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ABSTRACT

There were many studies on premixed flame propagation in tubes, including 
open tubes and enclosures. Yet, no sufficient data obtained for explosion properties in 
medium scale piping system to assist engineers or practitioners in determining the 
potential hazard posed due to explosion. In this work, an experimental study had been 
carried out to investigate the explosion properties in a pipeline using two pipe 
configurations, i.e. straight and 90 degree bend. A horizontal steel pipe, with 2 m long
(L) and 0.1 m diameter (D), giving L/D ratio of 20 was used in the range of equivalence 
ratios (Ф) from 0.5 to 1.8. The 90 degree bend pipe had a bend radius of 0.1 m with
added a further 1 m to the length of the pipe (based on the centerline length of the 
segment). Natural gas/pure oxygen mixture was prepared using partial pressure method 
and a homogeneous composition was achieved by circulating the mixture using a solid 
ball which was placed in the mixing cell. It was shown that stoichiometric mixtures gave 
the highest flame speed measurement, both on straight and bend pipes. Stoichiometric 
concentration (Ф = 1.0) gave significant maximum overpressure of 5.5 bars for bend 
pipe, compared to 2.0 bars on straight pipe explosion test; approximately 3 times higher. 
This was due to bending part that acted like obstacles. This mechanism could induce and 
created more turbulence, initiated the combustion of unburned pocket at the corner 
region, causing high mass burning rate and hence, increased the flame speed. It was also 
shown that the flame speed was enhanced by factor of 3 for explosion in bend pipe 
compared to straight pipe. It can be concluded that the bend can create greater 
turbulence effect compared to straight pipe configuration and applying appropriate 
safety devices before the area of the bends is recommended as one of the effective 
methods to prevent the explosion from happen.
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CHAPTER 1

INTRODUCTION

1.1 Motivation / Introduction

In process industries, explosion is still a major problem that causes accidents, 

losses and properties damages. To prevent this explosion in many process and operation 

system like chemical processes plant, process equipment, piping and vent manifold 

system, protection against undesired phenomena such as deflagration to detonation 

transition (DDT) is highly required and this mechanism need to be controlled properly 

[1]. There is sharply increase in the number of piping system, explosive mixtures 

handling and collective system, closures and transport due to the strict rules raised by the 

environmental and safety personnel in handling the volatile organic solvents (VOCs). It 

is compulsory for operators to control over these mixtures to make sure the flammable 

gases can be discharged safely [2]. Due to the risk and consequence from the above 

situation, protection systems such as venting and correct placement of flame arresters are

considered necessary to reduce the overpressure generated during the unexpected 

explosion cases. To apply this safety devices effectively require lots of knowledge and
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fully understanding regarding the explosion behavior and parameters and well 

researched in this area is required.

Venting in tubes and pipes has been studied intensively [3-4], however there is 

uncertainty on the determination of ignition position in advance, leading a major 

difficulty of venting an explosion in large L/D configuration. For encountering many 

situations and conditions of explosion, specified flame arresters must to be installed at 

correct places in order to follow and comply with ATEX (Atmospheres Explosives), a 

standard by European Union describing what equipment and work environment is 

allowed in an environment with an explosive atmosphere. For the flame arrester, 

questions on the best location of these devices and concerns have been raised with safety 

standard for flame arresters in regards to the lack of knowledge of where deflagration to 

detonation will/can occur in a pipe and the contributing factors on this phenomenon [5]. 

Understanding the mode of flame acceleration and combustion behavior along the pipe 

is essential in order to install/apply appropriate protective systems either passive or 

active. Until today, the continuous concerns about to position the flame arrester correctly 

as highlighted by the safety concept bring to the main cause for prediction of the burning 

mode at various points in a pipe by the researchers.

Furthermore, obstacles such as presence of baffle and bends in pipe are rampant

in many processes and applications.  The knowledge of effects on explosion properties 

and phenomena including overpressure, burning rate, flame acceleration and 

deflagration to detonation transition (DDT) is vital for the proper installation of 

explosion safety devices such as venting and flame arrester into the operating system. In 

industrial processes, the full-bore obstacles such as tube bends have extensively applied. 

