DEVELOPMENT OF DC POWER SUPPLY USING POWER ELECTRONIC APPLICATIONS

SHAMSUL ARIFIN BIN ZINAL ABIDINE

A thesis submitted in fulfillment of requirements for the award of the Bachelor of Electrical Engineering (Power System)

Faculty of Electrical & Electronic Engineering

Universiti Malaysia Pahang

NOVEMBER 2010
“I declare that this thesis entitled “Development of DC Power Supply Using Power Electronic Applications” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidate of any other degree.”

Signature : _______________________

Name : SHAMSUL ARIFIN BIN ZINAL ABIDINE

Date : 29 NOVEMBER 2010
ACKNOWLEDGEMENT

This project would not have been possible without considerable guidance and support. So, I would like to acknowledge those who have enabled me to complete this project.

Firstly I would like to thank to my project supervisor, Miss Nor Laili Binti Ismail for providing the guideline with continues advice and feedback throughout the duration of finishing this project.

Secondly I would also like to thank for all other Universiti Malaysia Pahang staff members that I may have called upon for assistance since the genesis of this project. Their opinions and suggestions have helped me in realizing this project. Also not to be forgotten, I would like to thank for all my friends with the report, valuable opinion and sharing ideas during the progress of this project.

Finally, I would like to thank to my family for their understanding, encouragement and support, towards the compilation of my project. Unfortunately, it is not possible to list all of them in this limited space. Thank you so much.
ABSTRACT

This project is about how was to develop dc power supply using the applications of power electronic. In the power generation of most of electrical circuit, dc power supply is very required and demanded. It is familiarly to provide power for control and drive circuit within the main switchmode unit. Depending on the approaching of circuit design, the power supply will be common to either input or output of the circuit modeling. The design of DC power supply depends on the output of circuit design either single output or multiple output. There are different analysis to design the circuit based on the number of output. In this project, there are many applications of power electronics are applied such as transformer, AC to DC converter or rectifier, DC-DC converter, and semiconductor devices like power transistor. The circuit design approaching depends on the combination of these power electronic applications. The power supply designed is fully conversant with various combinations and its designer should be having capability to select the most appropriate for a particular application has indeed very powerful design tools.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>

1 **INTRODUCTION**
1.1 Overview 1
1.2 Project Background 2
1.3 Problem Statement 3
1.4 Objectives 3
2 LITERATURE REVIEW

2.1 Introduction 5

2.2 Power Electronic Applications 6
 2.2.1 Bridge Rectifier 6
 2.2.2 Dc To Dc Converter 10
 2.2.3 Power Transistor 12

2.3 Voltmeter (Monitoring Part) 18
 2.3.1 Liquid Crystal Display 18
 2.3.2 PIC16F877 Microcontroller 21

3 METHODOLOGY 24

3.1 Introduction 24

3.2 The Block Diagram Of Dc Power Supply 25

3.3 The Circuit Of Dc Power Supply 26

3.4 Stages Of Development Of Dc Power Supply 26

3.5 Voltmeter Circuit 29
 3.5.1 Overview 29
 3.5.2 Voltmeter Circuit Design 30
 3.5.3 PIC16F877 Programming Code For Voltmeter
 Circuit 30

3.6 Circuit Testing Methods 34
 3.6.1 Overview 34
 3.6.2 Simulating Circuit Design 34
 3.6.3 Testing Hardware Circuit 40
 3.6.4 Troubleshooting Circuit Connection Or
 Related Problems 41

3.7 Components Of Projects 43
 3.7.2 240Vac To 24Vac Transformer 43
 3.7.2 LM723 Integrated Circuit 46
4 RESULTS AND DISCUSSIONS
4.1 Introduction 51
4.2 Software Results 52
 4.2.1 Step-Down Transformer Results 52
 4.2.2 DC Power Supply Results 54
 4.2.3 LCD Display Result 59
4.3 Hardware Results 61
 4.3.1 LM723 Results 62
 4.3.2 Voltage Output Of DC Power Supply Results 63
 4.3.2 LCD Display Result 66
4.4 Discussion 67

5 CONCLUSION AND RECOMMENDATIONS 68
5.1 Conclusion 68
5.2 Future Recommendations 69
5.3 Costing And Commercialization 70
 5.3.1 Costing 70
 5.3.2 Commercialization 72

