2013 – Version 2 142

a) Input/Output Data Elements

For these three classes, their input and output attriburte same as above design.

1. mm_friends_album = mm_album (exclude session_username)

2. mm_friends_tracks = mm_tracks (exclude session_username)

3. mm_friends_events_view = mm_event_view (exclude session_username)

4. mm_friends_events_full = mm_events_full (exclude session_username)

5. mm_friends_photos = mm_photos (exclude session_username)

6. mm_friends_photos_comment = mm_photos_comment (exclude

session_username)

7. mm_friends_info (add get_userid) = mm_info (exclude session_username)

b) Details

Detail of these three classes same as above class.

Class type: View class

Responsibility: These classes are used for viewing the profile. So the details of

these classes are the same from its controller class which is all defined in the

above.

c) Algorithm

Method of these three classes same as above class.

2.4.4 Admin Module

Figure below shows admin module with its relationship among the other

subsystem classes.

Online Music System | 2013 – Version 2 143

Menora_Music

+approved_user()

-member_id
-type
-conformation

memberlist

+add_new_user()
+update_user()
+delete_user()
+view()

-member_id
-type

user

+add_new_user()
+update_user()
+delete_user()
+view()

-member_id
-type

artist

-get_userid
-count_id

view

+conform()
+decline()
+remove()

-member_id
-type
-conformation

userlist

+conform()
+decline()
+remove()

-member_id
-type
-conformation

artistlist

1

1

1

1

1

1

1

1 1

1..*

1

1..*

1 1..*

Figure 2.4.4-1: Admin Module Relationship

 Admin Module Class

Below is the details explanation about the classes available in the Admin Module.

i) memberlist Design

+approved_user()

-member_id
-type
-conformation

memberlist

Figure 2.4.4-2: memberlist Class

Online Music System | 2013 – Version 2 144

a) Input/Output Data Elements

Input: member_id, type, conformation

Output: List of the user where comformation = 1 (authorized)

b) Details

Class Type : View and Controller Class

Responsibility : This page display the list of users registered with the system

where the conformation is approved (conformation = 1)

Attributes : member_id : Integer

: type : Varchar

: comformation : Integer

Methods : approve_user() : List of the approved users

Table 2.4.4-1: memberlist Details

c) Algorithm

Method: approve_user ()

BEGIN

 Get member_id, type and comformation from database

 If comformation = 1

 Then display the result

END

Online Music System | 2013 – Version 2 145

ii) userlist Design

+conform()
+decline()
+remove()

-member_id
-type
-conformation

userlist

Figure 2.4.4-3: userlist Class

a) Input/Output Data Elements

Input: member_id, type, conformation

Output: List of the type = user where comformation = 0 (unauthorized)

b) Details

Class Type : View and Controller Class

Responsibility : This page display the list of users whose type = User and

conformation = 0 which is not approved yet by the admin

Attributes : member_id : Integer

: type : Varchar

: comformation : Integer

Methods : conform() : Approve the user

: decline() : Decline the user

Online Music System | 2013 – Version 2 146

: remove() : Remove the user

Table 2.4.4-2: userlist Details

c) Algorithm

Method: comform ()

BEGIN

 Get member_id, type and comformation from database

 If type = User and comformation = 0

 Then display the list of users

 If user action = comform()

 Then set the comformation = 1

END

Method: decline ()

BEGIN

 Get member_id, type and comformation from database

 If type = User and comformation = 0

 Then display the list of users

 If user action = decline()

 Then set the comformation = 0 (do nothing)

END

Method: remove ()

BEGIN

 Get member_id, type and comformation from database

 If type = User and comformation = 0

 Then display the list of users

 If user action = remove()

 Then remove the user from database

END

Online Music System | 2013 – Version 2 147

iii) artistlist Design

+conform()
+decline()
+remove()

-member_id
-type
-conformation

artistlist

Figure 2.4.4-4: artistlist Class

a) Input/Output Data Elements

Input: member_id, type, conformation

Output: List of the type = artist where comformation = 0 (unauthorized)

b) Details

Class Type : View and Controller Class

Responsibility : This page display the list of users whose type = User and

conformation = 0 which is not approved yet by the admin

Attributes : member_id : Integer

: type : Varchar

: comformation : Integer

Methods : conform() : Approve the user

: decline() : Decline the user

Online Music System | 2013 – Version 2 148

: remove() : Remove the user

Table 2.4.4-3: artistlist Details

c) Algorithm

Method: comform ()