Over past years, explosions in pipes and ducts, flame acceleration and DDT were well 

researched subject [6], however there were concentrated on the effects of baffle type 

obstacles or items in the path of the flow [7-8].  To the author’s knowledge, there is 
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sparse study on the explosions through pipe bends used extensively in industrial 

applications, and the effects on flame acceleration, overpressure enhancement and the 

contribution on DDT severity.

1.2 Problem Statement

The aim of the research is to provide detailed physical and dynamic flame 

propagation mechanism for gas explosion in a medium size (industrial scale) of closed 

pipe and determine the effect of pipe configuration on the flame acceleration and 

explosion pressure. Data obtained from the experimental work will be compared with 

the previous published experimental data and also can be a reference to future researcher 

in order to validate the predictive protection system that would be applied to the similar 

pipe configuration. Turbulent enhancement factor also can be determined according to 

the collected results for both pipe configurations in order to compare the explosion 

behaviors and profile or mechanism.

Work by Phylaktou et al [9], using a 3 m long and 162 mm diameter tube (L/D 

ratio of 18.5) with closed at both ends, showed that the flame speed and overpressure for 

methane-air explosions with 90 degree bend pipe have increased compared to the 

explosions conducted in straight pipe. The flame speeds was enhanced in a factor of 5 

and this condition is similar to the effect using baffle of 20% blockage ratio at the same 

position. Limited studies were done on medium scale. That is why this study was 

conducted as to complete the circle of small, medium and large scale in piping system.

In present work, the effect of L/D on explosion properties for L/D ratio of 20 (straight 

pipe) and L/D ratio of 38 (90 degree bend pipe) has been investigated.
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Chatrathi [10] found that for propane-air mixtures in 152.4 mm diameter pipe 

with the open end and rear ignition, the development of flame speed increased about

24% after a 90 degree bend placed half-way down a tube. Zhou et al [11], observed that 

the flame front experienced a ‘flame shedding’ inside the bend when travelling through a 

rectangular 90 degree bend. This observation has a good agreement with 3D particle 

modeling of the surge inside of the bend. It is found that large vortexes (turbulent) were 

produced just downstream of the inside wall of the bend while flow followed a more 

streamlines pattern (laminar) around the outside of the bend.

Other study was done in different methods using constant temperature 

anemometry (CTA) to observe the explosion in 90 degree bend [12]. From the work, it 

demonstrated that an obstacle such as bend encouraged the enhancement of turbulence 

effect over the first 30% of the inner diameter of the pipe rapidly inside the bending part.

Ignition position also affects the explosion properties especially the shape of flame. Sato 

et al [13] investigated the effects of ignition position for methane-air explosions using an 

open ended small square channel with 90 degree bend and found out that it can influence

the shape of the flame front and its speed. However, with restricted amount of 

explosions have been conducted, there is quite sparse comparison with work done in 

straight pipe or obstacles.

Present work aims to provide additional information and knowledge related to 

the explosion parameters (flame speed, overpressure and rate of pressure rise) for natural 

gas-oxygen mixtures and to understand its behavior when involving straight and 90 

degree bend pipe. The results collected will be compared with the previous published 

experimental results in order to predict the flame pattern and worst explosion pressure 

for various pipe configurations. Passive and active safety devices like flame arrester and 

venting respectively will be proposed to be installed at certain location along the pipe as 

the one of important effective technique to prevent the explosion from happened.
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1.3 Objectives of Research

This research study embarks on the following objectives:

a) To determine/measure the data of explosion properties in closed pipe 

with and without 90 degree bends such as flame speeds, rate of pressure 

rise, overpressures and unburnt gas velocity at different concentrations of 

natural gas/oxygen mixture.

b) To investigate the effects of pipe configuration (straight and 90 degree 

bends) can have on flame acceleration, overpressure enhancement and 

compare the data obtained with the previous published experimental data.