REFERENCE 74
APPENDIX 75
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The example circuit of rectifier</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Positive cycle of rectifier</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Negative cycle of rectifier</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>A simple circuit of rectifier with load</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>AC, half-wave and full-wave signals</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Block diagram of DC to DC converter</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Simple circuit to show bipolar transistor</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>BJT used as an electronic switch</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>BJT used as switching unit</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Layers of LCD</td>
<td>18</td>
</tr>
<tr>
<td>2.11</td>
<td>Alphanumeric LCD</td>
<td>19</td>
</tr>
<tr>
<td>2.12</td>
<td>Samples of PIC16F877</td>
<td>21</td>
</tr>
<tr>
<td>2.13</td>
<td>Overview of PIC16F877</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Block diagram of DC power supply</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Circuit design of DC power supply</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Connection circuit of stage 1</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Connection circuit of stage 2</td>
<td>26</td>
</tr>
</tbody>
</table>
3.5 Connection circuit of stage 3
3.6 Connection circuit of stage 4
3.7 Connection circuit of stage 5
3.8 Voltmeter circuit design
3.9 PROTEUS software
3.10 Sample circuit for simulation
3.11 Step 1 – Select ANALOGUE ANALYSIS
3.12 Step 2 – Display ANALOGUE ANALYSIS graph
3.13 Step 3 – Adding traces
3.14 Step 4 – Select probe
3.15 Step 5 – Simulate graph
3.16 Step 6 – Display result
3.17 Digital oscilloscope
3.18 Analog multimeter
3.19 Digital multimeter
3.20 Transformer
3.21 Simple circuit of transformer
3.22 Schematic diagram of LM723
3.23 Pin connection of LM723
4.1 Step-down transformer
4.2 Input of 240Vac
4.3 Output of 24Vac
4.4 Circuit design of DC power supply in PROTEUS software
4.5 Voltmeter reading
4.6 DC power supply output
4.7-4.18 Voltage output of DC power supply in PROTEUS software
4.19 Display name
4.20 DC power supply is ON
4.21 Display maximum voltage
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.22</td>
<td>Display minimum voltage</td>
<td>61</td>
</tr>
<tr>
<td>4.23</td>
<td>Hardware circuit of DC power supply</td>
<td>62</td>
</tr>
<tr>
<td>4.24</td>
<td>Front view of DC power supply</td>
<td>62</td>
</tr>
<tr>
<td>4.25-4.36</td>
<td>Variable voltage of DC power supply</td>
<td>64</td>
</tr>
<tr>
<td>4.37-4.43</td>
<td>LCD display result</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Models of transistor</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Other components are used</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Data collection of LM723 voltage output</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Costing of project</td>
<td>73</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternated Current</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>TNB</td>
<td>Tenaga Nasional Berhad</td>
</tr>
<tr>
<td>SESCO</td>
<td>Sarawak Electrical Supply Company</td>
</tr>
<tr>
<td>SESB</td>
<td>Sabah Electricity Sdn Bhd</td>
</tr>
<tr>
<td>SMPS</td>
<td>Switch-Mode Power Supply</td>
</tr>
<tr>
<td>LDO</td>
<td>Low Drop-Out</td>
</tr>
<tr>
<td>BJT</td>
<td>Bipolar Junction Transistor</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray tube</td>
</tr>
<tr>
<td>TFT</td>
<td>Thin Film Transistor</td>
</tr>
<tr>
<td>PIC</td>
<td>Programmable Interface Controller</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Datasheet of PIC16F877</td>
<td>75</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Regulated dc power supplies are needed for most analog and digital electronic systems. Most power supplies are designed to meet some or all of the following requirements:

- Regulated output. The output voltage must be held constant within specified tolerance for changes within specified range in the input voltage and the output loading.
- Isolation. The output may be required to be electrically isolated from the input.
• Multiple outputs. There may be multiple outputs (positive or negative) that may differ in their voltage and current ratings. Such outputs may be isolated from each other.

In addition to these requirements, common targets are to reduce power supply size and weight and improve their efficiency[1]. Traditionally, linear power supplies have been used. However, advances in the semiconductor technology have lead to the switching power supplies, which are smaller and much more efficient compared to linear power supplies. The cost comparison between linear and switching supplies depends on the power rating.

1.2 Project Background

In this project, the report is explained about the circuit of dc power supply. It is made up of AC to AC converter and AC to DC converter as main components. AC to AC converter uses step-down transformer as the device. This transformer converts 240Vac to 24Vac for usage in the next stage. In the next stage, the voltage of 24Vac is converted to regulated DC voltage using AC to DC converter or bridge rectifier and its drive circuit. Bridge rectifier converts 24Vac to 24Vdc. After that, the voltage of 24Vdc converts to regulated DC voltage using drive circuit. In addition, the DC power supply interface to liquid crystal display (LCD) using PIC16F877 for voltmeter application.
1.3 Problem Statement

Nowadays, electrical power supply is the one of important element in human being needs. The most of human activities is very depending of demand of electrical power supply. In the other words, without electrical power supply, almost the whole of activities is become postponed or worse cancelled. There is some companies that responsible in distribute electrical power supply in Malaysia such as in peninsula of Malaysia is Tenaga Nasional Berhad(TNB), Sarawak is Sarawak Electrical Supply Company(SESCO), Sabah is Sabah Electrical Supply Berhad(SESB) and any private power supply provider. For usage of daily routine, voltage are supplied is within 240Vac. The problem happen is the most electrical appliances use DC voltage. Therefore, this voltage of 240Vac must be converted to desired DC voltage. Based on this problem, DC power supply is the solution of this problem.