BEGIN

 Get member_id, type and comformation from database

 If type = Artist and comformation = 0

 Then display the list of users

 If user action = comform()

 Then set the comformation = 1

END

Method: decline ()

BEGIN

 Get member_id, type and comformation from database

 If type = Artist and comformation = 0

 Then display the list of users

 If user action = decline()

 Then set the comformation = 0 (do nothing)

END

Method: remove ()

BEGIN

 Get member_id, type and comformation from database

 If type = Artist and comformation = 0

 Then display the list of users

 If user action = remove()

 Then remove the user from database

END

Online Music System | 2013 – Version 2 149

iv) user Design

+add_new_user()
+update_user()
+delete_user()
+view()

-member_id
-type

user

Figure 2.4.4-5: user Class

a) Input/Output Data Elements

Input: member_id, type

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : This page enables admin to manage the profile where type =

user

Attributes : member_id : Integer

: type : Varchar

Methods : add_new_user() : Add new user to the system

: update_user() : Update existing user profile

: delete_user() : Delete user from the system

Online Music System | 2013 – Version 2 150

 : view() : View the existing user

Table 2.4.4-4: user Details

c) Algorithm

Method: add_new_user ()

BEGIN

 Click on the add new user button and fill in particular form

 If button = Add

 Then add the particular input into the database

END

Method: update ()

BEGIN

 Select the user wants to update and click on the update button

 Adjust the desire text line to update

 If button = Update

 Then update the user`s profile in database

END

Method: delete_user ()

BEGIN

 Select the user wants to delete and click on the delete button

 If button = Delete

 Then remove the user from database

END

Online Music System | 2013 – Version 2 151

v) artist Design

+add_new_user()
+update_user()
+delete_user()
+view()

-member_id
-type

artist

Figure 2.4.4-6: artist Class

d) Input/Output Data Elements

Input: member_id, type

Output: N/A

a) Details

Class Type : View and Controller Class

Responsibility : This page enables admin to manage the profile where type =

user

Attributes : member_id : Integer

: type : Varchar

Methods : add_new_user() : Add new user to the system

: update_user() : Update existing user profile

: delete_user() : Delete user from the system

Online Music System | 2013 – Version 2 152

 : view() : View the existing user

Table 2.4.4-5: artist Details

b) Algorithm

Method: add_new_user ()

BEGIN

 Click on the add new user button and fill in particular form

 If button = Add

 Then add the particular input into the database

END

Method: update ()

BEGIN

 Select the user wants to update and click on the update button

 Adjust the desire text line to update

 If button = Update

 Then update the user`s profile in database

END

Method: delete_user ()

BEGIN

 Select the user wants to delete and click on the delete button

 If button = Delete

 Then remove the user from database

END

Online Music System | 2013 – Version 2 153

2.4.5 Others Subsystem (Navigation Bar)

 Music Class

Below is the details explanation about the Music Class.

i) music Design

+list_genre()

-get_userid
-track_id
-photo_id
-event_id
-genre

music

Figure 2.4.5-1: music Class

a) Input/Output Data Elements

Input: get_userid, track_id, photo_id, event_id, genre

Output: Sorting the artist via its genre (type)

b) Details

Class Type : View Class

Responsibility : This page display the artist via its genre (type)

Attributes : get_userid : Integer

: track_id : Integer

: photo_id : Integer

 : event_id Integer

 : genre Integer

Online Music System | 2013 – Version 2 154

Methods : list_genre () : List of artist via its genre

Table 2.4.5-1: music Details

c) Algorithm

Method: list_genre ()

BEGIN

 Select all of the input from database

 Sort the artist via its type of genre

END

 Event Class

Below is the details explanation about the Event Class.

i) event Design

+list_event()

-get_userid
-event_id
-eventcomment_id

event

Figure 2.4.5-2: event Class

a) Input/Output Data Elements

Input: get_userid, event_id, eventcomment_id

Output: Sorting the events

Online Music System | 2013 – Version 2 155

b) Details

Class Type : View Class

Responsibility : This page display the list of available events

Attributes : get_userid : Integer

: event_id : Integer

: eventcomment_id : Integer

Methods : list_event () : List of available events

Table 2.4.5-2: event Details

c) Algorithm

Method: list_event ()