1.4 Scope of Research

Study on the effect of pipe configuration, i.e. straight and bend. Only straight and 

90 degree were used and investigated. The fuel used is natural gas/oxygen with 

equivalent ratio, Ф = 0.5 to 1.8. Parameters to be studied are flame speed, overpressure 

and rate of pressure rise. These parameters are very important in basically determining 

the explosion severity and hazard posed during explosion. Determination of critical 

points and parts for the high pressure was accessed in order to install passive or active

safety device as one of the protection measured technique. This study investigates the 

explosion properties in a pipe of L/D equal to 20 which can be simulated as an industrial 

scale pipeline.



CHAPTER 2

LITERATURE REVIEW

2.1 Research Background

With increasing number of pipelines explosions every year, research on 

improving the safety design of process equipment has become a major concern among 

researchers. In the pipeline system, the ignited air-fuel mixtures can lead to the critical 

growth of the explosion properties such as uncontrolled and harmful of overpressures.

The fast development of overpressure is influenced by the natural confined behavior of 

the pipe and its long length which is jointed and installed separately in many 

applications of the process industries. It is well known that turbulence flow in the pipe 

will increase the diffusion of heat and mass due to the wrinkling of the flame front and 

thereby cause higher burning rate [14]. The ongoing reaction of gas mixtures will induce 

the transformation of flame propagation from deflagration to detonation type. 

Consequently, increasing burning rate causes the rate of pressure rise in confined space 

increases and leads to destructive explosion. As these parameters largely contribute to 

the explosion behavior, further studies need to be carried out on these parameters to
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quantify the effect they can have on the explosion severity and to avoid such condition 

to occur.

2.2 Gas Explosion

Explosion is a process where combustion of a premixed gas cloud (fuel-air 

mixture) that causes rapid increase of pressure, volume and followed by the excessive 

release of energy or heat. The critical boost of this pressure and its development can be 

influenced and caused by a few factors such as run-away reactions, nuclear reactions, 

leaking or storage failure of high pressure vessels, high explosives metal, vapor 

explosions and burned of mist or dust in existence of air or other oxidizers. One classic 

example of the most serious accidents in the history of chemical industry was happened 

on 1 June 1974 at Flixborough (Nypro plant). A report explained that the plant was 

entirely busted. The incident killed 28 people and total of 89 people were critically 

injured and suffered. Almost two thousands of residences and more than hundred shops 

destroyed. The estimated losses were more than 100 million dollars.

In an accidental explosion, the expansion can be mechanical (via the sudden 

rupture of a pressure vessel) or it can be the result of a rapid chemical reaction. 

Explosion basically can be categorized as confined and unconfined explosion. Confined 

explosion are explosion within tanks, process equipment, closed closures/rooms

(confined space) and in underground installations. Meanwhile, unconfined gas 

explosions occur in an open area such as process plants. The development of pressure 

during the explosion in a confined vessel is not much affected by a high flame velocity 

and therefore even a slow combustion process will generate and increase the pressure 
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[15]. Basically, reasons such as fuel and oxidizer type used, location or position of 

igniter applied in the test system and etc can manipulate the explosion mechanism in 

many ways of reaction. The difference between these two type explosions is that the 

value for overpressure for confined explosion is higher than the unconfined ones. In a 

confined place, the speed of flame increases and its acceleration may be more than a few

hundred meters per second. When the gas is burning, the temperature increases as well 

as burning rate will increase, therefore causing the development of pressure. Without 

proper application of safety equipments to relief the explosion pressure, this would lead 

to rapid increase in pressure.