1.4 Objective

The objective of this project is to;

i. Develop circuit design of DC power supply using PROTEUS software
ii. Develop hardware circuit based on the circuit design of DC power supply
1.5 Scope of Project

There are several scopes that need to be proposed for the project;

i. This project is focused on AC to DC converter

ii. The DC power supply circuit able convert fix voltage of 240Vac to desired dc voltage within 0V to 35V
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

There are two most familiar DC power supplies are used which are linear power supply and switching power supply[2]. Both the DC power supplies have their own differences based on the characteristics.

For linear power supply, it has the preceding discussion points out two major shortcomings of a linear power supply. It requires a low-frequency (60Hz) transformer. That means the size and weight of the transformer are larger than high-frequency transformer. Besides that, the transistors in linear DC power supply operate in active region, incurring a significant amount of power loss. It affected the overall efficiencies of linear power supply usually in a range of 30-60%.
There is different with the switching power supply. In this type of DC power supply, the switching elements such as power transistors or MOSFETs operate as a switch: either completely off and completely on. By avoiding the operation in active region, power loss of the system is able to reduce. As a result, its efficiency between 70-90% ranges. Since a high-frequency isolation transformer is used, the size and weight of switching power supplies can be significantly reduced.

2.2 Power Electronic Applications

2.2.1 Bridge Rectifier

A diode bridge is an arrangement of four (or more) diodes in a bridge configuration that provides the same polarity of output for either polarity of input. When used in its most common application, for conversion of an alternating current (AC) input into direct current a (DC) output, it is known as a bridge rectifier. A bridge rectifier provides full-wave rectification from a two-wire AC input, resulting in lower cost and weight as compared to a rectifier with a 3-wire input from a transformer with a center-tapped secondary winding[11].

AC/DC power converters are extensively used in various applications like power supplies, dc motor drives, front-end converters in adjustable-speed ac drives, High Voltage Direct Current (HVDC) transmission, Switch-Mode Power Supply (SMPS), utility interface with non-conventional energy sources, in process technology like welding, power supplies for telecommunications systems, aerospace, military environment and so on[3]. Traditionally, AC–DC power conversion has been
dominated by diode or phase-controlled rectifiers which act as non-linear loads on the power systems and draw input currents which are rich in harmonics and have poor supply power factor, thus creating the power quality problem for the power distribution network and for other electrical systems in the vicinity of rectifier.

Figure 2.1 : The example circuit of rectifier [3]

According to the conventional model of current flow originally established by Benjamin Franklin and still followed by most engineers today, current is assumed to flow through electrical conductors from the positive to the negative pole[12]. In actuality, free electrons in a conductor nearly always flow from the negative to the positive pole. In the vast majority of applications, however, the actual direction of current flow is irrelevant. Therefore, in the discussion below the conventional model is retained. In the diagrams below, when the input connected to the left corner of the diamond is positive, and the input connected to the right corner is negative, current flows from the upper supply terminal to the right along the red (positive) path to the output, and returns to the lower supply terminal via the blue (negative) path like in Figure 2.2.
When the input connected to the left corner is negative, and the input connected to the right corner is positive, current flows from the lower supply terminal to the right along the red (positive) path to the output, and returns to the upper supply terminal via the blue (negative) path like in Figure 2.3.

In each case, the upper right output remains positive and lower right output negative. Since this is true whether the input is AC or DC, this circuit not only produces a DC output from an AC input, it can also provide what is sometimes called
"reverse polarity protection". That is, it permits normal functioning of DC-powered equipment when batteries have been installed backwards, or when the leads (wires) from a DC power source have been reversed, and protects the equipment from potential damage caused by reverse polarity.

For many applications, especially with single phase AC where the full-wave bridge serves to convert an AC input into a DC output, the addition of a capacitor may be desired because the bridge alone supplies an output of fixed polarity but continuously varying or "pulsating" magnitude, an attribute commonly referred to as "ripple".

![Figure 2.4: A simple circuit of rectifier with load][12]

![Figure 2.5: AC, half-wave and full wave rectified signals][12]
2.2.2 DC to DC Converter

DC to DC converters are important in portable electronic devices such as cellular phones and laptop computers, which are supplied with power from batteries primarily. Such electronic devices often contain several sub-circuits, each with its own voltage level requirement different from that supplied by the battery or an external supply (sometimes higher or lower than the supply voltage). Additionally, the battery voltage declines as its stored power is drained. Switched DC to DC converters offer a method to increase voltage from a partially lowered battery voltage thereby saving space instead of using multiple batteries to accomplish the same thing. Most DC to DC converters also regulate the output voltage. Some exceptions include high-efficiency LED power sources, which are a kind of DC to DC converter that regulates the current through the LEDs, and simple charge pumps which double or triple the input voltage.

The DC-DC converters are widely used in regulated switch-mode dc power supplies and in load drive applications. The input to these converters is an unregulated dc voltage, which is obtained by rectifying the line voltage and therefore it will fluctuate due to changes in the line voltage magnitude. Switch-mode DC-to-DC converters are used to convert the unregulated dc input into a controlled dc output at a desired voltage level. This is the basic block diagram of a DC-DC converter system:

![Diagram of DC-DC converter system](image)

Figure 2.6 : Block diagram of DC-DC converter[4]