BEGIN

 Select all of the input from database

 Display the result by sort the list of available events

END

 Forum Class

Below is the details explanation about the Forum Class.

i) forum Design

Online Music System | 2013 – Version 2 156

+add_thread()
+post()

-get_userid
-category_id
-thread_id
-forum_post_id

forum

Figure 2.4.5-3: forum Class

a) Input/Output Data Elements

Input: get_userid, category_id, thread_id, forum_post_id

Output: N/A

b) Details

Class Type : View and Controller Class

Responsibility : This page enables participants to join the forum by creating new

threads on the existing categories. They also can reply to the

available threads via posting a post/comment

Attributes : get_userid : Integer

: category_id : Integer

: thread_id : Integer

 : forum_post_id Integer

Methods : add_thread () : Add a new thread under

selected categories

: post() : Post a comment into selected

threads

Table 2.4.5-3: forum Details

Online Music System | 2013 – Version 2 157

c) Algorithm

Method: add_thread ()

BEGIN

 Click on the add thread button

 Select the categories available and fill in the required blanks

 If button = Add

Then get category_id and insert into the database with the thread created

(thread_id)

END

Method: post ()

BEGIN

 Select threads that want to participate

 Click on the reply to post button

 If button = Reply

Then get category_id,thread_id and insert into the database with the post`s

contents

 Get forum_post_id to display the posted content in the targeted thread

END

Online Music System | 2013 – Version 2 158

2.5 Method and Material

The best methodology for this type of system is Rapid Application Development

which is called as RAD.

2.5.1 Project Methodology

Rapid application development is a software development methodology that

uses minimal planning in favour of rapid prototyping. In rapid application development,

to define user’s requirements and design the final system, structured techniques and

prototyping are expressly used. During the development process, initially the

development of preliminary data models and business process models using structured

techniques will starts. Next, requirements are verified using prototyping, eventually to

refine the data and process models.

Figure 2.5.1-1: Rapid Application Development Methodology

Online Music System | 2013 – Version 2 159

i) Requirements Planning

Combine elements of the system planning and systems analysis phases of the

System Development Life Cycle (SDLC). Users, managers, and IT staff members

discuss and agree on business needs, project scope, constraints, and system

requirements. It ends when the team agrees on the key issues and obtains management

authorization to continue.

In this phase, user requirement are collected in order to plan the development

process of OMS. Several processes had been done in this phase, understanding the

current manual process by interview the selected users and study on existing system.

After collecting data, meeting will be conduct with customer and the user requirement

will sign off before development process start.

ii) User Design

During this phase, all system processes, inputs and outputs will develop into

models and prototypes with involve of users interact with systems analysts. User Design

is a constant cooperative process that allows users to understand, modify, and

eventually approve a working model of the system that meets their needs.

The design phase should be systematic and specific. In this phase, user

requirement will transform into diagram using tools such as IBM Rational Rose and

Microsoft Office Visio. Use case diagram, context diagram, activity diagram and ER

diagram will design as logical description for the process flow of the system.

iii) Construction

Focus on program and application development task similar to the SDLC. In

RAD, users continue to participate and can still suggest changes or improvements as

actual screens or reports are developed. Its tasks are programming and application

development, coding, unit-integration and system testing.

Online Music System | 2013 – Version 2 160

In this phase, the design diagram will transform into detail design which include

coding execution. Construction phase also known as development phase that begin with

make a coding or engine in each module by using selected language and tools. The

language used is PHP because it provides high performance and it is open source.

iv) Cutover

Resemble the final tasks in the SDLC implementation phase; the entire process

is compressed compared with traditional methods. These assist the process of building,

delivering, and placing the new system quicker. The process tasks include data

conversion, full-scale testing, system changeover, user training.

Online Music System | 2013 – Version 2 161

2.6 Testing Plan

2.6.1 Objectives

1) Purpose

This document describes the plan for testing web-based of the Online Music System.

This Test Plan document supports the following objectives:

 Identify the project information and the module that should be tested.

 List the recommended test requirements.

 Recommend and describe the testing strategies to be employed.

 Identify the required resources.

 List the deliverable elements of the test activities.

2) Scope

This Test Plan describes the integration and system tests that will be conducted on this

system following by integration of the subsystems and components. It is assumed that

unit testing already provided thorough black box testing, extensive coverage of source

code, and testing of all module interfaces.