When the fuel-air mixture is ignited, the flame will propagate in two modes; 

deflagration and detonation. Figure 2.1 shows mechanism for an explosion to happen 

from ignition to detonation. Bjerketvedt et al [15] stated that the ordinary mode of flame 

propagation during the gas explosion is deflagration, as expected to be similar to the 

present work. Deflagration is defined as a combustion wave propagating at subsonic 

velocity where the burning velocity, U is smaller than the speed of sound, C in the 

unburned gas ahead of the flame. The typical flame speeds for deflagration are normally 

the highest about a thousand meter per second (1 to 1000 m/s) with the maximum 

explosion pressures can reach up to a few bars. The main mechanism of propagation of 

combustion is a flame front moving through a gas mixture in technical terms the reaction 

zone (combustion chemistry) takes place through the medium of heat and mass diffusion 

process for laminar flame. It propagates with a velocity 3-4 m/s. In the most benign 

form, the deflagration may only flash flame [15].
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Figure 2.1 Steps for explosion mechanism [15]

The definition of detonation is a combustion wave propagating at supersonic 

velocity relative to the unburnt gas immediately ahead of the flame. Deflagration is 

different from detonation which is a supersonic exothermic front accelerating through a 

medium that finally drives a shock front propagating directly in front of it. The 

detonation velocity, D, is larger than the speed of sound, C, in the unburnt gas. At 

supersonic velocity, combustion wave propagation occurred relative to the unburnt gas 

immediately ahead of the flame [15] which the propagation mechanism can change to 

supersonic explosion. This phenomenon of ignitable mixtures of combustible gas and air 

(or oxygen) occurs when a sudden transition deflagration to detonation (DDT) of 

explosive combustion. Detonation is defined as explosive compound decomposed by 

releasing a shockwave rather than the heat generated by deflagration [16]. The 

detonation velocity can reach the maximum value up to 2000 m/s and the maximum 

pressures generated are close to 20 bars.
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2.3 Explosion Properties

Gas explosion is one of the worst accidents in the world because it can cause 

huge damage and fatalities. The present work is conducted to measure and determine the 

explosion properties such as flame speed, burning velocity, unburned gas velocity, 

explosion pressure, rate of pressure rise, laminar flame speed, turbulent flame speed, 

burning velocity, etc. Explosion behavior such as flame propagation, flame acceleration 

and transition to detonation was comprehensively reviewed recently by Ciccarelli and 

Dorofeev [6].

2.3.1 Flame Speed, Burning Velocity and Unburned Gas Velocity

The measured rate of the growth or expansion of the flame front in a combustion 

reaction represents the value of flame speed. Bjerketvedt et al [15] defined the flame 

speed, S or Sf as the velocity of the flame relative to the ground or another fixed frame. 

Whereas flame speed is generally used for a fuel, a related term is explosive velocity, 

which is the same relationship measured for an explosive. The burning velocity, U or Su, 

is the velocity of the flame front with respect to the unburnt gas immediately ahead of 

the flame. Equation 2.1 shows the relation between flame speed, S, burning velocity, U

and unburned gas velocity ahead of flame, u or Sg.

S  =  U  +  u (2.1)
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Figure 2.2 shows the transmission of flame in cylindrical vessel. During the 

explosion, flame front will expand due to increase of flame temperature. The flame will 

propagate through the length of pipe with the unburned gas mixtures in front of the 

flame and the burned gas mixtures behind the flame. The density different of both gases

mixtures affected its transmission process. The density of unburned gas is lower than 

burned gas. The burning rate will increase and hence lead to the increase of flame speed, 

Sf and pressure development.

Figure 2.2 Transmission of flame in cylindrical vessel [15]

Factors such as expansion of combustion product, unsteadiness and turbulent 

deformation of the flame can cause the flame speed to be higher than burning velocity. 

Normal flame speeds observed for hydrocarbon-air mixtures in a range of 10-100 m/s 

and the speeds can possibly increase up to 1000 m/s under certain conditions. The 

unburned gases in front of the flame can induce turbulence effect in that reaction area 

which produces small and large eddies as it flows through objects or orifices medium. 

The effect of this turbulence can cause a rapid increase in flame speed and develop the 

acceleration of the flame. According to Dahoe et al [14], flame acceleration are divided 

to three phases which is flame stretching and folding, flame front wrinkling (caused by 

turbulent eddies and fluid dynamic instabilities) and flame surface (creation by shock of 

flame interactions). The flame will accelerate more rapidly at higher level of flame 

surface wrinkling but the final choking velocity is similar for all geometric 

configurations and governed only by properties of the gas mixture.