The purpose of assembling the architectural prototype was to test feasibility and

performance of the selected architecture. It is critical that all system and subsystem

interfaces be tested as well as system performance at this early stage. Testing of system

functionality and features will not be conducted on this system.

The interfaces between the following modules will be tested:

a) Users Module

a. Home (home.php)

b. Profile (profile.php)

c. Photos (photos.php)

d. Friends (friends.php)

e. Messages (mail.php)

f. Settings (info.php)

g. User`s view (userprofile.php)

b) Musician/Artists Module

a. Profile (mm_profile.php)

b. Album & tracks (mm_album.php)

c. Photos (mm_photos.php)

Online Music System | 2013 – Version 2 162

d. Events (mm_events.php)

e. Settings (mm_info.php)

f. User`s view (mm_userprofile.php)

The external interfaces to the following devices will be tested:

1. Local PCs

2. Remote PCs

The most critical performance measures to test are:

1. Response time for remote login to the user module (home) and musician/artists

module (profile).

2. Response time to access classes in both of the user and musician/artists module.

3. User response time when system loaded with multiple logged in users or

musician.

4. Musician response time when system loaded with multiple logged in users or

musician.

5. Whole users response time when simultaneous accesses to the system`s

database.

2.6.2 Requirement for Test

The listing below identifies those items (use cases, functional requirements, non-

functional requirements) that have been identified as targets for testing. This list

represents what will be tested.

1) Data and Database Integrity Testing

a. Verify access to OMS Database.

b. Verify simultaneous record read accesses.

c. Verify lockout during OMS Database updates.

d. Verify correct retrieval of update of database data.

2) Function Testing

a. The system shall interface with the OMS Database and shall support the data

format as defined in the use cases. (ER Diagram)

Online Music System | 2013 – Version 2 163

b. The server component of the system shall operate on the Apache Web Server

and shall run under the Window Operating System.

c. The users of the system shall operate on any personal computer with at least

Pentium III Microprocessor or better.

3) Business Cycle Testing

None.

4) User Interface Testing

a. Verify ease of navigation while confront the interface.

b. The system shall be easy-to-use and shall be appropriate for the target users

which are fans and musician.

5) Performance Testing

a. Verify response time to access external both user and musician/artists module.

b. Verify response time to access external OMS others subsystem.

c. Verify response time for remote login.

d. Verify response time for submittal of the registration function.

6) Load Testing

Verify system response when loaded with multiple logged on users.

7) Stress Testing

None.

8) Volume Testing

None.

9) Security and Access Control Testing

Online Music System | 2013 – Version 2 164

a. Verify Logon from a local PC.

b. Verify Logon from a remote PC.

c. Verify Logon security through user name and password.

10) Failover / Recovery Testing

None.

11) Configuration Testing

a. The users of the system shall run on Windows XP or better.

b. The web-based interface of this system shall run in Internet Explorer (IE) 6.0,

Mozilla, Chrome browsers or better.

c. The web-based interface shall be compatible with Adobe Flash Player and

Shockwave Flash environment.

12) Installation Testing

None.

2.6.3 Test Strategy

The Test Strategy presents the recommended approach to the testing of the software

applications. The previous section on Test Requirements described what will be tested

and this section describes how it will be tested.

The main considerations for the test strategy are the techniques to be used and the

criterion for knowing when the testing is completed.

2.6.3.1 Testing Types

Below are the types of testing that will be used to test this system.

Online Music System | 2013 – Version 2 165

1) Data and Database Integrity Testing

The databases should be tested as separate systems. These systems should be tested

without the applications (as the interface to the data). Additional research into the

DBMS needs to be performed to identify the tools/techniques that may exist to support

the testing identified below.

Test Objective: Ensure database access methods and processes function

properly and without data corruption.

Technique: Invoke each database access method and process,

seeding each with valid and invalid data.

 Inspect the database to ensure the data has been

populated as intended, all database events occurred

properly, or review the returned data to ensure that the

correct data was retrieved.

Completion Criteria: All database access methods and processes function as

designed and without any data corruption.

Special Considerations: Testing may require a DBMS development environment

or drivers to enter or modify data directly in the

databases.

 Processes should be invoked manually.

 Small or minimally sized databases (limited number of

records) should be used to increase the visibility of any

non-acceptable events.

Table 2.6.3-1: Data and Database Integrity Testing

2) Function Testing

Testing of the application should focus on any target requirements that can be traced

directly to use cases and business rules. The goals of these tests are to verify proper data

acceptance, processing, and retrieval, and the appropriate implementation of the

business rules. This type of testing is based upon black box techniques, that is, verifying

the application (and its internal processes) by interacting with the application via the

GUI and analysing the output (results). Below is an outline of the testing recommended

for each application:

Online Music System | 2013 – Version 2 166

Test Objective: Ensure proper application navigation, data entry, processing,

and retrieval.

Technique: Execute each use case, use case flow, or function, using

valid and invalid data, to verify the following:

 The expected results occur when valid data is used.

 The appropriate error/warning messages are displayed

when invalid data is used.

 Each business rule is properly applied.

Completion Criteria:

 All planned tests have been executed.

 All identified defects have been addressed.

Table 2.6.3-2: Function Testing

3) Business Cycle Testing

This section is not applicable to test of this system.

4) User Interface Testing

User Interface testing verifies a user’s interaction with the software. The goal of UI

Testing is to ensure that the User Interface provides the user with the appropriate access

and navigation through the functions of the applications. In addition, UI Testing ensures

that the objects within the UI function as expected and conform to corporate or industry

standards.

Test Objective: Verify the following:

 Navigation through the application properly reflects

business functions and requirements, including pages to

pages in browser, and use of access methods (tab keys,

mouse movements, accelerator keys)

 Pages objects and characteristics, such as menus, size,

position, buttons, links and others conform to standards.

Technique: Create/modify tests for each page in browser to verify proper

navigation and object states for each web-based application

and objects.

Completion Criteria: Each pages in browser successfully verified to remain

consistent with benchmark version or within acceptable

Online Music System | 2013 – Version 2 167

standard

Special Considerations: Not all properties for custom and third party objects can be

accessed.

Table 2.6.3-3: User Interface Testing

5) Performance Profiling

Performance testing measures response times, transaction rates, and other time sensitive

requirements. The goal of Performance Testing is to verify and validate the performance

requirements have been achieved. Performance Testing is usually executed several

times, each using a different "background load" on the system. The initial test should be

performed with a "nominal" load, similar to the normal load experienced (or

anticipated) on the target system. A second performance test is run using a peak load.

Additionally, Performance tests can be used to profile and tune a system’s performance

as a function of conditions such as workload or hardware configurations. Transactions

below refer to "logical business transactions." These transactions are defined as specific

functions that an end user of the system is expected to perform using the application,

such as add or modify a given contract.

Test Objective: Validate system response time for designated transactions or

business functions under a the following two conditions:

 normal anticipated volume

 anticipated worse case volume

Technique: Use Test Scripts developed for Business Model Testing

(System Testing).

 Modify data files (to increase the number of transactions)

or modify scripts to increase the number of iterations each

transaction occurs.

 Scripts should be run on one machine (best case to

benchmark single user, single transaction) and be repeated

with multiple clients (virtual or actual, see special

considerations below).

Completion Criteria: Single Transaction/single user: Successful completion of

the test scripts without any failures and within the

expected/required time allocation (per transaction)

 Multiple transactions/multiple users: Successful

completion of the test scripts without any failures and

within acceptable time allocation.

Online Music System | 2013 – Version 2 168

Special considerations: Comprehensive performance testing includes having a

"background" load on the server. There are several

methods that can be used to perform this, including:

o "Drive transactions" directly to the server, usually

in the form of SQL calls.

o Create "virtual" user load to simulate many

(usually several hundred) clients. Remote

Terminal Emulation tools are used to accomplish

this load. This technique can also be used to load

the network with "traffic."

o Use multiple physical clients, each running test

scripts to place a load on the system.

 Performance testing should be performed on a dedicated

machine or at a dedicated time. This permits full control

and accurate measurement.

 The databases used for Performance Testing should be

either actual size, or scaled equally.

Table 2.6.3-4: Performance Testing

6) Load Testing

Load testing measures subjects the system-under-test to varying workloads to evaluate

the system’s ability to continue to function properly under these different workloads.

The goal of load testing is to determine and ensure that the system functions properly

beyond the expected maximum workload. Additionally, load testing evaluates the

performance characteristics (response times, transaction rates, and other time sensitive

issues).

Transactions below refer to "logical business transactions." These transactions are

defined as specific functions that an end user of the system is expected to perform using

the application, such as add or modify a given contract.

Test Objective: Verify System Response time for designated transactions or

business cases under varying workload conditions.

Technique: Use tests developed for Business Cycle Testing.

 Modify data files (to increase the number of transactions)

or the tests to increase the number of times each

transaction occurs.

Completion Criteria: Multiple transactions / multiple users: Successful

completion of the tests without any failures and within

acceptable time allocation.

Online Music System | 2013 – Version 2 169

Special Considerations: Load testing should be performed on a dedicated machine

or at a dedicated time. This permits full control and

accurate measurement.

 The databases used for load testing should be either actual

size, or scaled equally.

Table 2.6.3-5: Load Testing

7) Stress Testing

This section is not applicable to test of this system.

8) Volume Testing

This section is not applicable to test of this system.

9) Security and Access Control Testing

Security and Access Control Testing focus on two key areas of security:

a) Application security, including access to the Data or Business Functions, and

b) System Security, including logging into / remote access to the system.

Application security ensures that, based upon the desired security, users are restricted to

specific functions or are limited in the data that is available to them. For example,

everyone may be permitted to enter data and create new accounts, but only managers

can delete them. If there is security at the data level, testing ensures that user "type" one

can see all customer information, including financial data, however, user two only sees

the demographic data for the same client.

System security ensures that only those users granted access to the system are capable

of accessing the applications and only through the appropriate gateways.

Online Music System | 2013 – Version 2 170

Test Objective: Function/Data Security: Verify that user can access only

those functions/data for which their user type is provided

permissions.

 System Security: Verify that only those users with access

to the system and application(s) are permitted to access

them.

Technique: Function/Data Security: Identify and list each user type

and the functions/data each type has permissions for.

 Create tests for each user type and verify permission by

creating transactions specific to each user type.

 Modify user type and re-run tests for same users. In each

case verify those additional functions/data are correctly

available or denied.

 System Access (see special considerations below)

Completion Criteria: For each known user type the appropriate function/data are

available and all transactions function as expected and run in

prior Application Function tests

Special Considerations: Access to the system must be reviewed/discussed with the

appropriate network or systems administrator. This testing

may not be required as it maybe a function of network or

systems administration.

Table 2.6.3-6: Security and Access Control Testing

10) Failover and Recovery Testing

This section is not applicable to test of this system.

11) Configuration Testing

Configuration testing verifies operation of the software on different software and

hardware configurations. In most production environments, the particular hardware

specifications for the client workstations, network connections and database servers

vary. Client workstations may have different software loaded (e.g. applications, drivers,

etc.) and at any one time many different combinations may be active and using different

resources.

Online Music System | 2013 – Version 2 171

Test Objective: Validate and verify that the client Applications function

properly on the prescribed client workstations.

Technique: Use Integration and System Test scripts

 Open/close various PC applications, either as part of the

test or prior to the start of the test.

 Execute selected transactions to simulate user activities

into and out of various PC applications.

 Repeat the above process, minimizing the available

conventional memory on the client.

Completion Criteria: For each pages from the browser, transactions are

successfully completed without failure.

Special Considerations: What data are the applications running (i.e. large

spreadsheet opened in Excel, 100 page document in

Word).

 The entire systems, network servers, databases, etc.

should also be documented as part of this test.

Table 2.6.3-7: Configuration Testing

12) Installation Testing

This section is not applicable to test of this system.

2.6.3.2 Tools

The following tools will be employed for testing of this system:

Testing type Tool

Test Management o Rational RequisitePro

o Rational Unified Process

Test Design o Rational Rose

Defect Tracking o Rational ClearQuest

Functional Testing o Rational Robot

Online Music System | 2013 – Version 2 172

Performance Testing o Rational Visual Quantify

Test Coverage Monitor or Profiler o Rational Visual PureCoverage

Other Test Tools o Rational Purify

o Rational TestFactory

Project Management o Microsoft Project

o Microsoft Word

o Microsoft Excel

DBMS tools o TBD

Table 2.6.3-8: Tools

2.6.4 Deliverables

1) Test Suite

The Test Suite will define all the test cases and the test scripts which are associated with

each test case.

2) Test Logs

It is planned to use RequisitePro to identify the test cases and to track the status of each

test case. The test results will be summarized in RequisitePro as untested, passed,

conditional pass, or failed. In summary, RequisitePro will be setup to support the

following attributes for each test case, as defined in the Software Requirements

Specification:

 Test status

 Build Number

 Tested By

 Date Tested

 Test Notes

Online Music System | 2013 – Version 2 173

3) Defect Reports

Rational ClearQuest will be used for logging and tracking individual defects.

Online Music System | 2013 – Version 2 174

PART 3: CONCLUSION AND FUTURE WORK

For the conclusion, OMS is developed to enhance the typical music website with

additional features such as messaging, forum, comments, added song to user profile and

purchase items. These features are useful and make it the comprehensive music website.

With the purchases store included, the level of availability also increases. Users can

make purchases with intended product from musician online instead need to go to music

shop. The availability of the products makes music enthusiastic satisfied with the

system. There are more enhancements that can be done to produce a better system.

Further researches have to be done to ensure a good system created and fulfilled all

users’ requirement.

Online Music System | 2013 – Version 2 175

REFERENCES

Blogs – Advantages and Disadvantages. (2009). Retrieved 5 April, 2013, from Online EDU Blog:

http://www.onlineedublog.com/blogs/

Social Networking for Musicians – Quality vs Quantity. (29 March, 2011). Retrieved 15 May,

2013, from Make It In Music: http://www.makeitinmusic.com/social-networking-for-

musicians/

Social Media: What are the advantages and disadvantages of social networking sites? What

should we include in a policy? (6 January, 2012). Retrieved 27 March, 2013, from

SHRM:

http://www.shrm.org/TemplatesTools/hrqa/Pages/socialnetworkingsitespolicy.aspx

Blog Type Websites. (n.d.). Retrieved 4 April, 2013, from Build Your Own Business:

http://www.byobwebsite.com/lesson-subjects/blog-type-websites/

COMPARE MUSIC SOCIAL NETWORK WEBSITES. (n.d.). Retrieved 7 March, 2013, from

FindTheBest: http://social-networking.findthebest.com/d/b/Music

Dahud, H. (26 July, 2012). Fandalism: Finally A Social Network That Works For Musicians.

Retrieved 5 May, 2013, from Hypebot:

http://www.hypebot.com/hypebot/2012/07/fandalism-finally-a-social-network-that-

works-for-musicians-exclusive.html

Danah M. Boyd, N. B. (17 December, 2007). Social Network Sites: Definition, History, and

Scholarship. Retrieved 2013 March, 23, from Wiley Online Library:

http://onlinelibrary.wiley.com/doi/10.1111/j.1083-6101.2007.00393.x/full

Features And Benefits of Social Networking Sites. (n.d.). Retrieved 27 March, 2013, from

Slideshare: http://www.slideshare.net/OnlineMarketing10/features-and-benefits-of-

social-networking-sites

Heng, C. (2007). The Pros and Cons of Using an Online Blog Software or a Content

Management System (CMS). Retrieved 4 April, 2013, from thesisterwizard:

http://www.thesitewizard.com/general/blogging-pros-and-cons.shtml

Music Library Projects, Proposals. (n.d.). Retrieved 20 March, 2013, from Boston University

Music Library: http://www.bu.edu/library/music/about/mk12/

Rai, M. S. (5 April, 2011). A Case Study on Social Networking Website Development for Music,

Arts, Dance and Entertainment. Retrieved 20 April, 2013, from Ezine Articles:

http://ezinearticles.com/?A-Case-Study-on-Social-Networking-Website-Development-

for-Music,-Arts,-Dance-and-Entertainment&id=6204034

Snell, S. (5 March, 2009). 35 Inspirational Website Designs from the Music Industry. Retrieved 1

April, 2013, from Vandelay Design: http://vandelaydesign.com/blog/galleries/music-

websites/

Online Music System | 2013 – Version 2 176

What pages should be included on a musician's website? (n.d.). Retrieved 7 March, 2013, from

The Website Design Studio:

http://www.thewebsitedesignstudio.co.uk/pages_for_musicians_website.html

Wikipedia. (n.d.). Blog. Retrieved 4 April, 2012, from Wikipedia:

http://en.wikipedia.org/wiki/Blog

Wikipedia. (n.d.). iTunes Ping. Retrieved 11 April , 2013, from Wikipedia:

http://en.wikipedia.org/wiki/ITunes_Ping

Online Music System | 2013 – Version 2 177

APPENDIX A: GANTT CHART

	Cover Page
	Table of Content
	Technical Report Version 2

